Tensile failure mechanisms investigation of mesophase pitch-based carbon fibers based on continuous defective graphene nanoribbon model
[Display omitted] •The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse strengths of interactions among adjacent graphene nanoribbons lead to the emergence of distinct failure modes.•Active graphene edges strengthen...
Saved in:
Published in | Materials & design Vol. 238; p. 112627 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0264-1275 |
DOI | 10.1016/j.matdes.2023.112627 |
Cover
Abstract | [Display omitted]
•The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse strengths of interactions among adjacent graphene nanoribbons lead to the emergence of distinct failure modes.•Active graphene edges strengthen the defective region, thus modifying load redistribution and improving structure strength.
Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive investigations into the microstructure of MPP-based carbon fibers, the influence of these factors on deformation mechanisms under tension remains unclear. This study employs the continuous defective graphene nanoribbons (dGNR) atomistic structure model for molecular dynamics simulations to explore the tensile failure mechanisms of MPP-based carbon fibers. In the simulation model, the structure of the defective region was generated through high-temperature annealing, and a transition region was introduced to prevent distortion and damage to the active graphene edges. The simulation reveals the evolutionary process of the microstructure of MPP-based carbon fibers under tension and achieves Young’s modulus predictions with greater accuracy than theoretical models. Additionally, the study shows that different strengths of interactions between adjacent graphene nanoribbons can lead to two distinct failure modes. Models with larger crystallite dimensions along the fiber axis and lower average defective concentrations exhibit geometric deformation coordination between adjacent nanoribbons, potentially elucidating the increasing strength trend in MPP-based carbon fibers with rising graphitization levels. Our simulations provide insights into the tensile failure mechanisms of MPP-based carbon fibers, offering valuable guidance for regulating their microstructure to enhance mechanical performance. |
---|---|
AbstractList | [Display omitted]
•The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse strengths of interactions among adjacent graphene nanoribbons lead to the emergence of distinct failure modes.•Active graphene edges strengthen the defective region, thus modifying load redistribution and improving structure strength.
Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive investigations into the microstructure of MPP-based carbon fibers, the influence of these factors on deformation mechanisms under tension remains unclear. This study employs the continuous defective graphene nanoribbons (dGNR) atomistic structure model for molecular dynamics simulations to explore the tensile failure mechanisms of MPP-based carbon fibers. In the simulation model, the structure of the defective region was generated through high-temperature annealing, and a transition region was introduced to prevent distortion and damage to the active graphene edges. The simulation reveals the evolutionary process of the microstructure of MPP-based carbon fibers under tension and achieves Young’s modulus predictions with greater accuracy than theoretical models. Additionally, the study shows that different strengths of interactions between adjacent graphene nanoribbons can lead to two distinct failure modes. Models with larger crystallite dimensions along the fiber axis and lower average defective concentrations exhibit geometric deformation coordination between adjacent nanoribbons, potentially elucidating the increasing strength trend in MPP-based carbon fibers with rising graphitization levels. Our simulations provide insights into the tensile failure mechanisms of MPP-based carbon fibers, offering valuable guidance for regulating their microstructure to enhance mechanical performance. Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive investigations into the microstructure of MPP-based carbon fibers, the influence of these factors on deformation mechanisms under tension remains unclear. This study employs the continuous defective graphene nanoribbons (dGNR) atomistic structure model for molecular dynamics simulations to explore the tensile failure mechanisms of MPP-based carbon fibers. In the simulation model, the structure of the defective region was generated through high-temperature annealing, and a transition region was introduced to prevent distortion and damage to the active graphene edges. The simulation reveals the evolutionary process of the microstructure of MPP-based carbon fibers under tension and achieves Young’s modulus predictions with greater accuracy than theoretical models. Additionally, the study shows that different strengths of interactions between adjacent graphene nanoribbons can lead to two distinct failure modes. Models with larger crystallite dimensions along the fiber axis and lower average defective concentrations exhibit geometric deformation coordination between adjacent nanoribbons, potentially elucidating the increasing strength trend in MPP-based carbon fibers with rising graphitization levels. Our simulations provide insights into the tensile failure mechanisms of MPP-based carbon fibers, offering valuable guidance for regulating their microstructure to enhance mechanical performance. |
ArticleNumber | 112627 |
Author | Pan, Shidong Li, Dan Ju, Anqi Zhou, Zhengong Liang, Weizhong Zhao, Chengwei Wang, Xinzhu Wang, Xinjie |
Author_xml | – sequence: 1 givenname: Xinjie surname: Wang fullname: Wang, Xinjie organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 2 givenname: Shidong orcidid: 0000-0003-4599-8292 surname: Pan fullname: Pan, Shidong email: sd6419866@sina.com organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 3 givenname: Xinzhu surname: Wang fullname: Wang, Xinzhu organization: Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, PR China – sequence: 4 givenname: Zhengong surname: Zhou fullname: Zhou, Zhengong organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 5 givenname: Chengwei surname: Zhao fullname: Zhao, Chengwei organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 6 givenname: Dan orcidid: 0009-0009-5410-0780 surname: Li fullname: Li, Dan organization: Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 7 givenname: Anqi surname: Ju fullname: Ju, Anqi organization: Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, PR China – sequence: 8 givenname: Weizhong surname: Liang fullname: Liang, Weizhong organization: School of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin 150022, PR China |
BookMark | eNp9kc9u3CAQxjmkUpM0b9ADL-CtARvbl0pV1D-RIvWSnNEAw-6sbFiBd6U-QV-7bB312BPDN_p-A_PdsZuYIjL2UbQ70Qr96bhbYPVYdrKVaieE1HK4Ybet1F0j5NC_Z3elHNtWykF1t-z3C8ZCM_IANJ8z8gXdASKVpXCKFywr7WGlFHkKtVfS6QAF-YlWd2hsLT13kG3tB7KYC9-0encprhTP6Vy4x4BupQvyfYbTASPyCDFlslfjkjzOH9i7AHPBh7fznr1--_ry-KN5_vn96fHLc-OUHtZGawVOj4Oceq-6SXkVoBvAK4kWpxC6yflxFFIoG0B7KYNFGyT2GryzAOqePW1cn-BoTpkWyL9MAjJ_hZT3BvJKbkajfD9Br207OtWJMFViF_xUB4mxdyNWVrexXE6lZAz_eKI11zDM0WxhmGsYZguj2j5vNqz_vBBmUxxhdOgp1zXVh9D_AX8AT5ad8g |
Cites_doi | 10.5012/bkcs.2009.30.10.2253 10.1016/S1872-5805(08)60039-6 10.1016/j.jmrt.2020.05.037 10.1016/j.carbon.2014.12.067 10.1063/1.448118 10.1016/j.carbon.2019.06.014 10.1016/j.compositesb.2018.09.108 10.1103/PhysRevB.85.195447 10.1016/j.ceramint.2016.04.055 10.1016/j.carbon.2019.06.091 10.1016/j.carbon.2011.08.040 10.1016/j.polymdegradstab.2016.12.005 10.1016/0008-6223(95)00138-7 10.1016/S0008-6223(02)00359-7 10.1038/s41524-020-00390-8 10.1016/j.carbon.2022.10.092 10.1103/PhysRevLett.62.555 10.1063/1.481208 10.1016/j.carbon.2015.09.019 10.1016/S0008-6223(03)00391-9 10.1016/j.carbon.2020.01.062 10.1007/s10853-021-06221-5 10.1016/j.eml.2020.100699 10.1016/S0008-6223(03)00400-7 10.1016/0008-6223(95)00172-7 10.1177/0021998320918353 10.1016/S0008-6223(97)00185-1 10.1038/215384a0 10.1021/jp709896w 10.1016/j.carbon.2021.09.038 10.1016/j.carbon.2015.08.057 10.1016/j.carbon.2020.11.011 10.1016/S1872-5805(21)60050-1 10.1016/j.commatsci.2021.110477 10.1103/PhysRevB.79.195429 10.1016/j.compositesa.2016.10.018 10.1016/j.micromeso.2021.111201 10.1103/PhysRevLett.71.1184 10.2115/fiber.70.P-151 10.1007/BF01129955 10.1002/app.36486 10.1002/anie.201306129 10.1016/j.carbon.2014.07.068 10.1107/S002188989400227X 10.1016/j.carbon.2011.10.029 10.1002/app.52734 10.3390/ma2042369 10.1016/S1872-5805(19)60002-8 10.1088/0022-3727/20/3/007 10.1016/j.carbon.2016.11.024 10.1016/S1359-835X(00)00175-5 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2023.112627 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_3d59a56b08c341f9bfa4fd9ebe185c8e 10_1016_j_matdes_2023_112627 S0264127523010432 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABMAC ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADVLN AEBSH AEKER AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG |
ID | FETCH-LOGICAL-c367t-663ac687295d3493d3fa47ad32ebe9ff49cd881213bfa6d22fbebf2e56adcbaa3 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:26:53 EDT 2025 Fri Sep 19 05:05:57 EDT 2025 Sat Nov 16 15:59:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Failure mechanism Molecular dynamics Atomistic model Carbon fiber |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-663ac687295d3493d3fa47ad32ebe9ff49cd881213bfa6d22fbebf2e56adcbaa3 |
ORCID | 0000-0003-4599-8292 0009-0009-5410-0780 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127523010432 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d59a56b08c341f9bfa4fd9ebe185c8e crossref_primary_10_1016_j_matdes_2023_112627 elsevier_sciencedirect_doi_10_1016_j_matdes_2023_112627 |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ohno (b0020) 2014; 70 Yun, Kim, Yang, Bang, Kim, Woo (b0015) 2009; 30 Aldosari, Khan, Rahatekar (b0150) 2020; 9 Zhu, Liu, Yu, Zhao, Liu, Xu (b0165) 2012; 50 Yuan, Li, Yi, Dong, Westwood, Li (b0025) 2015; 95 Joshi, Arefev, Zhigilei (b0175) 2019; 152 Musiol, Szatkowski, Gubernat, Weselucha-Birczynska, Blazewicz (b0125) 2016; 42 Huson (b0030) 2017 Zhang, Andersson, Rader, Mullen (b0070) 2015; 95 Kotakoski, Meyer (b0245) 2012; 85 Shi J-l, Ma C. Preparation and characterization of spinnable mesophase pitches: A review. Carbon. 