A solution to statistical and multidisciplinary design optimization problems using hGWO-SA algorithm
Recently developed grey wolf optimizer (GWO) algorithm has evident behaviour for verdict of global optima, without getting ensnared in premature convergence. However, the exploitation phase of the existing grey wolf optimizer is underprivileged. In the proposed research, a hybrid version of grey wol...
Saved in:
| Published in | Neural computing & applications Vol. 33; no. 8; pp. 3799 - 3824 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.04.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-020-05229-3 |
Cover
| Abstract | Recently developed grey wolf optimizer (GWO) algorithm has evident behaviour for verdict of global optima, without getting ensnared in premature convergence. However, the exploitation phase of the existing grey wolf optimizer is underprivileged. In the proposed research, a hybrid version of grey wolf optimizer algorithm combined with simulated annealing (named as hGWO-SA) algorithm has been developed for the solution of various nonlinear, highly constrained, non-convex engineering design and optimization problems. In the proposed research, the exploitation phase of the existing grey wolf optimizer has been further enhanced using simulated annealing algorithm, which improves the local search capability of the existing grey wolf optimizer. In order to indorse the results of the proposed algorithm, 65 benchmark problems including CEC2017, CEC2018 and five multidisciplinary design optimization problems are taken into consideration. Experimentally, it has been found that the results of the proposed hybrid GWO-SA algorithm are better than standard grey wolf optimizer algorithm, ant lion optimizer algorithm, moth–flame optimization algorithm, sine–cosine optimization algorithm and other recently reported heuristics, meta-heuristic and hybrid search algorithm and the proposed algorithm indorses its effectiveness in the field of nature-inspired meta-heuristic algorithms. |
|---|---|
| AbstractList | Recently developed grey wolf optimizer (GWO) algorithm has evident behaviour for verdict of global optima, without getting ensnared in premature convergence. However, the exploitation phase of the existing grey wolf optimizer is underprivileged. In the proposed research, a hybrid version of grey wolf optimizer algorithm combined with simulated annealing (named as hGWO-SA) algorithm has been developed for the solution of various nonlinear, highly constrained, non-convex engineering design and optimization problems. In the proposed research, the exploitation phase of the existing grey wolf optimizer has been further enhanced using simulated annealing algorithm, which improves the local search capability of the existing grey wolf optimizer. In order to indorse the results of the proposed algorithm, 65 benchmark problems including CEC2017, CEC2018 and five multidisciplinary design optimization problems are taken into consideration. Experimentally, it has been found that the results of the proposed hybrid GWO-SA algorithm are better than standard grey wolf optimizer algorithm, ant lion optimizer algorithm, moth–flame optimization algorithm, sine–cosine optimization algorithm and other recently reported heuristics, meta-heuristic and hybrid search algorithm and the proposed algorithm indorses its effectiveness in the field of nature-inspired meta-heuristic algorithms. |
| Author | Kamboj, Vikram Kumar Bhadoria, Ashutosh Marwaha, Sanjay |
| Author_xml | – sequence: 1 givenname: Ashutosh surname: Bhadoria fullname: Bhadoria, Ashutosh organization: Sant Longowal Institute of Engineering and Technology – sequence: 2 givenname: Sanjay surname: Marwaha fullname: Marwaha, Sanjay organization: Sant Longowal Institute of Engineering and Technology – sequence: 3 givenname: Vikram Kumar surname: Kamboj fullname: Kamboj, Vikram Kumar email: vikram.23687@lpu.co.in organization: School of Electronics and Electrical Engineering, Lovely Professional University, Schulich School of Engineering, University of Calgary |
