Tensile failure mechanisms investigation of mesophase pitch-based carbon fibers based on continuous defective graphene nanoribbon model

[Display omitted] •The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse strengths of interactions among adjacent graphene nanoribbons lead to the emergence of distinct failure modes.•Active graphene edges strengthen...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 238; p. 112627
Main Authors Wang, Xinjie, Pan, Shidong, Wang, Xinzhu, Zhou, Zhengong, Zhao, Chengwei, Li, Dan, Ju, Anqi, Liang, Weizhong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0264-1275
DOI10.1016/j.matdes.2023.112627

Cover

Abstract [Display omitted] •The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse strengths of interactions among adjacent graphene nanoribbons lead to the emergence of distinct failure modes.•Active graphene edges strengthen the defective region, thus modifying load redistribution and improving structure strength. Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive investigations into the microstructure of MPP-based carbon fibers, the influence of these factors on deformation mechanisms under tension remains unclear. This study employs the continuous defective graphene nanoribbons (dGNR) atomistic structure model for molecular dynamics simulations to explore the tensile failure mechanisms of MPP-based carbon fibers. In the simulation model, the structure of the defective region was generated through high-temperature annealing, and a transition region was introduced to prevent distortion and damage to the active graphene edges. The simulation reveals the evolutionary process of the microstructure of MPP-based carbon fibers under tension and achieves Young’s modulus predictions with greater accuracy than theoretical models. Additionally, the study shows that different strengths of interactions between adjacent graphene nanoribbons can lead to two distinct failure modes. Models with larger crystallite dimensions along the fiber axis and lower average defective concentrations exhibit geometric deformation coordination between adjacent nanoribbons, potentially elucidating the increasing strength trend in MPP-based carbon fibers with rising graphitization levels. Our simulations provide insights into the tensile failure mechanisms of MPP-based carbon fibers, offering valuable guidance for regulating their microstructure to enhance mechanical performance.
AbstractList [Display omitted] •The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse strengths of interactions among adjacent graphene nanoribbons lead to the emergence of distinct failure modes.•Active graphene edges strengthen the defective region, thus modifying load redistribution and improving structure strength. Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive investigations into the microstructure of MPP-based carbon fibers, the influence of these factors on deformation mechanisms under tension remains unclear. This study employs the continuous defective graphene nanoribbons (dGNR) atomistic structure model for molecular dynamics simulations to explore the tensile failure mechanisms of MPP-based carbon fibers. In the simulation model, the structure of the defective region was generated through high-temperature annealing, and a transition region was introduced to prevent distortion and damage to the active graphene edges. The simulation reveals the evolutionary process of the microstructure of MPP-based carbon fibers under tension and achieves Young’s modulus predictions with greater accuracy than theoretical models. Additionally, the study shows that different strengths of interactions between adjacent graphene nanoribbons can lead to two distinct failure modes. Models with larger crystallite dimensions along the fiber axis and lower average defective concentrations exhibit geometric deformation coordination between adjacent nanoribbons, potentially elucidating the increasing strength trend in MPP-based carbon fibers with rising graphitization levels. Our simulations provide insights into the tensile failure mechanisms of MPP-based carbon fibers, offering valuable guidance for regulating their microstructure to enhance mechanical performance.
Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive investigations into the microstructure of MPP-based carbon fibers, the influence of these factors on deformation mechanisms under tension remains unclear. This study employs the continuous defective graphene nanoribbons (dGNR) atomistic structure model for molecular dynamics simulations to explore the tensile failure mechanisms of MPP-based carbon fibers. In the simulation model, the structure of the defective region was generated through high-temperature annealing, and a transition region was introduced to prevent distortion and damage to the active graphene edges. The simulation reveals the evolutionary process of the microstructure of MPP-based carbon fibers under tension and achieves Young’s modulus predictions with greater accuracy than theoretical models. Additionally, the study shows that different strengths of interactions between adjacent graphene nanoribbons can lead to two distinct failure modes. Models with larger crystallite dimensions along the fiber axis and lower average defective concentrations exhibit geometric deformation coordination between adjacent nanoribbons, potentially elucidating the increasing strength trend in MPP-based carbon fibers with rising graphitization levels. Our simulations provide insights into the tensile failure mechanisms of MPP-based carbon fibers, offering valuable guidance for regulating their microstructure to enhance mechanical performance.
ArticleNumber 112627
Author Pan, Shidong
Li, Dan
Ju, Anqi
Zhou, Zhengong
Liang, Weizhong
Zhao, Chengwei
Wang, Xinzhu
Wang, Xinjie
Author_xml – sequence: 1
  givenname: Xinjie
  surname: Wang
  fullname: Wang, Xinjie
  organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 2
  givenname: Shidong
  orcidid: 0000-0003-4599-8292
  surname: Pan
  fullname: Pan, Shidong
  email: sd6419866@sina.com
  organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 3
  givenname: Xinzhu
  surname: Wang
  fullname: Wang, Xinzhu
  organization: Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, PR China
– sequence: 4
  givenname: Zhengong
  surname: Zhou
  fullname: Zhou, Zhengong
  organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 5
  givenname: Chengwei
  surname: Zhao
  fullname: Zhao, Chengwei
  organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 6
  givenname: Dan
  orcidid: 0009-0009-5410-0780
  surname: Li
  fullname: Li, Dan
  organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 7
  givenname: Anqi
  surname: Ju
  fullname: Ju, Anqi
  organization: Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, PR China
– sequence: 8
  givenname: Weizhong
  surname: Liang
  fullname: Liang, Weizhong
  organization: School of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin 150022, PR China
BookMark eNp9kc9u3CAQxjmkUpM0b9ADL-CtARvbl0pV1D-RIvWSnNEAw-6sbFiBd6U-QV-7bB312BPDN_p-A_PdsZuYIjL2UbQ70Qr96bhbYPVYdrKVaieE1HK4Ybet1F0j5NC_Z3elHNtWykF1t-z3C8ZCM_IANJ8z8gXdASKVpXCKFywr7WGlFHkKtVfS6QAF-YlWd2hsLT13kG3tB7KYC9-0encprhTP6Vy4x4BupQvyfYbTASPyCDFlslfjkjzOH9i7AHPBh7fznr1--_ry-KN5_vn96fHLc-OUHtZGawVOj4Oceq-6SXkVoBvAK4kWpxC6yflxFFIoG0B7KYNFGyT2GryzAOqePW1cn-BoTpkWyL9MAjJ_hZT3BvJKbkajfD9Br207OtWJMFViF_xUB4mxdyNWVrexXE6lZAz_eKI11zDM0WxhmGsYZguj2j5vNqz_vBBmUxxhdOgp1zXVh9D_AX8AT5ad8g
Cites_doi 10.5012/bkcs.2009.30.10.2253
10.1016/S1872-5805(08)60039-6
10.1016/j.jmrt.2020.05.037
10.1016/j.carbon.2014.12.067
10.1063/1.448118
10.1016/j.carbon.2019.06.014
10.1016/j.compositesb.2018.09.108
10.1103/PhysRevB.85.195447
10.1016/j.ceramint.2016.04.055
10.1016/j.carbon.2019.06.091
10.1016/j.carbon.2011.08.040
10.1016/j.polymdegradstab.2016.12.005
10.1016/0008-6223(95)00138-7
10.1016/S0008-6223(02)00359-7
10.1038/s41524-020-00390-8
10.1016/j.carbon.2022.10.092
10.1103/PhysRevLett.62.555
10.1063/1.481208
10.1016/j.carbon.2015.09.019
10.1016/S0008-6223(03)00391-9
10.1016/j.carbon.2020.01.062
10.1007/s10853-021-06221-5
10.1016/j.eml.2020.100699
10.1016/S0008-6223(03)00400-7
10.1016/0008-6223(95)00172-7
10.1177/0021998320918353
10.1016/S0008-6223(97)00185-1
10.1038/215384a0
10.1021/jp709896w
10.1016/j.carbon.2021.09.038
10.1016/j.carbon.2015.08.057
10.1016/j.carbon.2020.11.011
10.1016/S1872-5805(21)60050-1
10.1016/j.commatsci.2021.110477
10.1103/PhysRevB.79.195429
10.1016/j.compositesa.2016.10.018
10.1016/j.micromeso.2021.111201
10.1103/PhysRevLett.71.1184
10.2115/fiber.70.P-151
10.1007/BF01129955
10.1002/app.36486
10.1002/anie.201306129
10.1016/j.carbon.2014.07.068
10.1107/S002188989400227X
10.1016/j.carbon.2011.10.029
10.1002/app.52734
10.3390/ma2042369
10.1016/S1872-5805(19)60002-8
10.1088/0022-3727/20/3/007
10.1016/j.carbon.2016.11.024
10.1016/S1359-835X(00)00175-5
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2023.112627
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_3d59a56b08c341f9bfa4fd9ebe185c8e
10_1016_j_matdes_2023_112627
S0264127523010432
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABMAC
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c367t-663ac687295d3493d3fa47ad32ebe9ff49cd881213bfa6d22fbebf2e56adcbaa3
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:26:53 EDT 2025
Fri Sep 19 05:05:57 EDT 2025
Sat Nov 16 15:59:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Failure mechanism
Molecular dynamics
Atomistic model
Carbon fiber
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-663ac687295d3493d3fa47ad32ebe9ff49cd881213bfa6d22fbebf2e56adcbaa3
ORCID 0000-0003-4599-8292
0009-0009-5410-0780
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127523010432
ParticipantIDs doaj_primary_oai_doaj_org_article_3d59a56b08c341f9bfa4fd9ebe185c8e
crossref_primary_10_1016_j_matdes_2023_112627
elsevier_sciencedirect_doi_10_1016_j_matdes_2023_112627
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ohno (b0020) 2014; 70
Yun, Kim, Yang, Bang, Kim, Woo (b0015) 2009; 30
Aldosari, Khan, Rahatekar (b0150) 2020; 9
Zhu, Liu, Yu, Zhao, Liu, Xu (b0165) 2012; 50
Yuan, Li, Yi, Dong, Westwood, Li (b0025) 2015; 95
Joshi, Arefev, Zhigilei (b0175) 2019; 152
Musiol, Szatkowski, Gubernat, Weselucha-Birczynska, Blazewicz (b0125) 2016; 42
Huson (b0030) 2017
Zhang, Andersson, Rader, Mullen (b0070) 2015; 95
Kotakoski, Meyer (b0245) 2012; 85
Shi J-l, Ma C. Preparation and characterization of spinnable mesophase pitches: A review. Carbon. 2019;153.
Xiao, Gong, Li, Li (b0115) 2021; 323
Shi, Sessim, Tonks, Phillpot (b0275) 2021; 185
Berendsen, Postma, Vangunsteren, Dinola, Haak (b0215) 1984; 81
Takaku, Shioya (b0085) 1990; 25
Wen, Tadmor (b0265) 2020; 6
Fan, Cao, Yang, Zhu, Feng (b0135) 2019; 34
Cervenka, Flipse (b0240) 2009; 79
Galli, Martin, Car, Parrinello (b0220) 1989; 62
Johnson, Watt (b0205) 1967; 215
Penev, Artyukhov, Yakobson (b0170) 2015; 85
Heo, Park, Kang, Rhee, Park (b0035) 2019; 159
Gallego, Edie (b0045) 2001; 32
O'Connor, Andzelm, Robbins (b0255) 2015; 142
He, Arefev, Joshi, Zhigilei (b0190) 2023; 202
Sharma, Patel (b0010) 2020
Edie (b0040) 1998; 36
He, Joshi, Zhigilei (b0185) 2021; 56
Lee, Lee, Roh (b0100) 2021
Emmerich (b0195) 2014; 79
Kobayashi, Sumiya, Fujii, Fujie, Takahagi, Tashiro (b0050) 2012; 50
Huang (b0005) 2009; 2
Newcomb (b0155) 2016; 91
Frank, Steudle, Ingildeev, Sporl, Buchmeiser (b0055) 2014; 53
Yu, Xu, Wang, Hu, Zhu, Qiao (b0130) 2012; 125
Yoshikawa, Fukuyama, Nakahara, Konishi, Ichikuni, Yoshikawa (b0145) 2003; 41
Mochida, Yoon, Takano, Fortin, Korai, Yokogawa (b0200) 1996; 34
Wazir, Kakakhel (b0095) 2009; 24
Ranganathan, Rokkam, Desai, Keblinski (b0230) 2017; 113
Zhong, Gao, Li (b0270) 2020; 37
Ye, Wu, Zhu, Fan, Huang, Han (b0105) 2021; 36
Regis, Bellare, Pascolini, Bracco (b0110) 2017; 136
Yoon, Korai, Mochida, Yokogawa, Fukuyama, Yoshimura (b0235) 1996; 34
Stuart, Tutein, Harrison (b0250) 2000; 112
Zhang, Liu, Wu (b0060) 2003; 41
Xie, Li, Fu, Chen, Wang, Qin (b0280) 2022; 139
Tadokoro H, Tsuji N, Shibata H, Furuyama M, Arai Y, Doken Y, et al. High performance pitch-based carbon fiber. Materials and Process Challenges: Aging Systems, Affordability, Alternative Applications, Books 1 and 2. 1996;41:1134-8.
Loidl, Peterlik, Muller, Riekel, Paris (b0210) 2003; 41
Chen, Metz, Mennito, Merchant, Smith, Siskin (b0080) 2020; 161
Shi, Sessim, Tonks, Phillpot (b0180) 2021; 173
Wang, Ho (b0225) 1993; 71
Chenoweth, van Duin, Goddard (b0260) 2008; 112
Isbill, Shields, Mattei-Lopez, Kapsimalis, Niedziela (b0160) 2021; 195
Johnson (b0140) 1987; 20
Gupta, Harrison, Lahijani (b0090) 1994; 27
Cao, Zhao, Gao (b0120) 2018
Chen (10.1016/j.matdes.2023.112627_b0080) 2020; 161
Aldosari (10.1016/j.matdes.2023.112627_b0150) 2020; 9
He (10.1016/j.matdes.2023.112627_b0190) 2023; 202
Yu (10.1016/j.matdes.2023.112627_b0130) 2012; 125
Berendsen (10.1016/j.matdes.2023.112627_b0215) 1984; 81
Regis (10.1016/j.matdes.2023.112627_b0110) 2017; 136
Takaku (10.1016/j.matdes.2023.112627_b0085) 1990; 25
Heo (10.1016/j.matdes.2023.112627_b0035) 2019; 159
Galli (10.1016/j.matdes.2023.112627_b0220) 1989; 62
Zhong (10.1016/j.matdes.2023.112627_b0270) 2020; 37
Yoshikawa (10.1016/j.matdes.2023.112627_b0145) 2003; 41
Zhang (10.1016/j.matdes.2023.112627_b0060) 2003; 41
Penev (10.1016/j.matdes.2023.112627_b0170) 2015; 85
Joshi (10.1016/j.matdes.2023.112627_b0175) 2019; 152
Yun (10.1016/j.matdes.2023.112627_b0015) 2009; 30
O'Connor (10.1016/j.matdes.2023.112627_b0255) 2015; 142
Sharma (10.1016/j.matdes.2023.112627_b0010) 2020
Ohno (10.1016/j.matdes.2023.112627_b0020) 2014; 70
Fan (10.1016/j.matdes.2023.112627_b0135) 2019; 34
Ranganathan (10.1016/j.matdes.2023.112627_b0230) 2017; 113
Frank (10.1016/j.matdes.2023.112627_b0055) 2014; 53
Yuan (10.1016/j.matdes.2023.112627_b0025) 2015; 95
Huang (10.1016/j.matdes.2023.112627_b0005) 2009; 2
Edie (10.1016/j.matdes.2023.112627_b0040) 1998; 36
Loidl (10.1016/j.matdes.2023.112627_b0210) 2003; 41
Mochida (10.1016/j.matdes.2023.112627_b0200) 1996; 34
Emmerich (10.1016/j.matdes.2023.112627_b0195) 2014; 79
Kobayashi (10.1016/j.matdes.2023.112627_b0050) 2012; 50
Isbill (10.1016/j.matdes.2023.112627_b0160) 2021; 195
Gallego (10.1016/j.matdes.2023.112627_b0045) 2001; 32
Wang (10.1016/j.matdes.2023.112627_b0225) 1993; 71
Zhu (10.1016/j.matdes.2023.112627_b0165) 2012; 50
10.1016/j.matdes.2023.112627_b0075
Wen (10.1016/j.matdes.2023.112627_b0265) 2020; 6
Cervenka (10.1016/j.matdes.2023.112627_b0240) 2009; 79
Kotakoski (10.1016/j.matdes.2023.112627_b0245) 2012; 85
Gupta (10.1016/j.matdes.2023.112627_b0090) 1994; 27
Johnson (10.1016/j.matdes.2023.112627_b0140) 1987; 20
Newcomb (10.1016/j.matdes.2023.112627_b0155) 2016; 91
Xiao (10.1016/j.matdes.2023.112627_b0115) 2021; 323
Chenoweth (10.1016/j.matdes.2023.112627_b0260) 2008; 112
Wazir (10.1016/j.matdes.2023.112627_b0095) 2009; 24
Cao (10.1016/j.matdes.2023.112627_b0120) 2018
10.1016/j.matdes.2023.112627_b0065
Xie (10.1016/j.matdes.2023.112627_b0280) 2022; 139
Shi (10.1016/j.matdes.2023.112627_b0275) 2021; 185
Musiol (10.1016/j.matdes.2023.112627_b0125) 2016; 42
Lee (10.1016/j.matdes.2023.112627_b0100) 2021
Yoon (10.1016/j.matdes.2023.112627_b0235) 1996; 34
Shi (10.1016/j.matdes.2023.112627_b0180) 2021; 173
Huson (10.1016/j.matdes.2023.112627_b0030) 2017
Stuart (10.1016/j.matdes.2023.112627_b0250) 2000; 112
Zhang (10.1016/j.matdes.2023.112627_b0070) 2015; 95
Johnson (10.1016/j.matdes.2023.112627_b0205) 1967; 215
Ye (10.1016/j.matdes.2023.112627_b0105) 2021; 36
He (10.1016/j.matdes.2023.112627_b0185) 2021; 56
References_xml – volume: 27
  start-page: 627
  year: 1994
  end-page: 636
  ident: b0090
  article-title: Small-angle X-ray-scattering in carbon-fibers
  publication-title: J. Appl. Cryst.
– volume: 323
  year: 2021
  ident: b0115
  article-title: In-situ SAXS study on pore structure change of PAN-based carbon fiber during graphitization
  publication-title: Microporous Mesoporous Mater.
– volume: 139
  year: 2022
  ident: b0280
  article-title: Spherical boron nitride/pitch-based carbon fiber/silicone rubber composites for high thermal conductivity and excellent electromagnetic interference shielding performance
  publication-title: J. Appl. Polym. Sci.
– volume: 71
  start-page: 1184
  year: 1993
  end-page: 1187
  ident: b0225
  article-title: Structure, dynamics, and electronic-properties of diamond-like amorphous-carbon
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 286
  year: 1987
  end-page: 291
  ident: b0140
  article-title: Structure property relationships in carbon-fibers
  publication-title: J. Phys. D-Appl. Phys.
– volume: 30
  start-page: 2253
  year: 2009
  end-page: 2258
  ident: b0015
  article-title: Process optimization for preparing high performance PAN-based carbon fibers
  publication-title: Bull. Kor. Chem. Soc.
– volume: 79
  year: 2009
  ident: b0240
  article-title: Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects
  publication-title: Phys. Rev. B
– volume: 70
  start-page: 151
  year: 2014
  end-page: 155
  ident: b0020
  article-title: High performance pitch based carbon fiber and its applications
  publication-title: Sen-I Gakkaishi.
– volume: 41
  start-page: 563
  year: 2003
  end-page: 570
  ident: b0210
  article-title: Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction
  publication-title: Carbon
– volume: 2
  start-page: 2369
  year: 2009
  end-page: 2403
  ident: b0005
  article-title: Fabrication and properties of carbon fibers
  publication-title: Materials.
– volume: 50
  start-page: 235
  year: 2012
  end-page: 243
  ident: b0165
  article-title: A small-angle X-ray scattering study and molecular dynamics simulation of microvoid evolution during the tensile deformation of carbon fibers
  publication-title: Carbon
– volume: 34
  start-page: 941
  year: 1996
  end-page: 956
  ident: b0200
  article-title: Microstructure of mesophase pitch-based carbon fiber and its control
  publication-title: Carbon
– volume: 142
  year: 2015
  ident: b0255
  article-title: A reactive model for hydrocarbons at extreme pressures
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 1031
  year: 2001
  end-page: 1038
  ident: b0045
  article-title: Structure-property relationships for high thermal conductivity carbon fibers
  publication-title: Composites Part a-Applied Science and Manufacturing.
– volume: 202
  start-page: 528
  year: 2023
  end-page: 546
  ident: b0190
  article-title: Atomistic modeling of tensile deformation and fracture of carbon fibers: nanoscale stress redistribution, effect of local structural characteristics and nanovoids
  publication-title: Carbon
– volume: 152
  start-page: 396
  year: 2019
  end-page: 408
  ident: b0175
  article-title: Generation and characterization of carbon fiber microstructures by atomistic simulations
  publication-title: Carbon
– volume: 173
  start-page: 232
  year: 2021
  end-page: 244
  ident: b0180
  article-title: Generation and characterization of an improved carbon fiber model by molecular dynamics
  publication-title: Carbon
– volume: 161
  start-page: 456
  year: 2020
  end-page: 465
  ident: b0080
  article-title: Petroleum pitch: Exploring a 50-year structure puzzle with real-space molecular imaging
  publication-title: Carbon
– volume: 85
  start-page: 72
  year: 2015
  end-page: 78
  ident: b0170
  article-title: Basic structural units in carbon fibers: Atomistic models and tensile behavior
  publication-title: Carbon
– volume: 53
  start-page: 5262
  year: 2014
  end-page: 5298
  ident: b0055
  article-title: Carbon fibers: precursor systems, processing, structure, and properties
  publication-title: Angewandte Chemie-International Edition
– volume: 56
  start-page: 14598
  year: 2021
  end-page: 14610
  ident: b0185
  article-title: Computational study of the effect of core-skin structure on the mechanical properties of carbon nanofibers
  publication-title: J. Mater. Sci.
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  ident: b0215
  article-title: Molecular-dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
– reference: Shi J-l, Ma C. Preparation and characterization of spinnable mesophase pitches: A review. Carbon. 2019;153.
– year: 2020
  ident: b0010
  article-title: Novel carbon foam composites reinforced with carbon fiber felt developed from inexpensive pitch precursor matrix
  publication-title: J. Compos. Mater.
– start-page: 11
  year: 2018
  ident: b0120
  article-title: Properties and structure of in situ transformed PAN-based carbon fibers
  publication-title: Materials.
– volume: 9
  start-page: 7786
  year: 2020
  end-page: 7806
  ident: b0150
  article-title: Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review
  publication-title: J. Mater. Res. Technol.
– volume: 195
  year: 2021
  ident: b0160
  article-title: Reviewing computational studies of defect formation and behaviors in carbon fiber structural units
  publication-title: Comput. Mater. Sci
– volume: 34
  start-page: 38
  year: 2019
  end-page: 43
  ident: b0135
  article-title: The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature
  publication-title: New Carbon Mater.
– volume: 79
  start-page: 274
  year: 2014
  end-page: 293
  ident: b0195
  article-title: Young's modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers
  publication-title: Carbon
– volume: 85
  year: 2012
  ident: b0245
  article-title: Mechanical properties of polycrystalline graphene based on a realistic atomistic model
  publication-title: Phys. Rev. B
– volume: 34
  start-page: 83
  year: 1996
  end-page: 88
  ident: b0235
  article-title: Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch
  publication-title: Carbon
– volume: 6
  year: 2020
  ident: b0265
  article-title: Uncertainty quantification in molecular simulations with dropout neural network potentials
  publication-title: npj Comput. Mater.
– volume: 50
  start-page: 1163
  year: 2012
  end-page: 1169
  ident: b0050
  article-title: Stress-induced microstructural changes and crystallite modulus of carbon fiber as measured by X-ray scattering
  publication-title: Carbon
– volume: 112
  start-page: 6472
  year: 2000
  end-page: 6486
  ident: b0250
  article-title: A reactive potential for hydrocarbons with intermolecular interactions
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 121
  year: 2017
  end-page: 130
  ident: b0110
  article-title: Characterization of thermally annealed PEEK and CFR-PEEK composites: structure-properties relationships
  publication-title: Polym. Degrad. Stab.
– volume: 159
  start-page: 362
  year: 2019
  end-page: 368
  ident: b0035
  article-title: Preparation and characterization of carbon black/pitch-based carbon fiber paper composites for gas diffusion layers
  publication-title: Composites Part B-Engineering.
– volume: 24
  start-page: 83
  year: 2009
  end-page: 88
  ident: b0095
  article-title: Preparation and characterization of pitch-based carbon fibers
  publication-title: New Carbon Mater.
– volume: 62
  start-page: 555
  year: 1989
  end-page: 558
  ident: b0220
  article-title: Structural and electronic-properties of amorphous-carbon
  publication-title: Phys. Rev. Lett.
– reference: Tadokoro H, Tsuji N, Shibata H, Furuyama M, Arai Y, Doken Y, et al. High performance pitch-based carbon fiber. Materials and Process Challenges: Aging Systems, Affordability, Alternative Applications, Books 1 and 2. 1996;41:1134-8.
– start-page: 14
  year: 2021
  ident: b0100
  article-title: Microstructure of milled polyacrylonitrile-based carbon fiber analyzed by micro-Raman spectroscopy and TEM
  publication-title: Materials.
– volume: 113
  start-page: 87
  year: 2017
  end-page: 99
  ident: b0230
  article-title: Generation of amorphous carbon models using liquid quench method: a reactive molecular dynamics study
  publication-title: Carbon
– volume: 37
  year: 2020
  ident: b0270
  article-title: Atomistic simulations of the tensile behavior of graphene fibers
  publication-title: Extreme Mech. Lett.
– volume: 41
  start-page: 2805
  year: 2003
  end-page: 2812
  ident: b0060
  article-title: Evolution of structure and properties of PAN precursors during their conversion to carbon fibers
  publication-title: Carbon
– volume: 91
  start-page: 262
  year: 2016
  end-page: 282
  ident: b0155
  article-title: Processing, structure, and properties of carbon fibers
  publication-title: Composites Part a-Applied Science and Manufacturing.
– volume: 112
  start-page: 1040
  year: 2008
  end-page: 1053
  ident: b0260
  article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
  publication-title: J. Phys. Chem. A
– volume: 215
  start-page: 384
  year: 1967
  end-page: 386
  ident: b0205
  article-title: Structure of high modulus carbon fibres
  publication-title: Nature
– volume: 41
  start-page: 2931
  year: 2003
  end-page: 2938
  ident: b0145
  article-title: X-ray absorption fine structure study on residue bromine in carbons with different degrees of graphitization
  publication-title: Carbon
– volume: 42
  start-page: 11603
  year: 2016
  end-page: 11610
  ident: b0125
  article-title: Comparative study of the structure and microstructure of PAN-based nano- and micro-carbon fibers
  publication-title: Ceram. Int.
– volume: 125
  start-page: 3159
  year: 2012
  end-page: 3166
  ident: b0130
  article-title: Heredity and difference of multiple-scale microstructures in PAN-based carbon fibers and their precursor fibers
  publication-title: J. Appl. Polym. Sci.
– volume: 25
  start-page: 4873
  year: 1990
  end-page: 4879
  ident: b0085
  article-title: X-Ray Measurements and the structure of polyacrylonitrile- and pitch-based carbon-fibers
  publication-title: J. Mater. Sci.
– volume: 185
  start-page: 449
  year: 2021
  end-page: 463
  ident: b0275
  article-title: High-temperature oxidation of carbon fiber and char by molecular dynamics simulation
  publication-title: Carbon
– volume: 95
  start-page: 1007
  year: 2015
  end-page: 1019
  ident: b0025
  article-title: Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity
  publication-title: Carbon
– volume: 36
  start-page: 345
  year: 1998
  end-page: 362
  ident: b0040
  article-title: The effect of processing on the structure and properties of carbon fibers
  publication-title: Carbon
– volume: 95
  start-page: 672
  year: 2015
  end-page: 680
  ident: b0070
  article-title: Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation
  publication-title: Carbon
– start-page: 31
  year: 2017
  end-page: 78
  ident: b0030
  article-title: High-performance pitch-based carbon fibers. Structure and Properties of High-Performance Fibers
– volume: 36
  start-page: 980
  year: 2021
  end-page: 985
  ident: b0105
  article-title: Microstructure of high thermal conductivity mesophase pitch-based carbon fibers
  publication-title: New Carbon Mater.
– volume: 30
  start-page: 2253
  year: 2009
  ident: 10.1016/j.matdes.2023.112627_b0015
  article-title: Process optimization for preparing high performance PAN-based carbon fibers
  publication-title: Bull. Kor. Chem. Soc.
  doi: 10.5012/bkcs.2009.30.10.2253
– volume: 24
  start-page: 83
  year: 2009
  ident: 10.1016/j.matdes.2023.112627_b0095
  article-title: Preparation and characterization of pitch-based carbon fibers
  publication-title: New Carbon Mater.
  doi: 10.1016/S1872-5805(08)60039-6
– volume: 9
  start-page: 7786
  year: 2020
  ident: 10.1016/j.matdes.2023.112627_b0150
  article-title: Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.05.037
– volume: 85
  start-page: 72
  year: 2015
  ident: 10.1016/j.matdes.2023.112627_b0170
  article-title: Basic structural units in carbon fibers: Atomistic models and tensile behavior
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.12.067
– volume: 81
  start-page: 3684
  year: 1984
  ident: 10.1016/j.matdes.2023.112627_b0215
  article-title: Molecular-dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 152
  start-page: 396
  year: 2019
  ident: 10.1016/j.matdes.2023.112627_b0175
  article-title: Generation and characterization of carbon fiber microstructures by atomistic simulations
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.06.014
– volume: 159
  start-page: 362
  year: 2019
  ident: 10.1016/j.matdes.2023.112627_b0035
  article-title: Preparation and characterization of carbon black/pitch-based carbon fiber paper composites for gas diffusion layers
  publication-title: Composites Part B-Engineering.
  doi: 10.1016/j.compositesb.2018.09.108
– volume: 85
  year: 2012
  ident: 10.1016/j.matdes.2023.112627_b0245
  article-title: Mechanical properties of polycrystalline graphene based on a realistic atomistic model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.195447
– volume: 42
  start-page: 11603
  year: 2016
  ident: 10.1016/j.matdes.2023.112627_b0125
  article-title: Comparative study of the structure and microstructure of PAN-based nano- and micro-carbon fibers
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.04.055
– ident: 10.1016/j.matdes.2023.112627_b0075
  doi: 10.1016/j.carbon.2019.06.091
– volume: 50
  start-page: 235
  year: 2012
  ident: 10.1016/j.matdes.2023.112627_b0165
  article-title: A small-angle X-ray scattering study and molecular dynamics simulation of microvoid evolution during the tensile deformation of carbon fibers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.08.040
– volume: 136
  start-page: 121
  year: 2017
  ident: 10.1016/j.matdes.2023.112627_b0110
  article-title: Characterization of thermally annealed PEEK and CFR-PEEK composites: structure-properties relationships
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2016.12.005
– volume: 34
  start-page: 83
  year: 1996
  ident: 10.1016/j.matdes.2023.112627_b0235
  article-title: Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00138-7
– volume: 41
  start-page: 563
  year: 2003
  ident: 10.1016/j.matdes.2023.112627_b0210
  article-title: Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00359-7
– volume: 6
  year: 2020
  ident: 10.1016/j.matdes.2023.112627_b0265
  article-title: Uncertainty quantification in molecular simulations with dropout neural network potentials
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00390-8
– volume: 202
  start-page: 528
  year: 2023
  ident: 10.1016/j.matdes.2023.112627_b0190
  article-title: Atomistic modeling of tensile deformation and fracture of carbon fibers: nanoscale stress redistribution, effect of local structural characteristics and nanovoids
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.10.092
– volume: 62
  start-page: 555
  year: 1989
  ident: 10.1016/j.matdes.2023.112627_b0220
  article-title: Structural and electronic-properties of amorphous-carbon
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.555
– volume: 112
  start-page: 6472
  year: 2000
  ident: 10.1016/j.matdes.2023.112627_b0250
  article-title: A reactive potential for hydrocarbons with intermolecular interactions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481208
– volume: 95
  start-page: 1007
  year: 2015
  ident: 10.1016/j.matdes.2023.112627_b0025
  article-title: Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.019
– volume: 41
  start-page: 2805
  year: 2003
  ident: 10.1016/j.matdes.2023.112627_b0060
  article-title: Evolution of structure and properties of PAN precursors during their conversion to carbon fibers
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00391-9
– volume: 161
  start-page: 456
  year: 2020
  ident: 10.1016/j.matdes.2023.112627_b0080
  article-title: Petroleum pitch: Exploring a 50-year structure puzzle with real-space molecular imaging
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.01.062
– volume: 56
  start-page: 14598
  year: 2021
  ident: 10.1016/j.matdes.2023.112627_b0185
  article-title: Computational study of the effect of core-skin structure on the mechanical properties of carbon nanofibers
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06221-5
– volume: 37
  year: 2020
  ident: 10.1016/j.matdes.2023.112627_b0270
  article-title: Atomistic simulations of the tensile behavior of graphene fibers
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2020.100699
– volume: 41
  start-page: 2931
  year: 2003
  ident: 10.1016/j.matdes.2023.112627_b0145
  article-title: X-ray absorption fine structure study on residue bromine in carbons with different degrees of graphitization
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00400-7
– volume: 142
  year: 2015
  ident: 10.1016/j.matdes.2023.112627_b0255
  article-title: A reactive model for hydrocarbons at extreme pressures
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 941
  year: 1996
  ident: 10.1016/j.matdes.2023.112627_b0200
  article-title: Microstructure of mesophase pitch-based carbon fiber and its control
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00172-7
– start-page: 31
  year: 2017
  ident: 10.1016/j.matdes.2023.112627_b0030
– year: 2020
  ident: 10.1016/j.matdes.2023.112627_b0010
  article-title: Novel carbon foam composites reinforced with carbon fiber felt developed from inexpensive pitch precursor matrix
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998320918353
– volume: 36
  start-page: 345
  year: 1998
  ident: 10.1016/j.matdes.2023.112627_b0040
  article-title: The effect of processing on the structure and properties of carbon fibers
  publication-title: Carbon
  doi: 10.1016/S0008-6223(97)00185-1
– volume: 215
  start-page: 384
  year: 1967
  ident: 10.1016/j.matdes.2023.112627_b0205
  article-title: Structure of high modulus carbon fibres
  publication-title: Nature
  doi: 10.1038/215384a0
– volume: 112
  start-page: 1040
  year: 2008
  ident: 10.1016/j.matdes.2023.112627_b0260
  article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp709896w
– volume: 185
  start-page: 449
  year: 2021
  ident: 10.1016/j.matdes.2023.112627_b0275
  article-title: High-temperature oxidation of carbon fiber and char by molecular dynamics simulation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.09.038
– volume: 95
  start-page: 672
  year: 2015
  ident: 10.1016/j.matdes.2023.112627_b0070
  article-title: Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.08.057
– volume: 173
  start-page: 232
  year: 2021
  ident: 10.1016/j.matdes.2023.112627_b0180
  article-title: Generation and characterization of an improved carbon fiber model by molecular dynamics
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.011
– volume: 36
  start-page: 980
  year: 2021
  ident: 10.1016/j.matdes.2023.112627_b0105
  article-title: Microstructure of high thermal conductivity mesophase pitch-based carbon fibers
  publication-title: New Carbon Mater.
  doi: 10.1016/S1872-5805(21)60050-1
– volume: 195
  year: 2021
  ident: 10.1016/j.matdes.2023.112627_b0160
  article-title: Reviewing computational studies of defect formation and behaviors in carbon fiber structural units
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2021.110477
– volume: 79
  year: 2009
  ident: 10.1016/j.matdes.2023.112627_b0240
  article-title: Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.195429
– ident: 10.1016/j.matdes.2023.112627_b0065
– start-page: 14
  year: 2021
  ident: 10.1016/j.matdes.2023.112627_b0100
  article-title: Microstructure of milled polyacrylonitrile-based carbon fiber analyzed by micro-Raman spectroscopy and TEM
  publication-title: Materials.
– volume: 91
  start-page: 262
  year: 2016
  ident: 10.1016/j.matdes.2023.112627_b0155
  article-title: Processing, structure, and properties of carbon fibers
  publication-title: Composites Part a-Applied Science and Manufacturing.
  doi: 10.1016/j.compositesa.2016.10.018
– volume: 323
  year: 2021
  ident: 10.1016/j.matdes.2023.112627_b0115
  article-title: In-situ SAXS study on pore structure change of PAN-based carbon fiber during graphitization
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111201
– volume: 71
  start-page: 1184
  year: 1993
  ident: 10.1016/j.matdes.2023.112627_b0225
  article-title: Structure, dynamics, and electronic-properties of diamond-like amorphous-carbon
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1184
– volume: 70
  start-page: 151
  year: 2014
  ident: 10.1016/j.matdes.2023.112627_b0020
  article-title: High performance pitch based carbon fiber and its applications
  publication-title: Sen-I Gakkaishi.
  doi: 10.2115/fiber.70.P-151
– volume: 25
  start-page: 4873
  year: 1990
  ident: 10.1016/j.matdes.2023.112627_b0085
  article-title: X-Ray Measurements and the structure of polyacrylonitrile- and pitch-based carbon-fibers
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01129955
– volume: 125
  start-page: 3159
  year: 2012
  ident: 10.1016/j.matdes.2023.112627_b0130
  article-title: Heredity and difference of multiple-scale microstructures in PAN-based carbon fibers and their precursor fibers
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.36486
– volume: 53
  start-page: 5262
  year: 2014
  ident: 10.1016/j.matdes.2023.112627_b0055
  article-title: Carbon fibers: precursor systems, processing, structure, and properties
  publication-title: Angewandte Chemie-International Edition
  doi: 10.1002/anie.201306129
– volume: 79
  start-page: 274
  year: 2014
  ident: 10.1016/j.matdes.2023.112627_b0195
  article-title: Young's modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.068
– volume: 27
  start-page: 627
  year: 1994
  ident: 10.1016/j.matdes.2023.112627_b0090
  article-title: Small-angle X-ray-scattering in carbon-fibers
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S002188989400227X
– volume: 50
  start-page: 1163
  year: 2012
  ident: 10.1016/j.matdes.2023.112627_b0050
  article-title: Stress-induced microstructural changes and crystallite modulus of carbon fiber as measured by X-ray scattering
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.10.029
– volume: 139
  year: 2022
  ident: 10.1016/j.matdes.2023.112627_b0280
  article-title: Spherical boron nitride/pitch-based carbon fiber/silicone rubber composites for high thermal conductivity and excellent electromagnetic interference shielding performance
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.52734
– volume: 2
  start-page: 2369
  year: 2009
  ident: 10.1016/j.matdes.2023.112627_b0005
  article-title: Fabrication and properties of carbon fibers
  publication-title: Materials.
  doi: 10.3390/ma2042369
– volume: 34
  start-page: 38
  year: 2019
  ident: 10.1016/j.matdes.2023.112627_b0135
  article-title: The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature
  publication-title: New Carbon Mater.
  doi: 10.1016/S1872-5805(19)60002-8
– volume: 20
  start-page: 286
  year: 1987
  ident: 10.1016/j.matdes.2023.112627_b0140
  article-title: Structure property relationships in carbon-fibers
  publication-title: J. Phys. D-Appl. Phys.
  doi: 10.1088/0022-3727/20/3/007
– volume: 113
  start-page: 87
  year: 2017
  ident: 10.1016/j.matdes.2023.112627_b0230
  article-title: Generation of amorphous carbon models using liquid quench method: a reactive molecular dynamics study
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.024
– volume: 32
  start-page: 1031
  year: 2001
  ident: 10.1016/j.matdes.2023.112627_b0045
  article-title: Structure-property relationships for high thermal conductivity carbon fibers
  publication-title: Composites Part a-Applied Science and Manufacturing.
  doi: 10.1016/S1359-835X(00)00175-5
– start-page: 11
  year: 2018
  ident: 10.1016/j.matdes.2023.112627_b0120
  article-title: Properties and structure of in situ transformed PAN-based carbon fibers
  publication-title: Materials.
SSID ssj0022734
Score 2.4216883
Snippet [Display omitted] •The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse...
Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 112627
SubjectTerms Atomistic model
Carbon fiber
Failure mechanism
Molecular dynamics
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAa0cZ2Eo-AqCokmFqpW-SnFESTqo_fwN_mzk4gEyyMsZNzdHe6O1ufvyPkDjZVZgR5IJGM5-G0KtFcsIR5nnnhnMkDXdPrWzad85eFWPRafSEmLNIDR8XdMyukEpkeFQYCrpfaK-6thLVhBVM4jL4jOeo2U-1WC0lb4ukKsvLlors0F5BdUApah1TdKQs3aLCjTC8pBe7-Xm7q5ZvJETlsC0X6EH_wmOy5-oQc9OgDT8nnDNHnH456VSG6nC4d3uOtNssNrX74M5qaNh7msGEB5Cy6qsBSCaYvS41aa5j3iBvZ0DgGzwhgr-pds9tQ63yMiTRwW0NopLWqm3Wl8cPQSOeMzCfPs6dp0jZWSAzL8m0CVYYyWQF1tbCMS2YZKDVXlqWgVuk9l8YWBZK9gbYzm6ZeO-1TJzJljVaKnZNB3dTuglCWCqOKvBhnwnPwB5CrtBkXIEum3rkhSTrNlqvIn1F2wLL3MlqiREuU0RJD8ojq_34X2a_DAPhE2fpE-ZdPDEneGa9sC4lYIICo6tflL_9j-SuyDyJ5xHZfk8F2vXM3ULps9W3w0i-mFPDD
  priority: 102
  providerName: Directory of Open Access Journals
Title Tensile failure mechanisms investigation of mesophase pitch-based carbon fibers based on continuous defective graphene nanoribbon model
URI https://dx.doi.org/10.1016/j.matdes.2023.112627
https://doaj.org/article/3d59a56b08c341f9bfa4fd9ebe185c8e
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T-wwELZgaaBAnOKWC9po2dhOnBIQaAFBA0h0kU_kp0ey2uM3vL_9ZuwEloaC0k58yDOaGVvffEPIOVyqzAX4gaxivIyvVZnmgmXM88IL50wZ6Zoen4rxK79_E28r5LrPhUFYZWf7k02P1rrrGXanOZyEMHyG2wNHenIIokdILLdK1nLw9nJA1i7vHsZPn_cuZHBJTy1I0VeKPoMuwrwgLrQOebtzFtNpsLzMkoeKRP5LjmrJ-dxukc0uaqSXaWPbZMU1O2RjiUtwl_x7QSj6X0e9Cgg1px8Ok3rD7GNGwxeZRtvQ1sM3rF4ADoxOAogtQ19mqVFTDd89gkhmNPVBG9HsoVm0ixm1zicDSSPRNdhJ2qimnQaNA2NVnT3yenvzcj3OuioLmWFFOc8g5FCmkBBkC8t4xSzzipfKshzkW3nPK2OlROY37VVh89xrp33uRKGs0UqxfTJo2sYdEMpyYZQs5agQnoNywLxKm5GEuarcO3dIsv5k60ki06h7lNmfOkmiRknUSRKH5AqP__NfpMKOHe30ve50oWZWVEoU-kIa8Mi-gl1ybyvYPKigkbBo2Quv_qZZMFX4cfmjX488JuvQ4gndfUIG8-nCnULwMtdnnXKexcv_fxln8rU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxEC2FyQE4IFaRsPnAtTWZtt3LMUREE5LMhYmUm-UVGZHu0SzfwG-nyu4Ow4UDx7bbi1ylqrL16hXAZ7xU2RP0A0XLRZ1eqwojJC94EFWQ3ts60TVdL6r5jfh2K28P4GzMhSFY5WD7s01P1npomQ6nOV3FOP2OtwdB9OQYRM-IWO4RHAoqaj2Bw9OLy_ni4d5FDC75qYUo-mo5ZtAlmBfGhc4Tb3fJUzoNlZfZ81CJyH_PUe05n_Pn8GyIGtlp3tgLOPDdS3i6xyX4Cn4vCYr-y7OgI0HN2Z2npN64uduw-IdMo-9YH7CPqhegA2OriGIryJc5ZvXaYH8gEMmG5Tb8JjR77Hb9bsOcD9lAskR0jXaSdbrr19HQwFRV5zXcnH9dns2LocpCYXlVbwsMObStGgyypeOi5Y4HLWrteInybUMQrXVNQ8xvJujKlWUw3oTSy0o7a7Tmb2DS9Z1_C4yX0uqmbmaVDAKVA-fVxs4anKstg_dHUIwnq1aZTEONKLOfKktCkSRUlsQRfKHjf_iXqLBTQ7_-oQZdUNzJVsvKnDQWPXJocZciuBY3jypoG1y0HoWn_tIsnCr-c_nj_x75CR7Pl9dX6upicfkOnmCPyEjv9zDZrnf-AwYyW_NxUNR70bT0pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensile+failure+mechanisms+investigation+of+mesophase+pitch-based+carbon+fibers+based+on+continuous+defective+graphene+nanoribbon+model&rft.jtitle=Materials+%26+design&rft.au=Wang%2C+Xinjie&rft.au=Pan%2C+Shidong&rft.au=Wang%2C+Xinzhu&rft.au=Zhou%2C+Zhengong&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.volume=238&rft_id=info:doi/10.1016%2Fj.matdes.2023.112627&rft.externalDocID=S0264127523010432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon