Buckling design of large eccentrically filled steel silos

Large steel silos are typical kinds of thin-walled structure which are widely used for storing huge quantities of granular solids in industry and agriculture. In the present analyses, buckling design of circular steel silos subject to large eccentricity filling pressure is demonstrated in accordance...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 327; pp. 476 - 488
Main Authors Cao, Qing-shuai, Zhao, Yang
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.03.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0032-5910
1873-328X
DOI10.1016/j.powtec.2018.01.001

Cover

Abstract Large steel silos are typical kinds of thin-walled structure which are widely used for storing huge quantities of granular solids in industry and agriculture. In the present analyses, buckling design of circular steel silos subject to large eccentricity filling pressure is demonstrated in accordance with Eurocode: EN1990, 1991, 1993 . The finite element model is established by using the commercial general purpose computer package ANSYS. Five types of buckling analyses are carried out for the geometrically perfect and imperfect models, with and without the consideration of the material plasticity, which are designated as LBA, GNA, GMNA, GNIA, and GMNIA in EN 1993 Part 1–6. Buckling behavior of five example steel silos with capacity of 40,000 to 60,000m3 is investigated whose slenderness ranges from 1.89 to 0.46, comprising intermediate slender and squat silos widely applicable in practical engineering. The results show that the buckling deformations are nonsymmetrical and the GMNIA analysis gives out the least buckling load factor for all example silos from all proposed buckling analysis types, and the load displacement curves are highly nonlinear and predict a distinct maximum load followed by a descending path, in which the maximum load is taken as the critical buckling point λcr for the equilibrium path. The buckling mode in GMNIA analysis takes the form of the well-known elephant-foot deformation at the bottom part of the shell wall, combined with nonsymmetrical waves in meridional direction throughout the whole height of the silo wall due to the distribution of weld imperfection. The geometrical nonlinearity is beneficial while material nonlinearity is strong and detrimental to buckling behavior of example silos. The effect of weld imperfection is also harmful to buckling resistance of silo, which is more serious for relatively slender silos than squat silos. The buckling is mainly governed by the nonuniform distribution of the solid pressure other than other influential factors as the weld imperfection, geometrical and material nonlinearity, compared with the load case of symmetrical filling. The economical design of steel silos can be effectively measured by the economic index called the ratio of capacity to steel consumption (RCS). It is validated that the index RCS increases rapidly with the decrease of silo slenderness, and the storage efficiency of example silos is increased by about 2.1 times with the slenderness varying from 1.89 to 0.46. It also suggests that the eccentricity in filling of steel silo should be reduced as far as possible for improvement of buckling strength of structure under eccentric filling. Large eccentrically filled steel silo. [Display omitted] •Buckling of large steel silo subject to large eccentricity filling pressure is evaluated.•Five types of buckling are undertaken for geometrically perfect and imperfect models.•Effects of nonlinearity and weld imperfection on buckling strength and mode are investigated.•Eccentricity in filling silo should be reduced at any possible for improvement of buckling strength.
AbstractList Large steel silos are typical kinds of thin-walled structure which are widely used for storing huge quantities of granular solids in industry and agriculture. In the present analyses, buckling design of circular steel silos subject to large eccentricity filling pressure is demonstrated in accordance with Eurocode: EN1990. 1991, 1993. The finite element model is established by using the commercial general purpose computer package ANSYS. Five types of buckling analyses are carried out for the geometrically perfect and imperfect models, with and without the consideration of the material plasticity, which are designated as LBA, GNA, GMNA. GNIA, and GMNIA in EN 1993 Part 1-6. Buckling behavior of five example steel silos with capacity of 40,000 to 60,000 m3 is investigated whose slender- ness ranges from 1.89 to 0.46, comprising intermediate slender and squat silos widely applicable in practical engineering. The results show that the buckling deformations are nonsymmetrical and the GMNIA analysis gives out the least buckling load factor for all example silos from all proposed buckling analysis types, and the load displacement curves are highly nonlinear and predict a distinct maximum load followed by a descending path, in which the maximum load is taken as the critical buckling point Xc, for the equilibrium path. The buckling mode in GMNIA analysis takes the form of the well-known elephant-foot deformation at the bottom part of the shell wall, combined with nonsymmetrical waves in meridional direction throughout the whole height of the silo wall due to the distribution of weld imperfection. The geometrical nonlinearity is beneficial while material nonlinearity is strong and detrimental to buckling behavior of example silos. The effect of weld imperfection is also harmful to buckling resistance of silo, which is more serious for relatively slender silos than squat silos. The buckling is mainly governed by the nonuniform distribution of the solid pressure other than other influential factars as the weld imperfection, geometrical and material nonlinearity, compared with the load case of symmetrical filling. The economical design of steel silos can be effectively measured by the economic index called the ratio of capacity to steel consumption (RCS). It is validated that the index RCS increases rapidly with the decrease of silo slenderness, and the storage efficiency of example silos is increased by about 2.1 times with the slenderness varying from 1.89 to 0.46. It also suggests that the eccentricity in filling of steel silo should be reduced as far as possible for improvement of buckling strength of structure under eccentric filling.
Large steel silos are typical kinds of thin-walled structure which are widely used for storing huge quantities of granular solids in industry and agriculture. In the present analyses, buckling design of circular steel silos subject to large eccentricity filling pressure is demonstrated in accordance with Eurocode: EN1990, 1991, 1993 . The finite element model is established by using the commercial general purpose computer package ANSYS. Five types of buckling analyses are carried out for the geometrically perfect and imperfect models, with and without the consideration of the material plasticity, which are designated as LBA, GNA, GMNA, GNIA, and GMNIA in EN 1993 Part 1–6.Buckling behavior of five example steel silos with capacity of 40,000 to 60,000m3 is investigated whose slenderness ranges from 1.89 to 0.46, comprising intermediate slender and squat silos widely applicable in practical engineering. The results show that the buckling deformations are nonsymmetrical and the GMNIA analysis gives out the least buckling load factor for all example silos from all proposed buckling analysis types, and the load displacement curves are highly nonlinear and predict a distinct maximum load followed by a descending path, in which the maximum load is taken as the critical buckling point λcr for the equilibrium path. The buckling mode in GMNIA analysis takes the form of the well-known elephant-foot deformation at the bottom part of the shell wall, combined with nonsymmetrical waves in meridional direction throughout the whole height of the silo wall due to the distribution of weld imperfection. The geometrical nonlinearity is beneficial while material nonlinearity is strong and detrimental to buckling behavior of example silos. The effect of weld imperfection is also harmful to buckling resistance of silo, which is more serious for relatively slender silos than squat silos. The buckling is mainly governed by the nonuniform distribution of the solid pressure other than other influential factors as the weld imperfection, geometrical and material nonlinearity, compared with the load case of symmetrical filling. The economical design of steel silos can be effectively measured by the economic index called the ratio of capacity to steel consumption (RCS). It is validated that the index RCS increases rapidly with the decrease of silo slenderness, and the storage efficiency of example silos is increased by about 2.1 times with the slenderness varying from 1.89 to 0.46. It also suggests that the eccentricity in filling of steel silo should be reduced as far as possible for improvement of buckling strength of structure under eccentric filling.