| BookMark | eNp9kEFPwyAUx4mZidv0C3gi8Vx9QFva47LoNDHZQY1HQinrWFqYQA_66cXNxMTDTo_w3o_35zdDE-usRuiawC0B4HcBoKAkAwpZOtA6Y2doSnLGMgZFNUFTqPPULnN2gWYh7AAgL6tiitoFDq4fo3EWR4dDlNGEaJTssbQtHsY-mtYEZfa9sdJ_4lYH01ns9tEM5ksewL13Ta-HgMdgbIe3q_d19rLAsu-cN3E7XKLzjeyDvvqtc_T2cP-6fMye16un5eI5U6zkMeOEa9ISqluiVZXnTaU2tNK6lQ1PV5XUlJUglW5BASV1Q7nKNfBiwzjltWZzdHN8NwX6GHWIYudGb9NKQQtgBWN1KnNUHaeUdyF4vRHKxMNHopemFwTEj1NxdCqSU3FwKlhC6T90782QtJyG2BEKadh22v-lOkF9AweajTs |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125029 crossref_primary_10_1007_s12665_022_10542_2 crossref_primary_10_1007_s11770_024_1039_1 crossref_primary_10_1007_s10489_021_03020_y crossref_primary_10_1038_s41598_024_58431_x crossref_primary_10_3390_biomimetics9100595 crossref_primary_10_1007_s40095_022_00550_0 crossref_primary_10_1016_j_asoc_2023_110597 crossref_primary_10_1007_s00500_024_09823_8 crossref_primary_10_1016_j_eswa_2022_117669 crossref_primary_10_1007_s12597_023_00721_5 crossref_primary_10_1007_s40747_022_00852_0 crossref_primary_10_1007_s00366_021_01591_5 |
| Cites_doi | 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2018.01.001 10.1109/CEC.2007.4425083 10.1115/1.533550 10.1177/1176934317729413 10.1109/ICITEED.2015.7408911 10.1155/2017/2030489 10.1155/2017/4180510 10.1109/CEC.2017.7969529 10.1080/03052150108940941 10.1016/j.molliq.2018.03.006 10.1109/ICCKE.2015.7365818 10.1007/s10489-013-0458-0 10.1016/j.molliq.2017.11.118 10.1007/s00366-011-0241-y 10.1109/ICACCI.2015.7275611 10.1109/CEC.2017.7969456 10.1109/CEC.2017.7969538 10.1109/4235.771163 10.1016/j.advengsoft.2016.01.008 10.1088/1757-899X/675/1/012030 10.1016/j.knosys.2015.12.022 10.1109/BRACIS.2018.00010 10.1016/j.physb.2018.03.036 10.1007/s11047-009-9175-3 10.4249/scholarpedia.6915 10.1080/0305215X.2013.832237 10.1109/ICIEV.2015.7334054 10.1109/CEC.2017.7969595 10.1080/03052150500066737 10.1016/j.ces.2019.115465 10.1023/A:1008202821328 10.1007/978-3-642-32894-7_27 10.1016/j.asoc.2009.08.031 10.1007/978-3-642-13495-1_44 10.1016/j.asoc.2012.11.026 10.1016/j.ins.2009.03.004 10.1109/NABIC.2009.5393690 10.1007/s00521-015-1870-7 10.1016/j.cma.2018.09.025 10.1109/ICSMC.1997.637339 10.1142/S1469026817500122 10.1016/j.knosys.2019.01.018 10.1109/SSCI.2016.7849998 10.1016/j.future.2019.02.028 10.1016/j.advengsoft.2015.01.010 10.1016/j.advengsoft.2016.05.015 10.1016/j.physa.2019.123520 10.1016/j.molliq.2018.06.083 10.1016/j.ins.2008.02.014 10.1016/j.advengsoft.2017.01.004 10.1007/s00521-015-1920-1 10.1007/978-1-84882-983-1_15 10.1142/S0218126616501383 10.1080/03052150500384759 10.1007/s00521-015-1962-4 10.1016/j.knosys.2015.07.006 10.1007/s12293-017-0234-5 10.1007/978-3-642-12538-6_6 10.1016/j.advengsoft.2017.07.002 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-020-05229-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection Proquest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 3824 |
| ExternalDocumentID | 10_1007_s00521_020_05229_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c367t-717e1d12ed1ec844b8cf28eedab7d1e8ae2360aced0c0219b27c4e075f37279e3 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Fri Jul 25 03:07:21 EDT 2025 Wed Oct 01 02:26:01 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 Fri Feb 21 02:49:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Grey wolf optimizer Meta-heuristic search Benchmark test functions Engineering optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-717e1d12ed1ec844b8cf28eedab7d1e8ae2360aced0c0219b27c4e075f37279e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2503533950 |