2019;153. Xiao, Gong, Li, Li (b0115) 2021; 323 Shi, Sessim, Tonks, Phillpot (b0275) 2021; 185 Berendsen, Postma, Vangunsteren, Dinola, Haak (b0215) 1984; 81 Takaku, Shioya (b0085) 1990; 25 Wen, Tadmor (b0265) 2020; 6 Fan, Cao, Yang, Zhu, Feng (b0135) 2019; 34 Cervenka, Flipse (b0240) 2009; 79 Galli, Martin, Car, Parrinello (b0220) 1989; 62 Johnson, Watt (b0205) 1967; 215 Penev, Artyukhov, Yakobson (b0170) 2015; 85 Heo, Park, Kang, Rhee, Park (b0035) 2019; 159 Gallego, Edie (b0045) 2001; 32 O'Connor, Andzelm, Robbins (b0255) 2015; 142 He, Arefev, Joshi, Zhigilei (b0190) 2023; 202 Sharma, Patel (b0010) 2020 Edie (b0040) 1998; 36 He, Joshi, Zhigilei (b0185) 2021; 56 Lee, Lee, Roh (b0100) 2021 Emmerich (b0195) 2014; 79 Kobayashi, Sumiya, Fujii, Fujie, Takahagi, Tashiro (b0050) 2012; 50 Huang (b0005) 2009; 2 Newcomb (b0155) 2016; 91 Frank, Steudle, Ingildeev, Sporl, Buchmeiser (b0055) 2014; 53 Yu, Xu, Wang, Hu, Zhu, Qiao (b0130) 2012; 125 Yoshikawa, Fukuyama, Nakahara, Konishi, Ichikuni, Yoshikawa (b0145) 2003; 41 Mochida, Yoon, Takano, Fortin, Korai, Yokogawa (b0200) 1996; 34 Wazir, Kakakhel (b0095) 2009; 24 Ranganathan, Rokkam, Desai, Keblinski (b0230) 2017; 113 Zhong, Gao, Li (b0270) 2020; 37 Ye, Wu, Zhu, Fan, Huang, Han (b0105) 2021; 36 Regis, Bellare, Pascolini, Bracco (b0110) 2017; 136 Yoon, Korai, Mochida, Yokogawa, Fukuyama, Yoshimura (b0235) 1996; 34 Stuart, Tutein, Harrison (b0250) 2000; 112 Zhang, Liu, Wu (b0060) 2003; 41 Xie, Li, Fu, Chen, Wang, Qin (b0280) 2022; 139 Tadokoro H, Tsuji N, Shibata H, Furuyama M, Arai Y, Doken Y, et al. High performance pitch-based carbon fiber. Materials and Process Challenges: Aging Systems, Affordability, Alternative Applications, Books 1 and 2. 1996;41:1134-8. Loidl, Peterlik, Muller, Riekel, Paris (b0210) 2003; 41 Chen, Metz, Mennito, Merchant, Smith, Siskin (b0080) 2020; 161 Shi, Sessim, Tonks, Phillpot (b0180) 2021; 173 Wang, Ho (b0225) 1993; 71 Chenoweth, van Duin, Goddard (b0260) 2008; 112 Isbill, Shields, Mattei-Lopez, Kapsimalis, Niedziela (b0160) 2021; 195 Johnson (b0140) 1987; 20 Gupta, Harrison, Lahijani (b0090) 1994; 27 Cao, Zhao, Gao (b0120) 2018 Chen (10.1016/j.matdes.2023.112627_b0080) 2020; 161 Aldosari (10.1016/j.matdes.2023.112627_b0150) 2020; 9 He (10.1016/j.matdes.2023.112627_b0190) 2023; 202 Yu (10.1016/j.matdes.2023.112627_b0130) 2012; 125 Berendsen (10.1016/j.matdes.2023.112627_b0215) 1984; 81 Regis (10.1016/j.matdes.2023.112627_b0110) 2017; 136 Takaku (10.1016/j.matdes.2023.112627_b0085) 1990; 25 Heo (10.1016/j.matdes.2023.112627_b0035) 2019; 159 Galli (10.1016/j.matdes.2023.112627_b0220) 1989; 62 Zhong (10.1016/j.matdes.2023.112627_b0270) 2020; 37 Yoshikawa (10.1016/j.matdes.2023.112627_b0145) 2003; 41 Zhang (10.1016/j.matdes.2023.112627_b0060) 2003; 41 Penev (10.1016/j.matdes.2023.112627_b0170) 2015; 85 Joshi (10.1016/j.matdes.2023.112627_b0175) 2019; 152 Yun (10.1016/j.matdes.2023.112627_b0015) 2009; 30 O'Connor (10.1016/j.matdes.2023.112627_b0255) 2015; 142 Sharma (10.1016/j.matdes.2023.112627_b0010) 2020 Ohno (10.1016/j.matdes.2023.112627_b0020) 2014; 70 Fan (10.1016/j.matdes.2023.112627_b0135) 2019; 34 Ranganathan (10.1016/j.matdes.2023.112627_b0230) 2017; 113 Frank (10.1016/j.matdes.2023.112627_b0055) 2014; 53 Yuan (10.1016/j.matdes.2023.112627_b0025) 2015; 95 Huang (10.1016/j.matdes.2023.112627_b0005) 2009; 2 Edie (10.1016/j.matdes.2023.112627_b0040) 1998; 36 Loidl (10.1016/j.matdes.2023.112627_b0210) 2003; 41 Mochida (10.1016/j.matdes.2023.112627_b0200) 1996; 34 Emmerich (10.1016/j.matdes.2023.112627_b0195) 2014; 79 Kobayashi (10.1016/j.matdes.2023.112627_b0050) 2012; 50 Isbill (10.1016/j.matdes.2023.112627_b0160) 2021; 195 Gallego (10.1016/j.matdes.2023.112627_b0045) 2001; 32 Wang (10.1016/j.matdes.2023.112627_b0225) 1993; 71 Zhu (10.1016/j.matdes.2023.112627_b0165) 2012; 50 10.1016/j.matdes.2023.112627_b0075 Wen (10.1016/j.matdes.2023.112627_b0265) 2020; 6 Cervenka (10.1016/j.matdes.2023.112627_b0240) 2009; 79 Kotakoski (10.1016/j.matdes.2023.112627_b0245) 2012; 85 Gupta (10.1016/j.matdes.2023.112627_b0090) 1994; 27 Johnson (10.1016/j.matdes.2023.112627_b0140) 1987; 20 Newcomb (10.1016/j.matdes.2023.112627_b0155) 2016; 91 Xiao (10.1016/j.matdes.2023.112627_b0115) 2021; 323 Chenoweth (10.1016/j.matdes.2023.112627_b0260) 2008; 112 Wazir (10.1016/j.matdes.2023.112627_b0095) 2009; 24 Cao (10.1016/j.matdes.2023.112627_b0120) 2018 10.1016/j.matdes.2023.112627_b0065 Xie (10.1016/j.matdes.2023.112627_b0280) 2022; 139 Shi (10.1016/j.matdes.2023.112627_b0275) 2021; 185 Musiol (10.1016/j.matdes.2023.112627_b0125) 2016; 42 Lee (10.1016/j.matdes.2023.112627_b0100) 2021 Yoon (10.1016/j.matdes.2023.112627_b0235) 1996; 34 Shi (10.1016/j.matdes.2023.112627_b0180) 2021; 173 Huson (10.1016/j.matdes.2023.112627_b0030) 2017 Stuart (10.1016/j.matdes.2023.112627_b0250) 2000; 112 Zhang (10.1016/j.matdes.2023.112627_b0070) 2015; 95 Johnson (10.1016/j.matdes.2023.112627_b0205) 1967; 215 Ye (10.1016/j.matdes.2023.112627_b0105) 2021; 36 He (10.1016/j.matdes.2023.112627_b0185) 2021; 56 |
References_xml | – volume: 27 start-page: 627 year: 1994 end-page: 636 ident: b0090 article-title: Small-angle X-ray-scattering in carbon-fibers publication-title: J. Appl. Cryst. – volume: 323 year: 2021 ident: b0115 article-title: In-situ SAXS study on pore structure change of PAN-based carbon fiber during graphitization publication-title: Microporous Mesoporous Mater. – volume: 139 year: 2022 ident: b0280 article-title: Spherical boron nitride/pitch-based carbon fiber/silicone rubber composites for high thermal conductivity and excellent electromagnetic interference shielding performance publication-title: J. Appl. Polym. Sci. – volume: 71 start-page: 1184 year: 1993 end-page: 1187 ident: b0225 article-title: Structure, dynamics, and electronic-properties of diamond-like amorphous-carbon publication-title: Phys. Rev. Lett. – volume: 20 start-page: 286 year: 1987 end-page: 291 ident: b0140 article-title: Structure property relationships in carbon-fibers publication-title: J. Phys. D-Appl. Phys. – volume: 30 start-page: 2253 year: 2009 end-page: 2258 ident: b0015 article-title: Process optimization for preparing high performance PAN-based carbon fibers publication-title: Bull. Kor. Chem. Soc. – volume: 79 year: 2009 ident: b0240 article-title: Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects publication-title: Phys. Rev. B – volume: 70 start-page: 151 year: 2014 end-page: 155 ident: b0020 article-title: High performance pitch based carbon fiber and its applications publication-title: Sen-I Gakkaishi. – volume: 41 start-page: 563 year: 2003 end-page: 570 ident: b0210 article-title: Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction publication-title: Carbon – volume: 2 start-page: 2369 year: 2009 end-page: 2403 ident: b0005 article-title: Fabrication and properties of carbon fibers publication-title: Materials. – volume: 50 start-page: 235 year: 2012 end-page: 243 ident: b0165 article-title: A small-angle X-ray scattering study and molecular dynamics simulation of microvoid evolution during the tensile deformation of carbon fibers publication-title: Carbon – volume: 34 start-page: 941 year: 1996 end-page: 956 ident: b0200 article-title: Microstructure of mesophase pitch-based carbon fiber and its control publication-title: Carbon – volume: 142 year: 2015 ident: b0255 article-title: A reactive model for hydrocarbons at extreme pressures publication-title: J. Chem. Phys. – volume: 32 start-page: 1031 year: 2001 end-page: 1038 ident: b0045 article-title: Structure-property relationships for high thermal conductivity carbon fibers publication-title: Composites Part a-Applied Science and Manufacturing. – volume: 202 start-page: 528 year: 2023 end-page: 546 ident: b0190 article-title: Atomistic modeling of tensile deformation and fracture of carbon fibers: nanoscale stress redistribution, effect of local structural characteristics and nanovoids publication-title: Carbon – volume: 152 start-page: 396 year: 2019 end-page: 408 ident: b0175 article-title: Generation and characterization of carbon fiber microstructures by atomistic simulations publication-title: Carbon – volume: 173 start-page: 232 year: 2021 end-page: 244 ident: b0180 article-title: Generation and characterization of an improved carbon fiber model by molecular dynamics publication-title: Carbon – volume: 161 start-page: 456 year: 2020 end-page: 465 ident: b0080 article-title: Petroleum pitch: Exploring a 50-year structure puzzle with real-space molecular imaging publication-title: Carbon – volume: 85 start-page: 72 year: 2015 end-page: 78 ident: b0170 article-title: Basic structural units in carbon fibers: Atomistic models and tensile behavior publication-title: Carbon – volume: 53 start-page: 5262 year: 2014 end-page: 5298 ident: b0055 article-title: Carbon fibers: precursor systems, processing, structure, and properties publication-title: Angewandte Chemie-International Edition – volume: 56 start-page: 14598 year: 2021 end-page: 14610 ident: b0185 article-title: Computational study of the effect of core-skin structure on the mechanical properties of carbon nanofibers publication-title: J. Mater. Sci. – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: b0215 article-title: Molecular-dynamics with coupling to an external bath publication-title: J. Chem. Phys. – reference: Shi J-l, Ma C. Preparation and characterization of spinnable mesophase pitches: A review. Carbon. 2019;153. – year: 2020 ident: b0010 article-title: Novel carbon foam composites reinforced with carbon fiber felt developed from inexpensive pitch precursor matrix publication-title: J. Compos. Mater. – start-page: 11 year: 2018 ident: b0120 article-title: Properties and structure of in situ transformed PAN-based carbon fibers publication-title: Materials. – volume: 9 start-page: 7786 year: 2020 end-page: 7806 ident: b0150 article-title: Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review publication-title: J. Mater. Res. Technol. – volume: 195 year: 2021 ident: b0160 article-title: Reviewing computational studies of defect formation and behaviors in carbon fiber structural units publication-title: Comput. Mater. Sci – volume: 34 start-page: 38 year: 2019 end-page: 43 ident: b0135 article-title: The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature publication-title: New Carbon Mater. – volume: 79 start-page: 274 year: 2014 end-page: 293 ident: b0195 article-title: Young's modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers publication-title: Carbon – volume: 85 year: 2012 ident: b0245 article-title: Mechanical properties of polycrystalline graphene based on a realistic atomistic model publication-title: Phys. Rev. B – volume: 34 start-page: 83 year: 1996 end-page: 88 ident: b0235 article-title: Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch publication-title: Carbon – volume: 6 year: 2020 ident: b0265 article-title: Uncertainty quantification in molecular simulations with dropout neural network potentials publication-title: npj Comput. Mater. – volume: 50 start-page: 1163 year: 2012 end-page: 1169 ident: b0050 article-title: Stress-induced microstructural changes and crystallite modulus of carbon fiber as measured by X-ray scattering publication-title: Carbon – volume: 112 start-page: 6472 year: 2000 end-page: 6486 ident: b0250 article-title: A reactive potential for hydrocarbons with intermolecular interactions publication-title: J. Chem. Phys. – volume: 136 start-page: 121 year: 2017 end-page: 130 ident: b0110 article-title: Characterization of thermally annealed PEEK and CFR-PEEK composites: structure-properties relationships publication-title: Polym. Degrad. Stab. – volume: 159 start-page: 362 year: 2019 end-page: 368 ident: b0035 article-title: Preparation and characterization of carbon black/pitch-based carbon fiber paper composites for gas diffusion layers publication-title: Composites Part B-Engineering. – volume: 24 start-page: 83 year: 2009 end-page: 88 ident: b0095 article-title: Preparation and characterization of pitch-based carbon fibers publication-title: New Carbon Mater. – volume: 62 start-page: 555 year: 1989 end-page: 558 ident: b0220 article-title: Structural and electronic-properties of amorphous-carbon publication-title: Phys. Rev. Lett. – reference: Tadokoro H, Tsuji N, Shibata H, Furuyama M, Arai Y, Doken Y, et al. High performance pitch-based carbon fiber. Materials and Process Challenges: Aging Systems, Affordability, Alternative Applications, Books 1 and 2. 1996;41:1134-8. – start-page: 14 year: 2021 ident: b0100 article-title: Microstructure of milled polyacrylonitrile-based carbon fiber analyzed by micro-Raman spectroscopy and TEM publication-title: Materials. – volume: 113 start-page: 87 year: 2017 end-page: 99 ident: b0230 article-title: Generation of amorphous carbon models using liquid quench method: a reactive molecular dynamics study publication-title: Carbon – volume: 37 year: 2020 ident: b0270 article-title: Atomistic simulations of the tensile behavior of graphene fibers publication-title: Extreme Mech. Lett. – volume: 41 start-page: 2805 year: 2003 end-page: 2812 ident: b0060 article-title: Evolution of structure and properties of PAN precursors during their conversion to carbon fibers publication-title: Carbon – volume: 91 start-page: 262 year: 2016 end-page: 282 ident: b0155 article-title: Processing, structure, and properties of carbon fibers publication-title: Composites Part a-Applied Science and Manufacturing. – volume: 112 start-page: 1040 year: 2008 end-page: 1053 ident: b0260 article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation publication-title: J. Phys. Chem. A – volume: 215 start-page: 384 year: 1967 end-page: 386 ident: b0205 article-title: Structure of high modulus carbon fibres publication-title: Nature – volume: 41 start-page: 2931 year: 2003 end-page: 2938 ident: b0145 article-title: X-ray absorption fine structure study on residue bromine in carbons with different degrees of graphitization publication-title: Carbon – volume: 42 start-page: 11603 year: 2016 end-page: 11610 ident: b0125 article-title: Comparative study of the structure and microstructure of PAN-based nano- and micro-carbon fibers publication-title: Ceram. Int. – volume: 125 start-page: 3159 year: 2012 end-page: 3166 ident: b0130 article-title: Heredity and difference of multiple-scale microstructures in PAN-based carbon fibers and their precursor fibers publication-title: J. Appl. Polym. Sci. – volume: 25 start-page: 4873 year: 1990 end-page: 4879 ident: b0085 article-title: X-Ray Measurements and the structure of polyacrylonitrile- and pitch-based carbon-fibers publication-title: J. Mater. Sci. – volume: 185 start-page: 449 year: 2021 end-page: 463 ident: b0275 article-title: High-temperature oxidation of carbon fiber and char by molecular dynamics simulation publication-title: Carbon – volume: 95 start-page: 1007 year: 2015 end-page: 1019 ident: b0025 article-title: Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity publication-title: Carbon – volume: 36 start-page: 345 year: 1998 end-page: 362 ident: b0040 article-title: The effect of processing on the structure and properties of carbon fibers publication-title: Carbon – volume: 95 start-page: 672 year: 2015 end-page: 680 ident: b0070 article-title: Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation publication-title: Carbon – start-page: 31 year: 2017 end-page: 78 ident: b0030 article-title: High-performance pitch-based carbon fibers. Structure and Properties of High-Performance Fibers – volume: 36 start-page: 980 year: 2021 end-page: 985 ident: b0105 article-title: Microstructure of high thermal conductivity mesophase pitch-based carbon fibers publication-title: New Carbon Mater. – volume: 30 start-page: 2253 year: 2009 ident: 10.1016/j.matdes.2023.112627_b0015 article-title: Process optimization for preparing high performance PAN-based carbon fibers publication-title: Bull. Kor. Chem. Soc. doi: 10.5012/bkcs.2009.30.10.2253 – volume: 24 start-page: 83 year: 2009 ident: 10.1016/j.matdes.2023.112627_b0095 article-title: Preparation and characterization of pitch-based carbon fibers publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(08)60039-6 – volume: 9 start-page: 7786 year: 2020 ident: 10.1016/j.matdes.2023.112627_b0150 article-title: Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.05.037 – volume: 85 start-page: 72 year: 2015 ident: 10.1016/j.matdes.2023.112627_b0170 article-title: Basic structural units in carbon fibers: Atomistic models and tensile behavior publication-title: Carbon doi: 10.1016/j.carbon.2014.12.067 – volume: 81 start-page: 3684 year: 1984 ident: 10.1016/j.matdes.2023.112627_b0215 article-title: Molecular-dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 152 start-page: 396 year: 2019 ident: 10.1016/j.matdes.2023.112627_b0175 article-title: Generation and characterization of carbon fiber microstructures by atomistic simulations publication-title: Carbon doi: 10.1016/j.carbon.2019.06.014 – volume: 159 start-page: 362 year: 2019 ident: 10.1016/j.matdes.2023.112627_b0035 article-title: Preparation and characterization of carbon black/pitch-based carbon fiber paper composites for gas diffusion layers publication-title: Composites Part B-Engineering. doi: 10.1016/j.compositesb.2018.09.108 – volume: 85 year: 2012 ident: 10.1016/j.matdes.2023.112627_b0245 article-title: Mechanical properties of polycrystalline graphene based on a realistic atomistic model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.195447 – volume: 42 start-page: 11603 year: 2016 ident: 10.1016/j.matdes.2023.112627_b0125 article-title: Comparative study of the structure and microstructure of PAN-based nano- and micro-carbon fibers publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.04.055 – ident: 10.1016/j.matdes.2023.112627_b0075 doi: 10.1016/j.carbon.2019.06.091 – volume: 50 start-page: 235 year: 2012 ident: 10.1016/j.matdes.2023.112627_b0165 article-title: A small-angle X-ray scattering study and molecular dynamics simulation of microvoid evolution during the tensile deformation of carbon fibers publication-title: Carbon doi: 10.1016/j.carbon.2011.08.040 – volume: 136 start-page: 121 year: 2017 ident: 10.1016/j.matdes.2023.112627_b0110 article-title: Characterization of thermally annealed PEEK and CFR-PEEK composites: structure-properties relationships publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2016.12.005 – volume: 34 start-page: 83 year: 1996 ident: 10.1016/j.matdes.2023.112627_b0235 article-title: Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch publication-title: Carbon doi: 10.1016/0008-6223(95)00138-7 – volume: 41 start-page: 563 year: 2003 ident: 10.1016/j.matdes.2023.112627_b0210 article-title: Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction publication-title: Carbon doi: 10.1016/S0008-6223(02)00359-7 – volume: 6 year: 2020 ident: 10.1016/j.matdes.2023.112627_b0265 article-title: Uncertainty quantification in molecular simulations with dropout neural network potentials publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00390-8 – volume: 202 start-page: 528 year: 2023 ident: 10.1016/j.matdes.2023.112627_b0190 article-title: Atomistic modeling of tensile deformation and fracture of carbon fibers: nanoscale stress redistribution, effect of local structural characteristics and nanovoids publication-title: Carbon doi: 10.1016/j.carbon.2022.10.092 – volume: 62 start-page: 555 year: 1989 ident: 10.1016/j.matdes.2023.112627_b0220 article-title: Structural and electronic-properties of amorphous-carbon publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.555 – volume: 112 start-page: 6472 year: 2000 ident: 10.1016/j.matdes.2023.112627_b0250 article-title: A reactive potential for hydrocarbons with intermolecular interactions publication-title: J. Chem. Phys. doi: 10.1063/1.481208 – volume: 95 start-page: 1007 year: 2015 ident: 10.1016/j.matdes.2023.112627_b0025 article-title: Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity publication-title: Carbon doi: 10.1016/j.carbon.2015.09.019 – volume: 41 start-page: 2805 year: 2003 ident: 10.1016/j.matdes.2023.112627_b0060 article-title: Evolution of structure and properties of PAN precursors during their conversion to carbon fibers publication-title: Carbon doi: 10.1016/S0008-6223(03)00391-9 – volume: 161 start-page: 456 year: 2020 ident: 10.1016/j.matdes.2023.112627_b0080 article-title: Petroleum pitch: Exploring a 50-year structure puzzle with real-space molecular imaging publication-title: Carbon doi: 10.1016/j.carbon.2020.01.062 – volume: 56 start-page: 14598 year: 2021 ident: 10.1016/j.matdes.2023.112627_b0185 article-title: Computational study of the effect of core-skin structure on the mechanical properties of carbon nanofibers publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06221-5 – volume: 37 year: 2020 ident: 10.1016/j.matdes.2023.112627_b0270 article-title: Atomistic simulations of the tensile behavior of graphene fibers publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2020.100699 – volume: 41 start-page: 2931 year: 2003 ident: 10.1016/j.matdes.2023.112627_b0145 article-title: X-ray absorption fine structure study on residue bromine in carbons with different degrees of graphitization publication-title: Carbon doi: 10.1016/S0008-6223(03)00400-7 – volume: 142 year: 2015 ident: 10.1016/j.matdes.2023.112627_b0255 article-title: A reactive model for hydrocarbons at extreme pressures publication-title: J. Chem. Phys. – volume: 34 start-page: 941 year: 1996 ident: 10.1016/j.matdes.2023.112627_b0200 article-title: Microstructure of mesophase pitch-based carbon fiber and its control publication-title: Carbon doi: 10.1016/0008-6223(95)00172-7 – start-page: 31 year: 2017 ident: 10.1016/j.matdes.2023.112627_b0030 – year: 2020 ident: 10.1016/j.matdes.2023.112627_b0010 article-title: Novel carbon foam composites reinforced with carbon fiber felt developed from inexpensive pitch precursor matrix publication-title: J. Compos. Mater. doi: 10.1177/0021998320918353 – volume: 36 start-page: 345 year: 1998 ident: 10.1016/j.matdes.2023.112627_b0040 article-title: The effect of processing on the structure and properties of carbon fibers publication-title: Carbon doi: 10.1016/S0008-6223(97)00185-1 – volume: 215 start-page: 384 year: 1967 ident: 10.1016/j.matdes.2023.112627_b0205 article-title: Structure of high modulus carbon fibres publication-title: Nature doi: 10.1038/215384a0 – volume: 112 start-page: 1040 year: 2008 ident: 10.1016/j.matdes.2023.112627_b0260 article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation publication-title: J. Phys. Chem. A doi: 10.1021/jp709896w – volume: 185 start-page: 449 year: 2021 ident: 10.1016/j.matdes.2023.112627_b0275 article-title: High-temperature oxidation of carbon fiber and char by molecular dynamics simulation publication-title: Carbon doi: 10.1016/j.carbon.2021.09.038 – volume: 95 start-page: 672 year: 2015 ident: 10.1016/j.matdes.2023.112627_b0070 article-title: Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation publication-title: Carbon doi: 10.1016/j.carbon.2015.08.057 – volume: 173 start-page: 232 year: 2021 ident: 10.1016/j.matdes.2023.112627_b0180 article-title: Generation and characterization of an improved carbon fiber model by molecular dynamics publication-title: Carbon doi: 10.1016/j.carbon.2020.11.011 – volume: 36 start-page: 980 year: 2021 ident: 10.1016/j.matdes.2023.112627_b0105 article-title: Microstructure of high thermal conductivity mesophase pitch-based carbon fibers publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(21)60050-1 – volume: 195 year: 2021 ident: 10.1016/j.matdes.2023.112627_b0160 article-title: Reviewing computational studies of defect formation and behaviors in carbon fiber structural units publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2021.110477 – volume: 79 year: 2009 ident: 10.1016/j.matdes.2023.112627_b0240 article-title: Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.195429 – ident: 10.1016/j.matdes.2023.112627_b0065 – start-page: 14 year: 2021 ident: 10.1016/j.matdes.2023.112627_b0100 article-title: Microstructure of milled polyacrylonitrile-based carbon fiber analyzed by micro-Raman spectroscopy and TEM publication-title: Materials. – volume: 91 start-page: 262 year: 2016 ident: 10.1016/j.matdes.2023.112627_b0155 article-title: Processing, structure, and properties of carbon fibers publication-title: Composites Part a-Applied Science and Manufacturing. doi: 10.1016/j.compositesa.2016.10.018 – volume: 323 year: 2021 ident: 10.1016/j.matdes.2023.112627_b0115 article-title: In-situ SAXS study on pore structure change of PAN-based carbon fiber during graphitization publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111201 – volume: 71 start-page: 1184 year: 1993 ident: 10.1016/j.matdes.2023.112627_b0225 article-title: Structure, dynamics, and electronic-properties of diamond-like amorphous-carbon publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1184 – volume: 70 start-page: 151 year: 2014 ident: 10.1016/j.matdes.2023.112627_b0020 article-title: High performance pitch based carbon fiber and its applications publication-title: Sen-I Gakkaishi. doi: 10.2115/fiber.70.P-151 – volume: 25 start-page: 4873 year: 1990 ident: 10.1016/j.matdes.2023.112627_b0085 article-title: X-Ray Measurements and the structure of polyacrylonitrile- and pitch-based carbon-fibers publication-title: J. Mater. Sci. doi: 10.1007/BF01129955 – volume: 125 start-page: 3159 year: 2012 ident: 10.1016/j.matdes.2023.112627_b0130 article-title: Heredity and difference of multiple-scale microstructures in PAN-based carbon fibers and their precursor fibers publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.36486 – volume: 53 start-page: 5262 year: 2014 ident: 10.1016/j.matdes.2023.112627_b0055 article-title: Carbon fibers: precursor systems, processing, structure, and properties publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.201306129 – volume: 79 start-page: 274 year: 2014 ident: 10.1016/j.matdes.2023.112627_b0195 article-title: Young's modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers publication-title: Carbon doi: 10.1016/j.carbon.2014.07.068 – volume: 27 start-page: 627 year: 1994 ident: 10.1016/j.matdes.2023.112627_b0090 article-title: Small-angle X-ray-scattering in carbon-fibers publication-title: J. Appl. Cryst. doi: 10.1107/S002188989400227X – volume: 50 start-page: 1163 year: 2012 ident: 10.1016/j.matdes.2023.112627_b0050 article-title: Stress-induced microstructural changes and crystallite modulus of carbon fiber as measured by X-ray scattering publication-title: Carbon doi: 10.1016/j.carbon.2011.10.029 – volume: 139 year: 2022 ident: 10.1016/j.matdes.2023.112627_b0280 article-title: Spherical boron nitride/pitch-based carbon fiber/silicone rubber composites for high thermal conductivity and excellent electromagnetic interference shielding performance publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.52734 – volume: 2 start-page: 2369 year: 2009 ident: 10.1016/j.matdes.2023.112627_b0005 article-title: Fabrication and properties of carbon fibers publication-title: Materials. doi: 10.3390/ma2042369 – volume: 34 start-page: 38 year: 2019 ident: 10.1016/j.matdes.2023.112627_b0135 article-title: The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(19)60002-8 – volume: 20 start-page: 286 year: 1987 ident: 10.1016/j.matdes.2023.112627_b0140 article-title: Structure property relationships in carbon-fibers publication-title: J. Phys. D-Appl. Phys. doi: 10.1088/0022-3727/20/3/007 – volume: 113 start-page: 87 year: 2017 ident: 10.1016/j.matdes.2023.112627_b0230 article-title: Generation of amorphous carbon models using liquid quench method: a reactive molecular dynamics study publication-title: Carbon doi: 10.1016/j.carbon.2016.11.024 – volume: 32 start-page: 1031 year: 2001 ident: 10.1016/j.matdes.2023.112627_b0045 article-title: Structure-property relationships for high thermal conductivity carbon fibers publication-title: Composites Part a-Applied Science and Manufacturing. doi: 10.1016/S1359-835X(00)00175-5 – start-page: 11 year: 2018 ident: 10.1016/j.matdes.2023.112627_b0120 article-title: Properties and structure of in situ transformed PAN-based carbon fibers publication-title: Materials. |
SSID | ssj0022734 |
Score | 2.4216883 |
Snippet | [Display omitted]
•The developed atomistic model achieves Young’s modulus prediction error of under 5% for mesophase pitch-based carbon fibers.•The diverse... Mesophase pitch (MPP)-based carbon fibers exhibit outstanding mechanical properties, notably an exceptionally high Young’s modulus. Despite extensive... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 112627 |
SubjectTerms | Atomistic model Carbon fiber Failure mechanism Molecular dynamics |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAa0cZ2Eo-AqCokmFqpW-SnFESTqo_fwN_mzk4gEyyMsZNzdHe6O1ufvyPkDjZVZgR5IJGM5-G0KtFcsIR5nnnhnMkDXdPrWzad85eFWPRafSEmLNIDR8XdMyukEpkeFQYCrpfaK-6thLVhBVM4jL4jOeo2U-1WC0lb4ukKsvLlors0F5BdUApah1TdKQs3aLCjTC8pBe7-Xm7q5ZvJETlsC0X6EH_wmOy5-oQc9OgDT8nnDNHnH456VSG6nC4d3uOtNssNrX74M5qaNh7msGEB5Cy6qsBSCaYvS41aa5j3iBvZ0DgGzwhgr-pds9tQ63yMiTRwW0NopLWqm3Wl8cPQSOeMzCfPs6dp0jZWSAzL8m0CVYYyWQF1tbCMS2YZKDVXlqWgVuk9l8YWBZK9gbYzm6ZeO-1TJzJljVaKnZNB3dTuglCWCqOKvBhnwnPwB5CrtBkXIEum3rkhSTrNlqvIn1F2wLL3MlqiREuU0RJD8ojq_34X2a_DAPhE2fpE-ZdPDEneGa9sC4lYIICo6tflL_9j-SuyDyJ5xHZfk8F2vXM3ULps9W3w0i-mFPDD priority: 102 providerName: Directory of Open Access Journals |
Title | Tensile failure mechanisms investigation of mesophase pitch-based carbon fibers based on continuous defective graphene nanoribbon model |
URI | https://dx.doi.org/10.1016/j.matdes.2023.112627 https://doaj.org/article/3d59a56b08c341f9bfa4fd9ebe185c8e |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T-wwELZgaaBAnOKWC9po2dhOnBIQaAFBA0h0kU_kp0ey2uM3vL_9ZuwEloaC0k58yDOaGVvffEPIOVyqzAX4gaxivIyvVZnmgmXM88IL50wZ6Zoen4rxK79_E28r5LrPhUFYZWf7k02P1rrrGXanOZyEMHyG2wNHenIIokdILLdK1nLw9nJA1i7vHsZPn_cuZHBJTy1I0VeKPoMuwrwgLrQOebtzFtNpsLzMkoeKRP5LjmrJ-dxukc0uaqSXaWPbZMU1O2RjiUtwl_x7QSj6X0e9Cgg1px8Ok3rD7GNGwxeZRtvQ1sM3rF4ADoxOAogtQ19mqVFTDd89gkhmNPVBG9HsoVm0ixm1zicDSSPRNdhJ2qimnQaNA2NVnT3yenvzcj3OuioLmWFFOc8g5FCmkBBkC8t4xSzzipfKshzkW3nPK2OlROY37VVh89xrp33uRKGs0UqxfTJo2sYdEMpyYZQs5agQnoNywLxKm5GEuarcO3dIsv5k60ki06h7lNmfOkmiRknUSRKH5AqP__NfpMKOHe30ve50oWZWVEoU-kIa8Mi-gl1ybyvYPKigkbBo2Quv_qZZMFX4cfmjX488JuvQ4gndfUIG8-nCnULwMtdnnXKexcv_fxln8rU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxEC2FyQE4IFaRsPnAtTWZtt3LMUREE5LMhYmUm-UVGZHu0SzfwG-nyu4Ow4UDx7bbi1ylqrL16hXAZ7xU2RP0A0XLRZ1eqwojJC94EFWQ3ts60TVdL6r5jfh2K28P4GzMhSFY5WD7s01P1npomQ6nOV3FOP2OtwdB9OQYRM-IWO4RHAoqaj2Bw9OLy_ni4d5FDC75qYUo-mo5ZtAlmBfGhc4Tb3fJUzoNlZfZ81CJyH_PUe05n_Pn8GyIGtlp3tgLOPDdS3i6xyX4Cn4vCYr-y7OgI0HN2Z2npN64uduw-IdMo-9YH7CPqhegA2OriGIryJc5ZvXaYH8gEMmG5Tb8JjR77Hb9bsOcD9lAskR0jXaSdbrr19HQwFRV5zXcnH9dns2LocpCYXlVbwsMObStGgyypeOi5Y4HLWrteInybUMQrXVNQ8xvJujKlWUw3oTSy0o7a7Tmb2DS9Z1_C4yX0uqmbmaVDAKVA-fVxs4anKstg_dHUIwnq1aZTEONKLOfKktCkSRUlsQRfKHjf_iXqLBTQ7_-oQZdUNzJVsvKnDQWPXJocZciuBY3jypoG1y0HoWn_tIsnCr-c_nj_x75CR7Pl9dX6upicfkOnmCPyEjv9zDZrnf-AwYyW_NxUNR70bT0pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensile+failure+mechanisms+investigation+of+mesophase+pitch-based+carbon+fibers+based+on+continuous+defective+graphene+nanoribbon+model&rft.jtitle=Materials+%26+design&rft.au=Wang%2C+Xinjie&rft.au=Pan%2C+Shidong&rft.au=Wang%2C+Xinzhu&rft.au=Zhou%2C+Zhengong&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.volume=238&rft_id=info:doi/10.1016%2Fj.matdes.2023.112627&rft.externalDocID=S0264127523010432 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |