MCFCN: Multi-scale capsule-weighted fusion classification network for lung disease classification based on chest CT scans

Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis of lung lesions by CT scanning. Background: The automatic diagnosis of lung lesions based on chest CT scans plays a crucial role in assisting...

Full description

Saved in:
Bibliographic Details
Published inMeta-radiology Vol. 2; no. 2; p. 100070
Main Authors Liu, Ao, Liu, Shaowu, Wen, Cuihong
Format Journal Article
LanguageEnglish
Published KeAi Communications Co., Ltd 01.06.2024
Subjects
Online AccessGet full text
ISSN2950-1628
2950-1628
DOI10.1016/j.metrad.2024.100070

Cover

Abstract Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis of lung lesions by CT scanning. Background: The automatic diagnosis of lung lesions based on chest CT scans plays a crucial role in assisting doctors to identify suspicious cases quickly and accurately. However, existing methods struggle to differentiate lesions with similar morphologies, and current feature extraction techniques lack the ability to effectively highlight small-scale targets in a large-scale environment, leading to incomplete extraction of subtle features and ultimately compromising the classification performance. Method: The MCFCN employs a dynamic routing clustering algorithm to emphasize small-scale features, preventing feature loss. Additionally, a scale difference fusion network is utilized to extract precise position scaling parameters by incorporating weighted fusion of information from different scales. Results: MCFCN achieves an accuracy of 99.41% for COVID-19 classification, 93.33% for CAP classification, and 100% for Normal classification, with an overall accuracy of 98.36%. Conclusion: Experimental results on the target dataset demonstrate that MCFCN outperforms state-of-the-art methods. In the future, this model can be further explored and optimized to enhance its application value in clinical practice
AbstractList Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis of lung lesions by CT scanning. Background: The automatic diagnosis of lung lesions based on chest CT scans plays a crucial role in assisting doctors to identify suspicious cases quickly and accurately. However, existing methods struggle to differentiate lesions with similar morphologies, and current feature extraction techniques lack the ability to effectively highlight small-scale targets in a large-scale environment, leading to incomplete extraction of subtle features and ultimately compromising the classification performance. Method: The MCFCN employs a dynamic routing clustering algorithm to emphasize small-scale features, preventing feature loss. Additionally, a scale difference fusion network is utilized to extract precise position scaling parameters by incorporating weighted fusion of information from different scales. Results: MCFCN achieves an accuracy of 99.41% for COVID-19 classification, 93.33% for CAP classification, and 100% for Normal classification, with an overall accuracy of 98.36%. Conclusion: Experimental results on the target dataset demonstrate that MCFCN outperforms state-of-the-art methods. In the future, this model can be further explored and optimized to enhance its application value in clinical practice
ArticleNumber 100070
Author Liu, Ao
Wen, Cuihong
Liu, Shaowu
Author_xml – sequence: 1
  givenname: Ao
  surname: Liu
  fullname: Liu, Ao
– sequence: 2
  givenname: Shaowu
  surname: Liu
  fullname: Liu, Shaowu
– sequence: 3
  givenname: Cuihong
  orcidid: 0000-0003-2668-4503
  surname: Wen
  fullname: Wen, Cuihong
BookMark eNqNkc1u2zAQhIkgBZI6foMe-AJySYoSyd4KoWkC5OfinIk1tbTp0pJBSjD89pWjIih66ml3BzvfHOYzue76Dgn5wtmKM15_3a8OOCRoV4IJOUmMKXZFboWpWMFroa__2m_IMuf99FKWTCkpbsn5ublvXr7R5zEOocgOIlIHxzxGLE4YtrsBW-rHHPqOugg5Bx8cDJezw-HUp1_U94nGsdvSNmSEjP_-bSatpRf_DvNAmzWdYrp8Rz55iBmXf-aCvN3_WDcPxdPrz8fm-1PhyloNRQUeudQKFPjaKIdeOC981SqUzEhURiOvHXLt2gqkcUq0CMJDydgGnCkX5HHmtj3s7TGFA6Sz7SHYd6FPWwtpCC6i1bWRU6qphDZSOG00yBpB6qoqFfdqYlUza-yOcD5BjB9AzuylDru3cx32Uoed65h8cva51Oec0P-f7TceoJRS
Cites_doi 10.1007/s00330-021-07715-1
10.1148/radiol.2017162326
10.1109/TMI.2016.2535865
10.1016/j.compbiomed.2021.104744
10.1016/j.bspc.2022.104268
10.1016/j.patcog.2018.07.031
10.1038/s41597-021-00900-3
10.1038/s41592-020-01008-z
10.1109/5.726791
10.1016/j.compbiomed.2022.106338
10.1016/S1473-3099(20)30120-1
10.1016/j.patrec.2021.10.027
10.1038/s41598-021-04667-w
10.1183/23120541.00579-2021
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.metrad.2024.100070
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Journal Directory
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2950-1628
ExternalDocumentID oai_doaj_org_article_8694c369528942c898a46ea4855371f7
10.1016/j.metrad.2024.100070
10_1016_j_metrad_2024_100070
GroupedDBID 0R~
AALRI
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CITATION
FDB
GROUPED_DOAJ
M41
M~E
ROL
ADTOC
UNPAY
ID FETCH-LOGICAL-c367t-5afe1487a7af697cef2cf2f5d7e4094e798e16ce18cd5a49c72dea2fa300bac93
IEDL.DBID DOA
ISSN 2950-1628
IngestDate Fri Oct 03 12:44:27 EDT 2025
Tue Aug 19 17:15:40 EDT 2025
Tue Jul 01 03:53:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-5afe1487a7af697cef2cf2f5d7e4094e798e16ce18cd5a49c72dea2fa300bac93
ORCID 0000-0003-2668-4503
OpenAccessLink https://doaj.org/article/8694c369528942c898a46ea4855371f7
ParticipantIDs doaj_primary_oai_doaj_org_article_8694c369528942c898a46ea4855371f7
unpaywall_primary_10_1016_j_metrad_2024_100070
crossref_primary_10_1016_j_metrad_2024_100070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-00
PublicationDecade 2020
PublicationTitle Meta-radiology
PublicationYear 2024
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
References Carvalho (10.1016/j.metrad.2024.100070_bib4) 2021; 136
Anthimopoulos (10.1016/j.metrad.2024.100070_bib6) 2016; 35
Donahue (10.1016/j.metrad.2024.100070_bib14) 2014
10.1016/j.metrad.2024.100070_bib20
Subakan (10.1016/j.metrad.2024.100070_bib17) 2021
Hatamizadeh (10.1016/j.metrad.2024.100070_bib7) 2021
Zhao (10.1016/j.metrad.2024.100070_bib1) 2020
Saakyan (10.1016/j.metrad.2024.100070_bib26) 2021
Abdel-Basset (10.1016/j.metrad.2024.100070_bib29) 2021; 152
Isensee (10.1016/j.metrad.2024.100070_bib8) 2021; 18
Shi (10.1016/j.metrad.2024.100070_bib3) 2022
Wen (10.1016/j.metrad.2024.100070_bib30) 2023; 153
Dong (10.1016/j.metrad.2024.100070_bib2) 2020; 20
Vaidyanathan (10.1016/j.metrad.2024.100070_bib27) 2022; 8
Maftouni (10.1016/j.metrad.2024.100070_bib19) 2021
Yosinski (10.1016/j.metrad.2024.100070_bib16) 2014
Afshar (10.1016/j.metrad.2024.100070_bib24) 2021; 8
Xie (10.1016/j.metrad.2024.100070_bib10) 2019; 85
Afshar (10.1016/j.metrad.2024.100070_bib18) 2021; 8
Morozov (10.1016/j.metrad.2024.100070_bib22) 2020
Lakhani (10.1016/j.metrad.2024.100070_bib5) 2017; 284
Shimazaki (10.1016/j.metrad.2024.100070_bib11) 2022; 12
Wang (10.1016/j.metrad.2024.100070_bib28) 2021; 31
Cohen (10.1016/j.metrad.2024.100070_bib21) 2020
Lecun (10.1016/j.metrad.2024.100070_bib13) 1998; 86
Davis (10.1016/j.metrad.2024.100070_bib23) 2006
Gupta (10.1016/j.metrad.2024.100070_bib9) 2023; 80
Long (10.1016/j.metrad.2024.100070_bib15) 2015
Heidarian (10.1016/j.metrad.2024.100070_bib25) 2021
He (10.1016/j.metrad.2024.100070_bib12) 2016
References_xml – year: 2015
  ident: 10.1016/j.metrad.2024.100070_bib15
– start-page: 1748
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib7
  article-title: Unetr: Transformers for 3d medical image segmentation
– ident: 10.1016/j.metrad.2024.100070_bib20
– volume: 31
  start-page: 6096
  issue: 8
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib28
  article-title: A deep learning algorithm using ct images to screen for corona virus disease (COVID-19)
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-07715-1
– volume: 284
  start-page: 574
  issue: 2
  year: 2017
  ident: 10.1016/j.metrad.2024.100070_bib5
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– year: 2020
  ident: 10.1016/j.metrad.2024.100070_bib1
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  ident: 10.1016/j.metrad.2024.100070_bib6
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2016.2535865
– year: 2022
  ident: 10.1016/j.metrad.2024.100070_bib3
  article-title: Analysis of covid-19 severity from the perspective of coagulation index using evolutionary machine learning with enhanced brain storm optimization (computer and information sciences, impact factor 13.473)
  publication-title: J King Saud Univ - Comput Inf Sci
– volume: 136
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib4
  article-title: An approach to the classification of covid-19 based on ct scans using convolutional features and genetic algorithms
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104744
– start-page: 770
  year: 2016
  ident: 10.1016/j.metrad.2024.100070_bib12
  article-title: Deep residual learning for image recognition
– year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib19
  article-title: A robust ensemble-deep learning model for covid-19 diagnosis based on an integrated ct scan images database
– year: 2014
  ident: 10.1016/j.metrad.2024.100070_bib16
– volume: 80
  year: 2023
  ident: 10.1016/j.metrad.2024.100070_bib9
  article-title: Deep learning models-based ct-scan image classification for automated screening of covid-19
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104268
– volume: 85
  start-page: 109
  year: 2019
  ident: 10.1016/j.metrad.2024.100070_bib10
  article-title: Automated pulmonary nodule detection in ct images using deep convolutional neural networks
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.07.031
– start-page: 21
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib17
  article-title: Attention is all you need in speech separation
– volume: 8
  start-page: 121
  issue: 1
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib18
  article-title: Covid-ct-md, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00900-3
– year: 2020
  ident: 10.1016/j.metrad.2024.100070_bib22
– year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib26
– start-page: 647
  year: 2014
  ident: 10.1016/j.metrad.2024.100070_bib14
  article-title: Decaf: a deep convolutional activation feature for generic visual recognition
– start-page: 1040
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib25
  article-title: Ct-caps: feature extraction-based automated framework for covid-19 disease identification from chest ct scans using capsule networks
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib8
  article-title: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.metrad.2024.100070_bib13
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 8
  start-page: 121
  issue: 1
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib24
  article-title: Covid-ct-md, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00900-3
– volume: 153
  year: 2023
  ident: 10.1016/j.metrad.2024.100070_bib30
  article-title: Acsn: attention capsule sampling network for diagnosing COVID-19 based on chest ct scans
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106338
– volume: 20
  start-page: 533
  issue: 5
  year: 2020
  ident: 10.1016/j.metrad.2024.100070_bib2
  article-title: An interactive web-based dashboard to track COVID-19 in real time
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30120-1
– volume: 152
  start-page: 311
  year: 2021
  ident: 10.1016/j.metrad.2024.100070_bib29
  article-title: Two-stage deep learning framework for discrimination between covid-19 and community-acquired pneumonia from chest ct scans
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2021.10.027
– start-page: 233
  year: 2006
  ident: 10.1016/j.metrad.2024.100070_bib23
  article-title: The relationship between precision-recall and roc curves
– volume: 12
  year: 2022
  ident: 10.1016/j.metrad.2024.100070_bib11
  article-title: Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-04667-w
– year: 2020
  ident: 10.1016/j.metrad.2024.100070_bib21
– volume: 8
  issue: 2
  year: 2022
  ident: 10.1016/j.metrad.2024.100070_bib27
  article-title: An externally validated fully automated deep learning algorithm to classify covid-19 and other pneumonias on chest computed tomography
  publication-title: ERJ Open Research
  doi: 10.1183/23120541.00579-2021
SSID ssj0003307742
Score 2.260421
Snippet Aim and scope: This paper aims to propose a Multi-scale Capsule-weighted Fusion Classification Network (MCFCN), a classification model for automatic diagnosis...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 100070
SubjectTerms Attention mechanism
Capsule network
Chest CT scan
Deep learning
Feature pyramid networks
Transfer learning
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PYgHH6hYUdmDR7ckm80-vGmxiNDiwYKewmYze9Aai7aI_np38ygqCHoN-8rMJDOzM_MNwEmuNC9srmiuEkN5UkRUM5VTHmMkJbJYVCCuo7G4mvDru_RuBU7bWphv8fsqD-sJvcsfMD0ZDyF9L6Kr0BWpt7w70J2Mb87vQ_84nUY0Fky11XG_TP2mfSqQ_nVYW5Qz8_5mptMvmmW4CaP2THVCyWN_Mc_79uMHXONfD70FG42JSc5rmdiGFSx34H00GA7GZ6QquKWvnjNIrPEu8hTpW3U9igVxi3B3RmywqEMKUcU1UtaZ4sSbt2Tq_w2kCer8HBcUYkHC_NCDiwxuid-mfN2FyfDydnBFm7YL1CZCzmlqHHonSRppnNDSomPWMZcWEoMziFIrjIXFWNkiNVxbyQo0zJkkinJjdbIHnfK5xH0giRIuMX5VZQV3MoDnRY7JNFc2lMCqHtCWHdmsRtfI2rSzh6wmYhaImNVE7MFF4NlybMDGrh546mfNp5Ypobl_E516X5Izq7QyXKAJKDiJjJ3sQX_J8T_tevDfCYfQmb8s8MibK_P8uJHST-6t6BE
  priority: 102
  providerName: Unpaywall
Title MCFCN: Multi-scale capsule-weighted fusion classification network for lung disease classification based on chest CT scans
URI https://doi.org/10.1016/j.metrad.2024.100070
https://doaj.org/article/8694c369528942c898a46ea4855371f7
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2950-1628
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003307742
  issn: 2950-1628
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2950-1628
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003307742
  issn: 2950-1628
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQDMCAQIAoL3lgNSSO4wdbqVohpFYMVCpT5DjnAZWA-hBi4bfjc9qqYoGBJUPk-KLvkvjO-e47Qq5KbUTlSs1KnVkmsiphhuuSiRQSpYCnMoq49gfyfigeRvlordUXcsIaeeAGuBstjXCZNHnIDAR32mgrJFjUNMlU6mMdeaLNWjKF3-CQpYe4hi9r5SKh6xVmE4vioFwgNyDB_sRra1GU7N8l2_P63X5-2PF4bZ3p7ZO9RYBI282NHZANqA_JZ7_T6wxuaSyXZdOAK1BnQ4I7BvYRNzehon6OO1_UYTyMBKCIOa0bnjcNwSkdhzebLn7J_ByHy1lF8XrsoEU7TzSYqadHZNjrPnXu2aJpAgsoqRnLrYeQ4iirrJdGOfDcee7zSgGmcqCMhlQ6SLWrciuMU7wCy73NkqS0zmTHZLN-q-GE0ExLn9kwq3ZSeIXSd4nnKi-1wwJW3SJsCV_x3mhjFEvS2EvRwF0g3EUDd4vcIcarsahsHU8EfxcLfxe_-btFrlce-pPV0_-wekZ2cMqGI3ZONmeTOVyEaGRWXsYHLxz7X91LsjUcPLafvwGest5G
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PYgHH6hYUdmDR7ckm80-vGmxiNDiwYKewmYze9Aai7aI_np38ygqCHoN-8rMJDOzM_MNwEmuNC9srmiuEkN5UkRUM5VTHmMkJbJYVCCuo7G4mvDru_RuBU7bWphv8fsqD-sJvcsfMD0ZDyF9L6Kr0BWpt7w70J2Mb87vQ_84nUY0Fky11XG_TP2mfSqQ_nVYW5Qz8_5mptMvmmW4CaP2THVCyWN_Mc_79uMHXONfD70FG42JSc5rmdiGFSx34H00GA7GZ6QquKWvnjNIrPEu8hTpW3U9igVxi3B3RmywqEMKUcU1UtaZ4sSbt2Tq_w2kCer8HBcUYkHC_NCDiwxuid-mfN2FyfDydnBFm7YL1CZCzmlqHHonSRppnNDSomPWMZcWEoMziFIrjIXFWNkiNVxbyQo0zJkkinJjdbIHnfK5xH0giRIuMX5VZQV3MoDnRY7JNFc2lMCqHtCWHdmsRtfI2rSzh6wmYhaImNVE7MFF4NlybMDGrh546mfNp5Ypobl_E516X5Izq7QyXKAJKDiJjJ3sQX_J8T_tevDfCYfQmb8s8MibK_P8uJHST-6t6BE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCFCN%3A+Multi-scale+capsule-weighted+fusion+classification+network+for+lung+disease+classification+based+on+chest+CT+scans&rft.jtitle=Meta-radiology&rft.au=Liu%2C+Ao&rft.au=Liu%2C+Shaowu&rft.au=Wen%2C+Cuihong&rft.date=2024-06-01&rft.issn=2950-1628&rft.eissn=2950-1628&rft.volume=2&rft.issue=2&rft.spage=100070&rft_id=info:doi/10.1016%2Fj.metrad.2024.100070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_metrad_2024_100070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2950-1628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2950-1628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2950-1628&client=summon