| PQPubID | 2043988 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2503533950 crossref_citationtrail_10_1007_s00521_020_05229_3 crossref_primary_10_1007_s00521_020_05229_3 springer_journals_10_1007_s00521_020_05229_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Cuevas, Echavarra, Zaldvar, Prez-Cisneros (CR42) 2013; 40 Sheikholeslami (CR6) 2018; 266 Sheikholeslami, Shehzad, Li (CR7) 2018; 542 Sánchez, Melin, Castillo (CR36) 2017; 2017 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR58) 2017; 114 CR35 CR34 Saremi, Mirjalili, Lewis (CR48) 2017; 105 Ray, Saini (CR70) 2001; 33 CR32 Rabbi (CR3) 2020; 215 CR30 Storn, Price (CR60) 1997; 11 Eusuff, Lansey, Pasha (CR22) 2006; 38 Sheikholeslami, Gerdroodbary, Moradi, Shafee, Li (CR1) 2019; 344 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR18) 2019; 97 Mirjalili (CR40) 2015; 83 Yang, Karamanoglu, He (CR57) 2014; 46 Pan, Dao, Nguyen, Chu (CR9) 2016 Cuevas, Echavarra, Ramrez-Ortegn (CR41) 2014; 40 Mirjalili, Lewis (CR59) 2016; 95 Singh, Singh (CR14) 2017; 13 Mirjalili, Mirjalili, Lewis (CR28) 2014; 69 Zhang, Zhou, Li, Pan (CR33) 2016; 99 Rashedi, Nezamabadi-Pour, Saryazdi (CR55) 2010; 9 Tharwat, Gabel (CR19) 2019; 0123456789 CR46 CR44 Mirjalili (CR56) 2016; 96 CR43 Gholizadeh (CR38) 2015; 5 Gandomi, Yang, Alavi (CR69) 2013; 29 Rabbi, Sheikholeslami, Karim, Shafee, Li, Tlili (CR2) 2020; 541 Cuevas, Echavarra, Ma (CR51) 2014; 40 Sadollah, Bahreininejad, Eskandar, Hamdi (CR68) 2013; 13 Mittal, Singh, Sohi (CR13) 2016; 2016 Shankar, Eswaran (CR37) 2016; 25 Singh, Singh (CR15) 2017; 2017 Mirjalili, Mirjalili, Hatamlou (CR52) 2016; 27 Niu, Niu, Liu, Chang (CR27) 2019; 171 Liu, Cai, Wang (CR67) 2010; 10 Tawhid, Ali (CR10) 2017; 9 Sahman, Cinar, Saritas, Yasar (CR8) 2019; 675 CR16 CR11 CR54 CR50 Yin, Cagan (CR20) 2000; 122 Sheikholeslami (CR5) 2018; 259 Zhang, Luo, Zhou (CR12) 2017; 16 Rathee, Garg, Meena (CR31) 2015; 4 Yang (CR45) 2010; 221 CR29 Sheikholeslami (CR4) 2018; 249 CR26 CR24 Tsai (CR71) 2005; 37 Yao, Liu, Lin (CR39) 1999; 3 John (CR47) 1992 Zhang, Luo, Wang (CR66) 2008; 178 CR21 CR65 CR64 Gupta, Deep (CR17) 2019; 44 Karaboga (CR25) 2010; 5 CR63 CR62 CR61 Rashedi, Nezamabadi-Pour, Saryazdi (CR23) 2009; 179 Mirjalili (CR49) 2015; 89 Mirjalili (CR53) 2016; 27 M Sheikholeslami (5229_CR6) 2018; 266 S Zhang (5229_CR33) 2016; 99 XS Yang (5229_CR45) 2010; 221 S Gupta (5229_CR17) 2019; 44 S Yin (5229_CR20) 2000; 122 M Sheikholeslami (5229_CR1) 2019; 344 D Karaboga (5229_CR25) 2010; 5 N Mittal (5229_CR13) 2016; 2016 5229_CR29 D Sánchez (5229_CR36) 2017; 2017 P Niu (5229_CR27) 2019; 171 J-F Tsai (5229_CR71) 2005; 37 S Saremi (5229_CR48) 2017; 105 K Shankar (5229_CR37) 2016; 25 5229_CR21 5229_CR65 H Liu (5229_CR67) 2010; 10 5229_CR64 5229_CR26 S Mirjalili (5229_CR53) 2016; 27 5229_CR24 A Sadollah (5229_CR68) 2013; 13 S Mirjalili (5229_CR58) 2017; 114 S Mirjalili (5229_CR59) 2016; 95 5229_CR63 5229_CR62 5229_CR61 AH Gandomi (5229_CR69) 2013; 29 MA Tawhid (5229_CR10) 2017; 9 P Rathee (5229_CR31) 2015; 4 A Tharwat (5229_CR19) 2019; 0123456789 S Mirjalili (5229_CR56) 2016; 96 M Sheikholeslami (5229_CR4) 2018; 249 E Cuevas (5229_CR41) 2014; 40 KM Rabbi (5229_CR3) 2020; 215 5229_CR11 E Cuevas (5229_CR51) 2014; 40 M Sheikholeslami (5229_CR7) 2018; 542 X Yao (5229_CR39) 1999; 3 5229_CR54 E Cuevas (5229_CR42) 2013; 40 S Mirjalili (5229_CR52) 2016; 27 5229_CR16 S Gholizadeh (5229_CR38) 2015; 5 E Rashedi (5229_CR23) 2009; 179 M Eusuff (5229_CR22) 2006; 38 MA Sahman (5229_CR8) 2019; 675 5229_CR50 H John (5229_CR47) 1992 S Zhang (5229_CR12) 2017; 16 KM Rabbi (5229_CR2) 2020; 541 S Mirjalili (5229_CR28) 2014; 69 5229_CR44 5229_CR43 AA Heidari (5229_CR18) 2019; 97 N Singh (5229_CR15) 2017; 2017 5229_CR46 S Mirjalili (5229_CR49) 2015; 89 XS Yang (5229_CR57) 2014; 46 T-S Pan (5229_CR9) 2016 S Mirjalili (5229_CR40) 2015; 83 T Ray (5229_CR70) 2001; 33 5229_CR34 5229_CR32 E Rashedi (5229_CR55) 2010; 9 5229_CR35 M Sheikholeslami (5229_CR5) 2018; 259 N Singh (5229_CR14) 2017; 13 5229_CR30 R Storn (5229_CR60) 1997; 11 M Zhang (5229_CR66) 2008; 178 |