Large steel silos are typical kinds of thin-walled structure which are widely used for storing huge quantities of granular solids in industry and agriculture. In the present analyses, buckling design of circular steel silos subject to large eccentricity filling pressure is demonstrated in accordance with Eurocode: EN1990, 1991, 1993 . The finite element model is established by using the commercial general purpose computer package ANSYS. Five types of buckling analyses are carried out for the geometrically perfect and imperfect models, with and without the consideration of the material plasticity, which are designated as LBA, GNA, GMNA, GNIA, and GMNIA in EN 1993 Part 1–6. Buckling behavior of five example steel silos with capacity of 40,000 to 60,000m3 is investigated whose slenderness ranges from 1.89 to 0.46, comprising intermediate slender and squat silos widely applicable in practical engineering. The results show that the buckling deformations are nonsymmetrical and the GMNIA analysis gives out the least buckling load factor for all example silos from all proposed buckling analysis types, and the load displacement curves are highly nonlinear and predict a distinct maximum load followed by a descending path, in which the maximum load is taken as the critical buckling point λcr for the equilibrium path. The buckling mode in GMNIA analysis takes the form of the well-known elephant-foot deformation at the bottom part of the shell wall, combined with nonsymmetrical waves in meridional direction throughout the whole height of the silo wall due to the distribution of weld imperfection. The geometrical nonlinearity is beneficial while material nonlinearity is strong and detrimental to buckling behavior of example silos. The effect of weld imperfection is also harmful to buckling resistance of silo, which is more serious for relatively slender silos than squat silos. The buckling is mainly governed by the nonuniform distribution of the solid pressure other than other influential factors as the weld imperfection, geometrical and material nonlinearity, compared with the load case of symmetrical filling. The economical design of steel silos can be effectively measured by the economic index called the ratio of capacity to steel consumption (RCS). It is validated that the index RCS increases rapidly with the decrease of silo slenderness, and the storage efficiency of example silos is increased by about 2.1 times with the slenderness varying from 1.89 to 0.46. It also suggests that the eccentricity in filling of steel silo should be reduced as far as possible for improvement of buckling strength of structure under eccentric filling. Large eccentrically filled steel silo. [Display omitted] •Buckling of large steel silo subject to large eccentricity filling pressure is evaluated.•Five types of buckling are undertaken for geometrically perfect and imperfect models.•Effects of nonlinearity and weld imperfection on buckling strength and mode are investigated.•Eccentricity in filling silo should be reduced at any possible for improvement of buckling strength.
Author Cao, Qing-shuai
Zhao, Yang
Author_xml – sequence: 1
  givenname: Qing-shuai
  surname: Cao
  fullname: Cao, Qing-shuai
  organization: Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015,China
– sequence: 2
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  email: ceyzhao@zju.edu.cn
  organization: Space Structures Research Center, Zhejiang University, Hangzhou 310058, China
BookMark eNqFkD9PwzAQRy1UJNrCN2CIxMKScGc3TsKABBX_pEosILFZrnOpXNy42Cmo355UZeoA0y3v_XR6IzZofUuMnSNkCCivltnaf3dkMg5YZoAZAB6xIZaFSAUv3wdsCCB4mlcIJ2wU4xIApEAYsupuYz6cbRdJTdEu2sQ3idNhQQkZQ20XrNHObZPGOkd1Ejsil0TrfDxlx412kc5-75i9Pdy_Tp_S2cvj8_R2lhohiy4t5mVd4wS0zAvUuRATkFpIiVxXgKISWM2RGiFyDZRLNDVyKZuqkfO65IbEmF3ud9fBf24odmployHndEt-ExXnHEFCJfIevThAl34T2v47xUHgBKGooKcme8oEH2OgRq2DXemwVQhq11Mt1b6n2vVUgKrv2WvXB5qxne6s7yNp6_6Tb_Yy9aW-LAUVjaXWUG0DmU7V3v498AMy_pOl
CitedBy_id crossref_primary_10_1016_j_engfailanal_2022_106282
crossref_primary_10_1590_1809_4430_eng_agric_v44nepe20240014_2024
crossref_primary_10_1016_j_jspr_2020_101679
crossref_primary_10_1016_j_powtec_2019_04_080
crossref_primary_10_1016_j_tws_2020_107316
crossref_primary_10_1016_j_jspr_2024_102391
crossref_primary_10_1016_j_engfailanal_2019_03_009
Cites_doi 10.1061/(ASCE)0733-9445(2001)127:10(1129)
10.1016/j.powtec.2014.02.051
10.1016/j.powtec.2015.09.036
10.1016/j.jcsr.2011.03.028
10.1631/jzus.A1600369
10.1016/j.tws.2004.05.009
10.1016/j.jcsr.2011.03.027
10.1016/j.powtec.2015.03.009
10.1016/j.powtec.2012.08.039
10.1016/j.engstruct.2010.12.040
10.1061/(ASCE)0733-9445(1989)115:5(1244)
10.1016/S0263-8231(98)00011-1
10.1016/S0263-8231(01)00066-0
10.1016/S0141-0296(03)00105-6
10.1016/j.tws.2014.07.011
10.1016/S0263-8231(02)00028-9
10.1061/(ASCE)EM.1943-7889.0000525
10.1061/(ASCE)ST.1943-541X.0000530
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Mar 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 2018
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
JG9
SOI
7S9
L.6
DOI 10.1016/j.powtec.2018.01.001
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
EndPage 488
ExternalDocumentID 10_1016_j_powtec_2018_01_001
S0032591018300019
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
T9H
WUQ
XPP
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
JG9
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-7b8dd140a6571a533406a36612a90139319b1ef335a0e561cd1266f9f6bd82ce3
IEDL.DBID .~1
ISSN 0032-5910
IngestDate Wed Oct 01 14:35:56 EDT 2025
Wed Aug 13 04:19:15 EDT 2025
Wed Oct 01 02:05:17 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Fri Feb 23 02:29:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinearity
Slenderness
Steel silo
Buckling
Eccentric filling
Weld imperfection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-7b8dd140a6571a533406a36612a90139319b1ef335a0e561cd1266f9f6bd82ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2031410790
PQPubID 2045415
PageCount 13
ParticipantIDs proquest_miscellaneous_2221060935
proquest_journals_2031410790
crossref_primary_10_1016_j_powtec_2018_01_001
crossref_citationtrail_10_1016_j_powtec_2018_01_001
elsevier_sciencedirect_doi_10_1016_j_powtec_2018_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Powder technology
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References EN 1991-4 (bb0005) 2006
Kobyłka, Molenda (bb0055) 2013; 233
Sadowski, Rotter (bb0095) 2011; 33
Song (bb0080) 2004; 42
Iwicki, Tejchman, Chróścielewski (bb0135) 2014; 84
Sadowski, Rotter (bb0075) 2011; 67
Pircher, Bridge (bb0070) 2001; 127
AS3774-1996 (bb0040) 1996
Song, Teng (bb0105) 2003; 25
Cao, Zhao (bb0115) 2017; 18
Greiner, Guggenberger (bb0065) 1998; 31
Barletta, Poletto (bb0120) 2015; 277
ISO11697 (bb0035) 1995
Gillie, Rotter (bb0085) 2002; 40
EN 1991-1-1 (bb0020) 2002
EN 1993-1-1 (bb0025) 2005
Sadowski, Rotter (bb0110) 2012; 138
EN 1993-4-1 (bb0010) 2007
Rotter, Teng (bb0130) 1989; 115
EN 1990 (bb0015) 2002
Sadowski, Rotter (bb0090) 2011; 67
Wang, Lu, Ooi (bb0050) 2014; 257
Sadowski, Rotter (bb0100) 2013; 139
Combarros Garcia, Feise, Strege, Kwade (bb0045) 2016; 293
EN 1993-1-6 (bb0030) 2007
Kim, Kim (bb0060) 2002; 40
ANSYS (bb0125) 2008
Song (10.1016/j.powtec.2018.01.001_bb0080) 2004; 42
AS3774-1996 (10.1016/j.powtec.2018.01.001_bb0040) 1996
Iwicki (10.1016/j.powtec.2018.01.001_bb0135) 2014; 84
Greiner (10.1016/j.powtec.2018.01.001_bb0065) 1998; 31
Sadowski (10.1016/j.powtec.2018.01.001_bb0075) 2011; 67
Song (10.1016/j.powtec.2018.01.001_bb0105) 2003; 25
Kim (10.1016/j.powtec.2018.01.001_bb0060) 2002; 40
Barletta (10.1016/j.powtec.2018.01.001_bb0120) 2015; 277
Sadowski (10.1016/j.powtec.2018.01.001_bb0095) 2011; 33
ISO11697 (10.1016/j.powtec.2018.01.001_bb0035) 1995
EN 1993-1-6 (10.1016/j.powtec.2018.01.001_bb0030) 2007
Wang (10.1016/j.powtec.2018.01.001_bb0050) 2014; 257
Cao (10.1016/j.powtec.2018.01.001_bb0115) 2017; 18
EN 1993-4-1 (10.1016/j.powtec.2018.01.001_bb0010) 2007
Combarros Garcia (10.1016/j.powtec.2018.01.001_bb0045) 2016; 293
EN 1993-1-1 (10.1016/j.powtec.2018.01.001_bb0025) 2005
Kobyłka (10.1016/j.powtec.2018.01.001_bb0055) 2013; 233
EN 1990 (10.1016/j.powtec.2018.01.001_bb0015) 2002
ANSYS (10.1016/j.powtec.2018.01.001_bb0125) 2008
Rotter (10.1016/j.powtec.2018.01.001_bb0130) 1989; 115
Sadowski (10.1016/j.powtec.2018.01.001_bb0110) 2012; 138
EN 1991-1-1 (10.1016/j.powtec.2018.01.001_bb0020) 2002
Pircher (10.1016/j.powtec.2018.01.001_bb0070) 2001; 127
Sadowski (10.1016/j.powtec.2018.01.001_bb0100) 2013; 139
EN 1991-4 (10.1016/j.powtec.2018.01.001_bb0005) 2006
Sadowski (10.1016/j.powtec.2018.01.001_bb0090) 2011; 67
Gillie (10.1016/j.powtec.2018.01.001_bb0085) 2002; 40
References_xml – volume: 127
  start-page: 1129
  year: 2001
  end-page: 1136
  ident: bb0070
  article-title: Buckling and post-buckling behaviour of silos and tanks under axial load-some new aspects
  publication-title: J. Struct. Eng. ASCE
– volume: 18
  start-page: 282
  year: 2017
  end-page: 305
  ident: bb0115
  article-title: Buckling design of large steel silos with various slendernesses
  publication-title: J. Zheijang Univ. Sci. A
– volume: 139
  start-page: 858
  year: 2013
  end-page: 867
  ident: bb0100
  article-title: Buckling in eccentrically discharged silos and the assumed pressure distribution
  publication-title: J. Eng. Mech. Div. ASCE
– volume: 84
  start-page: 344
  year: 2014
  end-page: 359
  ident: bb0135
  article-title: Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos
  publication-title: Thin-Walled Struct.
– volume: 233
  start-page: 65
  year: 2013
  end-page: 71
  ident: bb0055
  article-title: DEM modelling of silo load asymmetry due to eccentric filling and discharge
  publication-title: Powder Technol.
– volume: 25
  start-page: 1397
  year: 2003
  end-page: 1417
  ident: bb0105
  article-title: Buckling of circular steel silos subject to code-specified eccentric discharge pressures
  publication-title: Eng. Struct.
– volume: 293
  start-page: 26
  year: 2016
  end-page: 36
  ident: bb0045
  article-title: Segregation in heaps and silos: comparison between experiment, simulation and continuum model
  publication-title: Powder Technol.
– year: 2002
  ident: bb0020
  article-title: Actions on Structures—Part 1-1: General Actions: Densities, Self-weight, Imposed Loads for Buildings, European Standard
– year: 2002
  ident: bb0015
  article-title: Basis of Structural Design, European Standard
– year: 1995
  ident: bb0035
  article-title: Basis for Design of Structures—Loads Due to Bulk Materials
– volume: 31
  start-page: 159
  year: 1998
  end-page: 167
  ident: bb0065
  article-title: Buckling behaviour of axially loaded steel cylinders on local supports-with and without internal pressure
  publication-title: Thin-Walled Struct.
– year: 2007
  ident: bb0010
  article-title: Design of Steel Structures—Part 4-1: Silos, European standard
– volume: 277
  start-page: 252
  year: 2015
  end-page: 261
  ident: bb0120
  article-title: Pipe stability in aerated silos
  publication-title: Powder Technol.
– year: 1996
  ident: bb0040
  article-title: Loads on Bulk Solids Containers, Sydney: Standards Australia
– volume: 257
  start-page: 181
  year: 2014
  end-page: 190
  ident: bb0050
  article-title: Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian-Eulerian formulation
  publication-title: Powder Technol.
– year: 2005
  ident: bb0025
  article-title: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings, European Standard
– volume: 67
  start-page: 1537
  year: 2011
  end-page: 1544
  ident: bb0075
  article-title: Steel silos with different aspect ratios-I: behaviour under concentric discharge
  publication-title: J. Constr. Steel Res.
– year: 2006
  ident: bb0005
  article-title: Actions on Structures—Part 4: Silos and Tanks, European Standard
– volume: 33
  start-page: 1187
  year: 2011
  end-page: 1194
  ident: bb0095
  article-title: Buckling of very slender metal silos under eccentric discharge
  publication-title: Eng. Struct.
– volume: 40
  start-page: 329
  year: 2002
  end-page: 353
  ident: bb0060
  article-title: Buckling strength of the cylindrical shell and tank subjected to axially compressive loads
  publication-title: Thin-Walled Struct.
– year: 2007
  ident: bb0030
  article-title: Design of Steel Structures—Part 1-6: Strength and Stability of Shell Structures, European Standard
– year: 2008
  ident: bb0125
  article-title: ANSYS User's Manual
– volume: 40
  start-page: 835
  year: 2002
  end-page: 852
  ident: bb0085
  article-title: The effects of patch loads on thin-walled steel silos
  publication-title: Thin-Walled Struct.
– volume: 42
  start-page: 1519
  year: 2004
  end-page: 1542
  ident: bb0080
  article-title: Effects of patch loads on structural behavior of circular flat-bottomed steel silos
  publication-title: Thin-Walled Struct.
– volume: 67
  start-page: 1545
  year: 2011
  end-page: 1553
  ident: bb0090
  article-title: Steel silos with different aspect ratios-II: behaviour under eccentric discharge
  publication-title: J. Constr. Steel Res.
– volume: 138
  start-page: 922
  year: 2012
  end-page: 931
  ident: bb0110
  article-title: Structural behavior of thin-walled metal silos subject to different flow channel sizes under eccentric discharge pressures
  publication-title: J. Struct. Eng. ASCE
– volume: 115
  start-page: 1244
  year: 1989
  end-page: 1263
  ident: bb0130
  article-title: Elastic stability of cylindrical shells with weld depressions
  publication-title: J. Struct. Eng. ASCE
– volume: 127
  start-page: 1129
  issue: 10
  year: 2001
  ident: 10.1016/j.powtec.2018.01.001_bb0070
  article-title: Buckling and post-buckling behaviour of silos and tanks under axial load-some new aspects
  publication-title: J. Struct. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9445(2001)127:10(1129)
– year: 2007
  ident: 10.1016/j.powtec.2018.01.001_bb0030
– volume: 257
  start-page: 181
  year: 2014
  ident: 10.1016/j.powtec.2018.01.001_bb0050
  article-title: Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian-Eulerian formulation
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.02.051
– volume: 293
  start-page: 26
  year: 2016
  ident: 10.1016/j.powtec.2018.01.001_bb0045
  article-title: Segregation in heaps and silos: comparison between experiment, simulation and continuum model
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.09.036
– volume: 67
  start-page: 1537
  year: 2011
  ident: 10.1016/j.powtec.2018.01.001_bb0075
  article-title: Steel silos with different aspect ratios-I: behaviour under concentric discharge
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2011.03.028
– volume: 18
  start-page: 282
  issue: 4
  year: 2017
  ident: 10.1016/j.powtec.2018.01.001_bb0115
  article-title: Buckling design of large steel silos with various slendernesses
  publication-title: J. Zheijang Univ. Sci. A
  doi: 10.1631/jzus.A1600369
– volume: 42
  start-page: 1519
  year: 2004
  ident: 10.1016/j.powtec.2018.01.001_bb0080
  article-title: Effects of patch loads on structural behavior of circular flat-bottomed steel silos
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2004.05.009
– year: 2007
  ident: 10.1016/j.powtec.2018.01.001_bb0010
– volume: 67
  start-page: 1545
  year: 2011
  ident: 10.1016/j.powtec.2018.01.001_bb0090
  article-title: Steel silos with different aspect ratios-II: behaviour under eccentric discharge
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2011.03.027
– volume: 277
  start-page: 252
  year: 2015
  ident: 10.1016/j.powtec.2018.01.001_bb0120
  article-title: Pipe stability in aerated silos
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.03.009
– year: 2005
  ident: 10.1016/j.powtec.2018.01.001_bb0025
– year: 2006
  ident: 10.1016/j.powtec.2018.01.001_bb0005
– year: 2002
  ident: 10.1016/j.powtec.2018.01.001_bb0020
– volume: 233
  start-page: 65
  year: 2013
  ident: 10.1016/j.powtec.2018.01.001_bb0055
  article-title: DEM modelling of silo load asymmetry due to eccentric filling and discharge
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.08.039
– year: 2002
  ident: 10.1016/j.powtec.2018.01.001_bb0015
– year: 1996
  ident: 10.1016/j.powtec.2018.01.001_bb0040
– volume: 33
  start-page: 1187
  year: 2011
  ident: 10.1016/j.powtec.2018.01.001_bb0095
  article-title: Buckling of very slender metal silos under eccentric discharge
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.12.040
– volume: 115
  start-page: 1244
  issue: 5
  year: 1989
  ident: 10.1016/j.powtec.2018.01.001_bb0130
  article-title: Elastic stability of cylindrical shells with weld depressions
  publication-title: J. Struct. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9445(1989)115:5(1244)
– volume: 31
  start-page: 159
  year: 1998
  ident: 10.1016/j.powtec.2018.01.001_bb0065
  article-title: Buckling behaviour of axially loaded steel cylinders on local supports-with and without internal pressure
  publication-title: Thin-Walled Struct.
  doi: 10.1016/S0263-8231(98)00011-1
– volume: 40
  start-page: 329
  year: 2002
  ident: 10.1016/j.powtec.2018.01.001_bb0060
  article-title: Buckling strength of the cylindrical shell and tank subjected to axially compressive loads
  publication-title: Thin-Walled Struct.
  doi: 10.1016/S0263-8231(01)00066-0
– volume: 25
  start-page: 1397
  year: 2003
  ident: 10.1016/j.powtec.2018.01.001_bb0105
  article-title: Buckling of circular steel silos subject to code-specified eccentric discharge pressures
  publication-title: Eng. Struct.
  doi: 10.1016/S0141-0296(03)00105-6
– volume: 84
  start-page: 344
  year: 2014
  ident: 10.1016/j.powtec.2018.01.001_bb0135
  article-title: Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2014.07.011
– volume: 40
  start-page: 835
  year: 2002
  ident: 10.1016/j.powtec.2018.01.001_bb0085
  article-title: The effects of patch loads on thin-walled steel silos
  publication-title: Thin-Walled Struct.
  doi: 10.1016/S0263-8231(02)00028-9
– volume: 139
  start-page: 858
  issue: 7
  year: 2013
  ident: 10.1016/j.powtec.2018.01.001_bb0100
  article-title: Buckling in eccentrically discharged silos and the assumed pressure distribution
  publication-title: J. Eng. Mech. Div. ASCE
  doi: 10.1061/(ASCE)EM.1943-7889.0000525
– volume: 138
  start-page: 922
  issue: 7
  year: 2012
  ident: 10.1016/j.powtec.2018.01.001_bb0110
  article-title: Structural behavior of thin-walled metal silos subject to different flow channel sizes under eccentric discharge pressures
  publication-title: J. Struct. Eng. ASCE
  doi: 10.1061/(ASCE)ST.1943-541X.0000530
– year: 2008
  ident: 10.1016/j.powtec.2018.01.001_bb0125
– year: 1995
  ident: 10.1016/j.powtec.2018.01.001_bb0035
SSID ssj0006310
Score 2.2710655
Snippet Large steel silos are typical kinds of thin-walled structure which are widely used for storing huge quantities of granular solids in industry and agriculture....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 476
SubjectTerms Buckling
Building codes
CAD
Computer aided design
computers
Defects
Deformation
Design
Eccentric filling
Eccentricity
Electric resistance
Farm buildings
Finite element analysis
Finite element method
industry
Mathematical models
Nonlinear systems
Nonlinearity
plasticity
powders
Pressure
Silos
Slenderness
Steel
Steel silo
Storage
Stress concentration
Thin wall structures
Weld imperfection
Welding
Title Buckling design of large eccentrically filled steel silos
URI https://dx.doi.org/10.1016/j.powtec.2018.01.001
https://www.proquest.com/docview/2031410790
https://www.proquest.com/docview/2221060935
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: AKRWK
  dateStart: 19670201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX_RB_MTpHBF8rSZLmrSPMpSpsCcHeytJk8JkbEMn4ot_u3dpOj8QBr61TULLXXN3SX73O0IuUstlKsH6WS_zRApdJlYzlmQ29U7ysnQuoHyHajCS9-N03CL9JhcGYZXR9tc2PVjr-OQqSvNqMZlgjq-A2B0Zp0SIVDCDXWqsYnD58QXzUIJHakZYdEHvJn0uYLwW87elRyJDngXyzlga5g_39MtQB-9zu0t2YthIr-sv2yMtP9sn29_IBA9IHo5p4ZK6gMqg84pOEedNQX64h4vqmL7TCrP_HAXt-il9wUIGh2R0e_PYHySxMEJSCqWXibaZc7AyMirV3GAyLVNGgKftmRxDOphWlvtKiNQwDwFS6Tj44SqvlHVZr_TiiGzM5jN_TKhzIBiT99Iyd1JlzBrmrDWVkxXjldJtIhp5FGVkDcfiFdOigYc9FbUUC5RiwTii5NokWY1a1KwZa_rrRtTFD-0XYNjXjOw0mini7HuBdoHwVZ2zNjlfNcO8wcMQM_PzV-jTg8WuwmPgk3-__JRs4V0NSeuQjeXzqz-DGGVpu-En7JLN67uHwfATYaDlDQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V5VA4VFCoWChgpF5D7dixk2NVUS2w7KmVerPs2JFarXZX3V0hLvx2ZhynLRVSJW5RbCvRm3g-4jczAEeVF6pSqP18VE2hpGkLbzgval_FoETbhpBYvjM9uVDfLqvLHTgdcmGIVpl1f6_Tk7bOd44zmserqyvK8ZXou1PFKZk8lSfwVFWloQjs8-87noeWItdmxKgLpw_5c4nktVr-3ESqZCjqVL0z94b5h316oKmT-Tl7AXvZb2Qn_au9hJ242Ifn96oJvoImndPiJQuJlsGWHZsT0ZshgPQTl-Qx_8U6Sv8LDMUb52xNnQxew8XZl_PTSZE7IxSt1GZTGF-HgKGR05URjrJpuXYSTW3pGvLpcF95ETspK8cjekhtEGiIu6bTPtRlG-UBjBbLRXwDLAQExjVl1TZB6Zp7x4P3rguq46LTZgxywMO2uWw4da-Y24Efdm17FC2haLkgmtwYittVq75sxiPzzQC1_Uv8FjX7IysPB8nYvP3WOC6Jv2oaPoZPt8O4ceg0xC3icotzSox2NZ0Dv_3vh3-E3cn5j6mdfp19fwfPaKTnpx3CaHOzje_RYdn4D-mD_APDNeai
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+design+of+large+eccentrically+filled+steel+silos&rft.jtitle=Powder+technology&rft.au=Cao%2C+Qing-shuai&rft.au=Zhao%2C+Yang&rft.date=2018-03-01&rft.issn=0032-5910&rft.volume=327&rft.spage=476&rft.epage=488&rft_id=info:doi/10.1016%2Fj.powtec.2018.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_powtec_2018_01_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon