MCFCN: Multi-scale capsule-weighted fusion classification network for lung disease classification based on chest CT scans
Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis of lung lesions by CT scanning. Background: The automatic diagnosis of lung lesions based on chest CT scans plays a crucial role in assisting...
Saved in:
| Published in | Meta-radiology Vol. 2; no. 2; p. 100070 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
KeAi Communications Co., Ltd
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2950-1628 2950-1628 |
| DOI | 10.1016/j.metrad.2024.100070 |
Cover
| Abstract | Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis of lung lesions by CT scanning. Background: The automatic diagnosis of lung lesions based on chest CT scans plays a crucial role in assisting doctors to identify suspicious cases quickly and accurately. However, existing methods struggle to differentiate lesions with similar morphologies, and current feature extraction techniques lack the ability to effectively highlight small-scale targets in a large-scale environment, leading to incomplete extraction of subtle features and ultimately compromising the classification performance. Method: The MCFCN employs a dynamic routing clustering algorithm to emphasize small-scale features, preventing feature loss. Additionally, a scale difference fusion network is utilized to extract precise position scaling parameters by incorporating weighted fusion of information from different scales. Results: MCFCN achieves an accuracy of 99.41% for COVID-19 classification, 93.33% for CAP classification, and 100% for Normal classification, with an overall accuracy of 98.36%. Conclusion: Experimental results on the target dataset demonstrate that MCFCN outperforms state-of-the-art methods. In the future, this model can be further explored and optimized to enhance its application value in clinical practice |
|---|---|
| AbstractList | Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis of lung lesions by CT scanning. Background: The automatic diagnosis of lung lesions based on chest CT scans plays a crucial role in assisting doctors to identify suspicious cases quickly and accurately. However, existing methods struggle to differentiate lesions with similar morphologies, and current feature extraction techniques lack the ability to effectively highlight small-scale targets in a large-scale environment, leading to incomplete extraction of subtle features and ultimately compromising the classification performance. Method: The MCFCN employs a dynamic routing clustering algorithm to emphasize small-scale features, preventing feature loss. Additionally, a scale difference fusion network is utilized to extract precise position scaling parameters by incorporating weighted fusion of information from different scales. Results: MCFCN achieves an accuracy of 99.41% for COVID-19 classification, 93.33% for CAP classification, and 100% for Normal classification, with an overall accuracy of 98.36%. Conclusion: Experimental results on the target dataset demonstrate that MCFCN outperforms state-of-the-art methods. In the future, this model can be further explored and optimized to enhance its application value in clinical practice |
| ArticleNumber | 100070 |
| Author | Liu, Ao Wen, Cuihong Liu, Shaowu |
| Author_xml | – sequence: 1 givenname: Ao surname: Liu fullname: Liu, Ao – sequence: 2 givenname: Shaowu surname: Liu fullname: Liu, Shaowu – sequence: 3 givenname: Cuihong orcidid: 0000-0003-2668-4503 surname: Wen fullname: Wen, Cuihong |
| BookMark | eNqNkc1u2zAQhIkgBZI6foMe-AJySYoSyd4KoWkC5OfinIk1tbTp0pJBSjD89pWjIih66ml3BzvfHOYzue76Dgn5wtmKM15_3a8OOCRoV4IJOUmMKXZFboWpWMFroa__2m_IMuf99FKWTCkpbsn5ublvXr7R5zEOocgOIlIHxzxGLE4YtrsBW-rHHPqOugg5Bx8cDJezw-HUp1_U94nGsdvSNmSEjP_-bSatpRf_DvNAmzWdYrp8Rz55iBmXf-aCvN3_WDcPxdPrz8fm-1PhyloNRQUeudQKFPjaKIdeOC981SqUzEhURiOvHXLt2gqkcUq0CMJDydgGnCkX5HHmtj3s7TGFA6Sz7SHYd6FPWwtpCC6i1bWRU6qphDZSOG00yBpB6qoqFfdqYlUza-yOcD5BjB9AzuylDru3cx32Uoed65h8cva51Oec0P-f7TceoJRS |
| Cites_doi | 10.1007/s00330-021-07715-1 10.1148/radiol.2017162326 10.1109/TMI.2016.2535865 10.1016/j.compbiomed.2021.104744 10.1016/j.bspc.2022.104268 10.1016/j.patcog.2018.07.031 10.1038/s41597-021-00900-3 10.1038/s41592-020-01008-z 10.1109/5.726791 10.1016/j.compbiomed.2022.106338 10.1016/S1473-3099(20)30120-1 10.1016/j.patrec.2021.10.027 10.1038/s41598-021-04667-w 10.1183/23120541.00579-2021 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.metrad.2024.100070 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Journal Directory |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2950-1628 |
| ExternalDocumentID | oai_doaj_org_article_8694c369528942c898a46ea4855371f7 10.1016/j.metrad.2024.100070 10_1016_j_metrad_2024_100070 |
| GroupedDBID | 0R~ AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ CITATION FDB GROUPED_DOAJ M41 M~E ROL ADTOC UNPAY |
| ID | FETCH-LOGICAL-c367t-5afe1487a7af697cef2cf2f5d7e4094e798e16ce18cd5a49c72dea2fa300bac93 |
| IEDL.DBID | DOA |
| ISSN | 2950-1628 |
| IngestDate | Fri Oct 03 12:44:27 EDT 2025 Tue Aug 19 17:15:40 EDT 2025 Tue Jul 01 03:53:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-5afe1487a7af697cef2cf2f5d7e4094e798e16ce18cd5a49c72dea2fa300bac93 |
| ORCID | 0000-0003-2668-4503 |
| OpenAccessLink | https://doaj.org/article/8694c369528942c898a46ea4855371f7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8694c369528942c898a46ea4855371f7 unpaywall_primary_10_1016_j_metrad_2024_100070 crossref_primary_10_1016_j_metrad_2024_100070 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-00 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Meta-radiology |
| PublicationYear | 2024 |
| Publisher | KeAi Communications Co., Ltd |
| Publisher_xml | – name: KeAi Communications Co., Ltd |
| References | Carvalho (10.1016/j.metrad.2024.100070_bib4) 2021; 136 Anthimopoulos (10.1016/j.metrad.2024.100070_bib6) 2016; 35 Donahue (10.1016/j.metrad.2024.100070_bib14) 2014 10.1016/j.metrad.2024.100070_bib20 Subakan (10.1016/j.metrad.2024.100070_bib17) 2021 Hatamizadeh (10.1016/j.metrad.2024.100070_bib7) 2021 Zhao (10.1016/j.metrad.2024.100070_bib1) 2020 Saakyan (10.1016/j.metrad.2024.100070_bib26) 2021 Abdel-Basset (10.1016/j.metrad.2024.100070_bib29) 2021; 152 Isensee (10.1016/j.metrad.2024.100070_bib8) 2021; 18 Shi (10.1016/j.metrad.2024.100070_bib3) 2022 Wen (10.1016/j.metrad.2024.100070_bib30) 2023; 153 Dong (10.1016/j.metrad.2024.100070_bib2) 2020; 20 Vaidyanathan (10.1016/j.metrad.2024.100070_bib27) 2022; 8 Maftouni (10.1016/j.metrad.2024.100070_bib19) 2021 Yosinski (10.1016/j.metrad.2024.100070_bib16) 2014 Afshar (10.1016/j.metrad.2024.100070_bib24) 2021; 8 Xie (10.1016/j.metrad.2024.100070_bib10) 2019; 85 Afshar (10.1016/j.metrad.2024.100070_bib18) 2021; 8 Morozov (10.1016/j.metrad.2024.100070_bib22) 2020 Lakhani (10.1016/j.metrad.2024.100070_bib5) 2017; 284 Shimazaki (10.1016/j.metrad.2024.100070_bib11) 2022; 12 Wang (10.1016/j.metrad.2024.100070_bib28) 2021; 31 Cohen (10.1016/j.metrad.2024.100070_bib21) 2020 Lecun (10.1016/j.metrad.2024.100070_bib13) 1998; 86 Davis (10.1016/j.metrad.2024.100070_bib23) 2006 Gupta (10.1016/j.metrad.2024.100070_bib9) 2023; 80 Long (10.1016/j.metrad.2024.100070_bib15) 2015 Heidarian (10.1016/j.metrad.2024.100070_bib25) 2021 He (10.1016/j.metrad.2024.100070_bib12) 2016 |
| References_xml | – year: 2015 ident: 10.1016/j.metrad.2024.100070_bib15 – start-page: 1748 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib7 article-title: Unetr: Transformers for 3d medical image segmentation – ident: 10.1016/j.metrad.2024.100070_bib20 – volume: 31 start-page: 6096 issue: 8 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib28 article-title: A deep learning algorithm using ct images to screen for corona virus disease (COVID-19) publication-title: Eur Radiol doi: 10.1007/s00330-021-07715-1 – volume: 284 start-page: 574 issue: 2 year: 2017 ident: 10.1016/j.metrad.2024.100070_bib5 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – year: 2020 ident: 10.1016/j.metrad.2024.100070_bib1 – volume: 35 start-page: 1207 issue: 5 year: 2016 ident: 10.1016/j.metrad.2024.100070_bib6 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2016.2535865 – year: 2022 ident: 10.1016/j.metrad.2024.100070_bib3 article-title: Analysis of covid-19 severity from the perspective of coagulation index using evolutionary machine learning with enhanced brain storm optimization (computer and information sciences, impact factor 13.473) publication-title: J King Saud Univ - Comput Inf Sci – volume: 136 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib4 article-title: An approach to the classification of covid-19 based on ct scans using convolutional features and genetic algorithms publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104744 – start-page: 770 year: 2016 ident: 10.1016/j.metrad.2024.100070_bib12 article-title: Deep residual learning for image recognition – year: 2021 ident: 10.1016/j.metrad.2024.100070_bib19 article-title: A robust ensemble-deep learning model for covid-19 diagnosis based on an integrated ct scan images database – year: 2014 ident: 10.1016/j.metrad.2024.100070_bib16 – volume: 80 year: 2023 ident: 10.1016/j.metrad.2024.100070_bib9 article-title: Deep learning models-based ct-scan image classification for automated screening of covid-19 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104268 – volume: 85 start-page: 109 year: 2019 ident: 10.1016/j.metrad.2024.100070_bib10 article-title: Automated pulmonary nodule detection in ct images using deep convolutional neural networks publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.07.031 – start-page: 21 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib17 article-title: Attention is all you need in speech separation – volume: 8 start-page: 121 issue: 1 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib18 article-title: Covid-ct-md, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning publication-title: Sci Data doi: 10.1038/s41597-021-00900-3 – year: 2020 ident: 10.1016/j.metrad.2024.100070_bib22 – year: 2021 ident: 10.1016/j.metrad.2024.100070_bib26 – start-page: 647 year: 2014 ident: 10.1016/j.metrad.2024.100070_bib14 article-title: Decaf: a deep convolutional activation feature for generic visual recognition – start-page: 1040 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib25 article-title: Ct-caps: feature extraction-based automated framework for covid-19 disease identification from chest ct scans using capsule networks – volume: 18 start-page: 203 issue: 2 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib8 article-title: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat Methods doi: 10.1038/s41592-020-01008-z – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.metrad.2024.100070_bib13 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 8 start-page: 121 issue: 1 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib24 article-title: Covid-ct-md, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning publication-title: Sci Data doi: 10.1038/s41597-021-00900-3 – volume: 153 year: 2023 ident: 10.1016/j.metrad.2024.100070_bib30 article-title: Acsn: attention capsule sampling network for diagnosing COVID-19 based on chest ct scans publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106338 – volume: 20 start-page: 533 issue: 5 year: 2020 ident: 10.1016/j.metrad.2024.100070_bib2 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30120-1 – volume: 152 start-page: 311 year: 2021 ident: 10.1016/j.metrad.2024.100070_bib29 article-title: Two-stage deep learning framework for discrimination between covid-19 and community-acquired pneumonia from chest ct scans publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2021.10.027 – start-page: 233 year: 2006 ident: 10.1016/j.metrad.2024.100070_bib23 article-title: The relationship between precision-recall and roc curves – volume: 12 year: 2022 ident: 10.1016/j.metrad.2024.100070_bib11 article-title: Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method publication-title: Sci Rep doi: 10.1038/s41598-021-04667-w – year: 2020 ident: 10.1016/j.metrad.2024.100070_bib21 – volume: 8 issue: 2 year: 2022 ident: 10.1016/j.metrad.2024.100070_bib27 article-title: An externally validated fully automated deep learning algorithm to classify covid-19 and other pneumonias on chest computed tomography publication-title: ERJ Open Research doi: 10.1183/23120541.00579-2021 |
| SSID | ssj0003307742 |
| Score | 2.260421 |
| Snippet | Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 100070 |
| SubjectTerms | Attention mechanism Capsule network Chest CT scan Deep learning Feature pyramid networks Transfer learning |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PYgHH6hYUdmDR7ckm80-vGmxiNDiwYKewmYze9Aai7aI_np38ygqCHoN-8rMJDOzM_MNwEmuNC9srmiuEkN5UkRUM5VTHmMkJbJYVCCuo7G4mvDru_RuBU7bWphv8fsqD-sJvcsfMD0ZDyF9L6Kr0BWpt7w70J2Mb87vQ_84nUY0Fky11XG_TP2mfSqQ_nVYW5Qz8_5mptMvmmW4CaP2THVCyWN_Mc_79uMHXONfD70FG42JSc5rmdiGFSx34H00GA7GZ6QquKWvnjNIrPEu8hTpW3U9igVxi3B3RmywqEMKUcU1UtaZ4sSbt2Tq_w2kCer8HBcUYkHC_NCDiwxuid-mfN2FyfDydnBFm7YL1CZCzmlqHHonSRppnNDSomPWMZcWEoMziFIrjIXFWNkiNVxbyQo0zJkkinJjdbIHnfK5xH0giRIuMX5VZQV3MoDnRY7JNFc2lMCqHtCWHdmsRtfI2rSzh6wmYhaImNVE7MFF4NlybMDGrh546mfNp5Ypobl_E516X5Izq7QyXKAJKDiJjJ3sQX_J8T_tevDfCYfQmb8s8MibK_P8uJHST-6t6BE priority: 102 providerName: Unpaywall |
| Title | MCFCN: Multi-scale capsule-weighted fusion classification network for lung disease classification based on chest CT scans |
| URI | https://doi.org/10.1016/j.metrad.2024.100070 https://doaj.org/article/8694c369528942c898a46ea4855371f7 |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2950-1628 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003307742 issn: 2950-1628 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2950-1628 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003307742 issn: 2950-1628 databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQDMCAQIAoL3lgNSSO4wdbqVohpFYMVCpT5DjnAZWA-hBi4bfjc9qqYoGBJUPk-KLvkvjO-e47Qq5KbUTlSs1KnVkmsiphhuuSiRQSpYCnMoq49gfyfigeRvlordUXcsIaeeAGuBstjXCZNHnIDAR32mgrJFjUNMlU6mMdeaLNWjKF3-CQpYe4hi9r5SKh6xVmE4vioFwgNyDB_sRra1GU7N8l2_P63X5-2PF4bZ3p7ZO9RYBI282NHZANqA_JZ7_T6wxuaSyXZdOAK1BnQ4I7BvYRNzehon6OO1_UYTyMBKCIOa0bnjcNwSkdhzebLn7J_ByHy1lF8XrsoEU7TzSYqadHZNjrPnXu2aJpAgsoqRnLrYeQ4iirrJdGOfDcee7zSgGmcqCMhlQ6SLWrciuMU7wCy73NkqS0zmTHZLN-q-GE0ExLn9kwq3ZSeIXSd4nnKi-1wwJW3SJsCV_x3mhjFEvS2EvRwF0g3EUDd4vcIcarsahsHU8EfxcLfxe_-btFrlce-pPV0_-wekZ2cMqGI3ZONmeTOVyEaGRWXsYHLxz7X91LsjUcPLafvwGest5G |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PYgHH6hYUdmDR7ckm80-vGmxiNDiwYKewmYze9Aai7aI_np38ygqCHoN-8rMJDOzM_MNwEmuNC9srmiuEkN5UkRUM5VTHmMkJbJYVCCuo7G4mvDru_RuBU7bWphv8fsqD-sJvcsfMD0ZDyF9L6Kr0BWpt7w70J2Mb87vQ_84nUY0Fky11XG_TP2mfSqQ_nVYW5Qz8_5mptMvmmW4CaP2THVCyWN_Mc_79uMHXONfD70FG42JSc5rmdiGFSx34H00GA7GZ6QquKWvnjNIrPEu8hTpW3U9igVxi3B3RmywqEMKUcU1UtaZ4sSbt2Tq_w2kCer8HBcUYkHC_NCDiwxuid-mfN2FyfDydnBFm7YL1CZCzmlqHHonSRppnNDSomPWMZcWEoMziFIrjIXFWNkiNVxbyQo0zJkkinJjdbIHnfK5xH0giRIuMX5VZQV3MoDnRY7JNFc2lMCqHtCWHdmsRtfI2rSzh6wmYhaImNVE7MFF4NlybMDGrh546mfNp5Ypobl_E516X5Izq7QyXKAJKDiJjJ3sQX_J8T_tevDfCYfQmb8s8MibK_P8uJHST-6t6BE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCFCN%3A+Multi-scale+capsule-weighted+fusion+classification+network+for+lung+disease+classification+based+on+chest+CT+scans&rft.jtitle=Meta-radiology&rft.au=Liu%2C+Ao&rft.au=Liu%2C+Shaowu&rft.au=Wen%2C+Cuihong&rft.date=2024-06-01&rft.issn=2950-1628&rft.eissn=2950-1628&rft.volume=2&rft.issue=2&rft.spage=100070&rft_id=info:doi/10.1016%2Fj.metrad.2024.100070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_metrad_2024_100070 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2950-1628&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2950-1628&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2950-1628&client=summon |