| References_xml | – volume: 38 start-page: 129 issue: 2 year: 2006 end-page: 154 ident: CR22 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng Optim – volume: 675 start-page: 12030 year: 2019 ident: CR8 article-title: Tree-seed algorithm in solving real-life optimization problems publication-title: IOP Conf Ser Mater Sci Eng – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR59 article-title: The Whale optimization algorithm publication-title: Adv Eng Softw – volume: 122 start-page: 102 issue: 1 year: 2000 ident: CR20 article-title: An extended pattern search algorithm for three-dimensional component layout publication-title: J Mech Des – volume: 215 start-page: 115465 year: 2020 ident: CR3 article-title: A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study publication-title: Chem Eng Sci – ident: CR16 – volume: 5 start-page: 511 issue: 4 year: 2015 end-page: 523 ident: CR38 article-title: Optimal design of double layer grids considering nonlinear behaviour by sequential grey wolf algorithm publication-title: Iran Univ Sci Technol – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 ident: CR60 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Glob Optim – year: 1992 ident: CR47 publication-title: Holland, adaptation in natural and artificial systems – volume: 4 start-page: 360 issue: 4 year: 2015 end-page: 364 ident: CR31 article-title: Using grey wolf optimizer for image registration publication-title: Int J Adv Res Sci Eng – volume: 541 start-page: 123520 year: 2020 ident: CR2 article-title: Prediction of MHD flow and entropy generation by artificial neural network in square cavity with heater-sink for nanomaterial publication-title: Phys A Stat Mech Appl – volume: 99 start-page: 121 year: 2016 end-page: 136 ident: CR33 article-title: Grey wolf optimizer for unmanned combat aerial vehicle path planning publication-title: Adv Eng Softw – volume: 221 start-page: 2010 year: 2010 ident: CR45 article-title: Firefly algorithm publication-title: Eng. Optim – volume: 13 start-page: 2592 issue: 5 year: 2013 end-page: 2612 ident: CR68 article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems publication-title: Appl Soft Comput – ident: CR35 – volume: 40 start-page: 635973 year: 2013 ident: CR42 article-title: Novel evolutionary algorithm inspired by the states of matter for template matching publication-title: Expert Syst Appl – ident: CR29 – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: CR49 article-title: Knowledge-based systems moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl Based Syst – ident: CR54 – ident: CR61 – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR18 article-title: Harris hawks optimization: algorithm and applications publication-title: Fut Gen Comput Syst – volume: 37 start-page: 399 issue: 4 year: 2005 end-page: 409 ident: CR71 article-title: Global optimization of nonlinear fractional programming problems in engineering design publication-title: Eng Optim – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR28 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 10 start-page: 629 issue: 2 year: 2010 end-page: 640 ident: CR67 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl Soft Comput – volume: 33 start-page: 735 issue: 6 year: 2001 end-page: 748 ident: CR70 article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals publication-title: Eng Optim – volume: 249 start-page: 921 year: 2018 end-page: 929 ident: CR4 article-title: CuO–water nanofluid flow due to magnetic field inside a porous media considering Brownian motion publication-title: J Mol Liq – ident: CR21 – volume: 40 start-page: 256 year: 2014 ident: CR51 article-title: An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation publication-title: Appl Intell – ident: CR46 – volume: 344 start-page: 1 year: 2019 end-page: 12 ident: CR1 article-title: Application of neural network for estimation of heat transfer treatment of Al O –H O nanofluid through a channel publication-title: Comput Methods Appl Mech Eng – start-page: 253 year: 2016 end-page: 262 ident: CR9 publication-title: A communication strategy for paralleling grey wolf optimizer – volume: 44 start-page: 101 year: 2019 end-page: 112 ident: CR17 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.01.001 – volume: 29 start-page: 17 issue: 1 year: 2013 end-page: 35 ident: CR69 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng Comput – volume: 2017 start-page: 1 year: 2017 end-page: 15 ident: CR15 article-title: Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance publication-title: J Appl Math – ident: CR50 – ident: CR11 – ident: CR32 – volume: 25 start-page: 1650138 issue: 11 year: 2016 ident: CR37 article-title: RGB-based secure share creation in visual cryptography using optimal elliptic curve cryptography technique publication-title: J Circuits Syst Comput – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR58 article-title: Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw – volume: 27 start-page: 495 issue: 2 year: 2016 end-page: 513 ident: CR52 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput Appl – ident: CR64 – ident: CR26 – volume: 40 start-page: 256 year: 2014 ident: CR41 article-title: An optimization algorithm in- spired by the states of matter that improves the balance between exploration and exploitation publication-title: Appl Intel – volume: 16 start-page: 1750012 issue: 02 year: 2017 ident: CR12 article-title: Hybrid grey wolf optimizer using elite opposition-based learning strategy and simplex method publication-title: Int J Comput Intell Appl – ident: CR43 – ident: CR30 – volume: 2017 start-page: 1 year: 2017 end-page: 26 ident: CR36 article-title: A grey wolf optimizer for modular granular neural networks for human recognition publication-title: Comput Intell Neurosci – volume: 0123456789 start-page: 1 year: 2019 end-page: 4 ident: CR19 article-title: Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm publication-title: Neural Comput Appl – volume: 178 start-page: 3043 issue: 15 year: 2008 end-page: 3074 ident: CR66 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Inf Sci (NY) – volume: 3 start-page: 82 year: 1999 ident: CR39 article-title: Evolutionary programming made faster publication-title: IEEE Trans Evol Comput – volume: 542 start-page: 51 year: 2018 end-page: 58 ident: CR7 article-title: Nanofluid heat transfer intensification in a permeable channel due to magnetic field using lattice Boltzmann method publication-title: Phys B Condens Matter – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: CR40 article-title: The ant lion optimizer publication-title: Adv Eng Softw – ident: CR63 – volume: 46 start-page: 1222 issue: 9 year: 2014 end-page: 1237 ident: CR57 article-title: Flower pollination algorithm: a novel approach for multiobjective optimization publication-title: Engineering optimization – volume: 171 start-page: 37 year: 2019 end-page: 43 ident: CR27 article-title: The defect of the Grey Wolf optimization algorithm and its verification method publication-title: Knowl Based Syst – ident: CR44 – volume: 13 start-page: 1176934317729413 year: 2017 ident: CR14 article-title: A modified mean gray wolf optimization approach for benchmark and biomedical problems publication-title: Evol Bioinform Online – ident: CR65 – volume: 5 start-page: 6915 issue: 3 year: 2010 ident: CR25 article-title: Artificial bee colony algorithm publication-title: Scholarpedia – volume: 27 start-page: 1053 issue: 4 year: 2016 end-page: 1073 ident: CR53 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput Appl – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR56 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl Based Syst – volume: 9 start-page: 727 issue: 3 year: 2010 end-page: 745 ident: CR55 article-title: BGSA: binary gravitational search algorithm publication-title: Nat Comput – volume: 179 start-page: 2232 year: 2009 ident: CR23 article-title: GSA: a gravitational search algorithm publication-title: Inf Sci – ident: CR34 – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: CR48 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv Eng Softw – volume: 9 start-page: 347 issue: 4 year: 2017 end-page: 359 ident: CR10 article-title: A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function publication-title: Memet Comput – volume: 266 start-page: 495 year: 2018 end-page: 503 ident: CR6 article-title: Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces publication-title: J Mol Liq – ident: CR62 – ident: CR24 – volume: 259 start-page: 424 year: 2018 end-page: 438 ident: CR5 article-title: Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin publication-title: J Mol Liq – volume: 2016 start-page: 1 year: 2016 end-page: 16 ident: CR13 article-title: Modified grey wolf optimizer for global engineering optimization publication-title: Appl Comput Intell Soft Comput – ident: 5229_CR29 – ident: 5229_CR26 doi: 10.1109/CEC.2007.4425083 – volume: 122 start-page: 102 issue: 1 year: 2000 ident: 5229_CR20 publication-title: J Mech Des doi: 10.1115/1.533550 – volume: 13 start-page: 117693431772941 year: 2017 ident: 5229_CR14 publication-title: Evol Bioinform Online doi: 10.1177/1176934317729413 – ident: 5229_CR11 doi: 10.1109/ICITEED.2015.7408911 – volume: 2017 start-page: 1 year: 2017 ident: 5229_CR15 publication-title: J Appl Math doi: 10.1155/2017/2030489 – volume: 2017 start-page: 1 year: 2017 ident: 5229_CR36 publication-title: Comput Intell Neurosci doi: 10.1155/2017/4180510 – ident: 5229_CR62 doi: 10.1109/CEC.2017.7969529 – volume: 33 start-page: 735 issue: 6 year: 2001 ident: 5229_CR70 publication-title: Eng Optim doi: 10.1080/03052150108940941 – volume: 259 start-page: 424 year: 2018 ident: 5229_CR5 publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.03.006 – ident: 5229_CR35 doi: 10.1109/ICCKE.2015.7365818 – volume: 40 start-page: 256 year: 2014 ident: 5229_CR51 publication-title: Appl Intell doi: 10.1007/s10489-013-0458-0 – volume: 249 start-page: 921 year: 2018 ident: 5229_CR4 publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.11.118 – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 5229_CR69 publication-title: Eng Comput doi: 10.1007/s00366-011-0241-y – ident: 5229_CR30 doi: 10.1109/ICACCI.2015.7275611 – ident: 5229_CR61 doi: 10.1109/CEC.2017.7969456 – ident: 5229_CR64 doi: 10.1109/CEC.2017.7969538 – volume: 3 start-page: 82 year: 1999 ident: 5229_CR39 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.771163 – volume: 95 start-page: 51 year: 2016 ident: 5229_CR59 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 675 start-page: 12030 year: 2019 ident: 5229_CR8 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/675/1/012030 – volume-title: Holland, adaptation in natural and artificial systems year: 1992 ident: 5229_CR47 – volume: 96 start-page: 120 year: 2016 ident: 5229_CR56 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – ident: 5229_CR65 doi: 10.1109/BRACIS.2018.00010 – volume: 542 start-page: 51 year: 2018 ident: 5229_CR7 publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2018.03.036 – volume: 9 start-page: 727 issue: 3 year: 2010 ident: 5229_CR55 publication-title: Nat Comput doi: 10.1007/s11047-009-9175-3 – volume: 5 start-page: 6915 issue: 3 year: 2010 ident: 5229_CR25 publication-title: Scholarpedia doi: 10.4249/scholarpedia.6915 – volume: 46 start-page: 1222 issue: 9 year: 2014 ident: 5229_CR57 publication-title: Engineering optimization doi: 10.1080/0305215X.2013.832237 – ident: 5229_CR32 doi: 10.1109/ICIEV.2015.7334054 – ident: 5229_CR63 doi: 10.1109/CEC.2017.7969595 – volume: 40 start-page: 635973 year: 2013 ident: 5229_CR42 publication-title: Expert Syst Appl – volume: 4 start-page: 360 issue: 4 year: 2015 ident: 5229_CR31 publication-title: Int J Adv Res Sci Eng – volume: 37 start-page: 399 issue: 4 year: 2005 ident: 5229_CR71 publication-title: Eng Optim doi: 10.1080/03052150500066737 – volume: 215 start-page: 115465 year: 2020 ident: 5229_CR3 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2019.115465 – start-page: 253 volume-title: A communication strategy for paralleling grey wolf optimizer year: 2016 ident: 5229_CR9 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 5229_CR60 publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 69 start-page: 46 year: 2014 ident: 5229_CR28 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: 5229_CR43 doi: 10.1007/978-3-642-32894-7_27 – volume: 10 start-page: 629 issue: 2 year: 2010 ident: 5229_CR67 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.08.031 – ident: 5229_CR21 doi: 10.1007/978-3-642-13495-1_44 – volume: 5 start-page: 511 issue: 4 year: 2015 ident: 5229_CR38 publication-title: Iran Univ Sci Technol – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 5229_CR68 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.026 – volume: 179 start-page: 2232 year: 2009 ident: 5229_CR23 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – ident: 5229_CR44 doi: 10.1109/NABIC.2009.5393690 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 5229_CR52 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – volume: 344 start-page: 1 year: 2019 ident: 5229_CR1 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.09.025 – ident: 5229_CR54 doi: 10.1109/ICSMC.1997.637339 – volume: 16 start-page: 1750012 issue: 02 year: 2017 ident: 5229_CR12 publication-title: Int J Comput Intell Appl doi: 10.1142/S1469026817500122 – volume: 171 start-page: 37 year: 2019 ident: 5229_CR27 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.01.018 – ident: 5229_CR34 doi: 10.1109/SSCI.2016.7849998 – volume: 97 start-page: 849 year: 2019 ident: 5229_CR18 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 83 start-page: 80 year: 2015 ident: 5229_CR40 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – volume: 99 start-page: 121 year: 2016 ident: 5229_CR33 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.05.015 – volume: 541 start-page: 123520 year: 2020 ident: 5229_CR2 publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2019.123520 – volume: 2016 start-page: 1 year: 2016 ident: 5229_CR13 publication-title: Appl Comput Intell Soft Comput – volume: 44 start-page: 101 year: 2019 ident: 5229_CR17 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.01.001 – volume: 221 start-page: 2010 year: 2010 ident: 5229_CR45 publication-title: Eng. Optim – volume: 266 start-page: 495 year: 2018 ident: 5229_CR6 publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.06.083 – volume: 178 start-page: 3043 issue: 15 year: 2008 ident: 5229_CR66 publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2008.02.014 – volume: 105 start-page: 30 year: 2017 ident: 5229_CR48 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 5229_CR53 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – volume: 0123456789 start-page: 1 year: 2019 ident: 5229_CR19 publication-title: Neural Comput Appl – ident: 5229_CR46 doi: 10.1007/978-1-84882-983-1_15 – volume: 25 start-page: 1650138 issue: 11 year: 2016 ident: 5229_CR37 publication-title: J Circuits Syst Comput doi: 10.1142/S0218126616501383 – volume: 38 start-page: 129 issue: 2 year: 2006 ident: 5229_CR22 publication-title: Eng Optim doi: 10.1080/03052150500384759 – ident: 5229_CR16 doi: 10.1007/s00521-015-1962-4 – volume: 89 start-page: 228 year: 2015 ident: 5229_CR49 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 9 start-page: 347 issue: 4 year: 2017 ident: 5229_CR10 publication-title: Memet Comput doi: 10.1007/s12293-017-0234-5 – ident: 5229_CR24 doi: 10.1007/978-3-642-12538-6_6 – ident: 5229_CR50 doi: 10.1007/978-3-642-12538-6_6 – volume: 114 start-page: 163 year: 2017 ident: 5229_CR58 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 40 start-page: 256 year: 2014 ident: 5229_CR41 publication-title: Appl Intel doi: 10.1007/s10489-013-0458-0 |
| SSID | ssj0004685 |
| Score | 2.3223555 |
| Snippet | Recently developed grey wolf optimizer (GWO) algorithm has evident behaviour for verdict of global optima, without getting ensnared in premature convergence.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3799 |
| SubjectTerms | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Design engineering Design optimization Exploitation Heuristic methods Image Processing and Computer Vision Multidisciplinary design optimization Optimization algorithms Original Article Probability and Statistics in Computer Science Search algorithms Simulated annealing Trigonometric functions |
| SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB3RcOmlQGnVQEA-9Fas7trerH1AKCA-hNSA2iK4rfwJB0iALP-fsfESQIKrd-3DeOwZ2-_NA_gpK41pR13SUBWeChkCNapQVBUeHci4EFL54j_j4dGZOL6oLhZg3HFhIqyy2xPTRu2mNt6R_8ZQzTE1UVWxc3tHo2pUfF3tJDR0llZw26nE2CdYZLEyVg8Wd_fHp39fMCWTSCeeaSLeR_BMo0lkunhDiq0sPg4zpih_Harm-eebJ9MUiQ6W4UtOIcnoac5XYMFPvsJSJ89A8mpdBTcinWORdkoidShVZca-euJIghK-JOUSl9AcZIq7yE2mZ5IsODMjESB_Sa4Oz0_ovxHR15donPbq5hucHez_3zuiWVSBWj6sW4rHN1-6knlXeiuFMNIGJjFSalNjk9Se8WGhrXeFxfivDKut8JhYBI6pjvL8O_Qm04n_AcRJ6YQsrUEvEDowZWpemUJqFZipnOhD2dmvsbnieBS-uG6eayUnmzdo8ybZvOF9-PXc5_ap3saHfw-6aWny2ps1c0_pw1Y3VfPP74-29vFo6_CZRUBLgu0MoNfeP_gNzEhas5nd7BHBQ92c priority: 102 providerName: ProQuest |
| Title | A solution to statistical and multidisciplinary design optimization problems using hGWO-SA algorithm |
| URI | https://link.springer.com/article/10.1007/s00521-020-05229-3 https://www.proquest.com/docview/2503533950 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XLjwRozHlAM3iNQm6ZocC9qGQDwETMCpapoEkGBDrPx_3JCOhwCJU6U2ycF24i_1ZxtgRyYFwo40pi6JLBXSOapVpKiKLBqQNs758sUnp53DgTi6SW5CUti4Ybs3IUl_Uk-S3eo_mHj1ZXXwljFF-TTMJnU5L7TiAcs-ZUP6Rpx4b6k5PYKHVJmf1_jqjj4w5rewqPc2vUWYDzCRZO96XYIpO1yGhaYFAwk7cgVMRhrjIdWI1OlBvvIyzi2Ghni64OfEW2I8Y4OM8KR4CimYJDSVGZOaBH9H7vvXZ_QyI8Xj3ejlobp_WoVBr3t1cEhD4wRa8k5aUbyi2djEzJrYllIILUvHJHrDQqf4ShaW8U5UlNZEJfp4pVlaCovgwXGEM8ryNZgZjoZ2HYiR0ggZlxo1LQrHlE55oiNZKMd0YkQL4kZ-eRmqitfNLR7zST1kL_McZZ57mee8BbuTOc_vNTX-HL3VqCUP-2ucI3DjCFRVErVgr1HVx-ffV9v43_BNmGM1icVTdbZgpnp5tduIQirdhmnZ67dhNuvfHnfxud89Pb9oe1N8A10V2AY |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LUxQxEO5COOhFxUe5CpKDnjTlTJLZSQ6UtSqwCKyWQsltzBMOsIvuUJR_jt9mJ2RYpEpuXGcmOXT39CPprz-AV7LSmHbUJQ1V4amQIVCjCkVV4dGAjAshjS_eGfWHe-LzfrU_B-cdFia2VXY-MTlqN7HxjPwdhmqOqYmqivcnv2hkjYq3qx2Fhs7UCm41jRjLwI4t_-cMS7jp6uYn1PdrxtbXdj8OaWYZoJb365ZiPeNLVzLvSm-lEEbawCSGDm1qfCS1Z7xfaOtdYTEgKsNqKzxG2sAx9ivPcd87sCC4UFj8LXxYG339dgWZmUhBsYaK_UWCZ9hOAu_FE1l8yuJlNGOK8n9D4yzfvXZFmyLf-kO4n1NWMriwsUWY8-NH8KCjgyDZOzwGNyCdIZN2QiJUKU2BxrV67EhqXbwKAiYudY-QCXqt4wwHJZngZkpiQ_4BOdz48YV-HxB9dIDKaA-Pn8DerYj3KcyPJ2P_DIiT0glZWoNWJ3RgytS8MoXUKjBTOdGDspNfY_OE80i0cdRczmZOMm9Q5k2SecN78OZyzcnFfI8bv17q1NLkf33azCyzB287Vc1e_3-35zfvtgJ3h7s728325mjrBdxjsZkmtQwtwXz7-9QvYzbUmpfZ5Aj8vG0r_wtweBvf |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVFWH7iBRWI7jX2sgLIXJKjgFsWx3SK1aQXh_xm7SVsQIHFNbB9mxpnn-L0ZhA5FlALsiENio8AQLqwlSgaSyMBAACltrS9ffNeqX7b59Uv0MqXi92z36kpypGlwVZry4mSo7clY-Ob-ZsIxmLqLXEolYbNonrtCCRDRbdqYUkb6ppxwhnH8Hs5K2czPa3xNTRO8-e2K1Gee5gpaKiEjbox8vIpmTL6Glqt2DLjcnetIN3AVSLgYYCcV8lWYYW6aa-ypg9MiXKw9ewMP4KvRL-WYuGww844dIb6DuxfP9-SxgdNeZ_D2WnT7G6jdPH86vSRlEwWSsXpcEDiumVCH1OjQZIJzJTJLBWTGVMXwSKSGsnqQZkYHGeR7qWiccQNAwjKANtKwTTSXD3KzhbAWQnMRZgq8zlNLpYpZpAKRSktVpHkNhZX9kqysMO4aXfSScW1kb_MEbJ54myesho7Gc4aj-hp_jt6t3JKUe-09ARDHALTKKKih48pVk9e_r7b9v-EHaOHhrJncXrVudtAiddwWz-DZRXPF24fZA3BSqH0ff5-VT9sa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+solution+to+statistical+and+multidisciplinary+design+optimization+problems+using+hGWO-SA+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Bhadoria%2C+Ashutosh&rft.au=Marwaha%2C+Sanjay&rft.au=Kamboj%2C+Vikram+Kumar&rft.date=2021-04-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=8&rft.spage=3799&rft.epage=3824&rft_id=info:doi/10.1007%2Fs00521-020-05229-3&rft.externalDocID=10_1007_s00521_020_05229_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |