A Bayesian approach to joint feature selection and classifier design

This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 26; no. 9; pp. 1105 - 1111
Main Authors Krishnapuram, B., Harternink, A.J., Carin, L., Figueiredo, M.A.T.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
DOI10.1109/TPAMI.2004.55

Cover

Abstract This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation- maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets.
AbstractList This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets.
This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets.This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets.
Author Figueiredo, M.A.T.
Harternink, A.J.
Krishnapuram, B.
Carin, L.
Author_xml – sequence: 1
  givenname: B.
  surname: Krishnapuram
  fullname: Krishnapuram, B.
  organization: Dept. of Electr. Eng., Duke Univ., Durham, NC, USA
– sequence: 2
  givenname: A.J.
  surname: Harternink
  fullname: Harternink, A.J.
– sequence: 3
  givenname: L.
  surname: Carin
  fullname: Carin, L.
– sequence: 4
  givenname: M.A.T.
  surname: Figueiredo
  fullname: Figueiredo, M.A.T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15742887$$D View this record in MEDLINE/PubMed
BookMark eNqF0b9PGzEUB3Croioh7dgJqTp1YLvg32ePIS0QiYoOdLZefO-Ko8tdat8N-e9xGlAkJMTk5fO1_d73jJx0fYeEfGV0xhi1lw-_57-WM06pnCn1gUyYFbYUStgTMqFM89IYbk7JWUprSplUVHwip0xVkhtTTciPeXEFO0wBugK229iDfyyGvlj3oRuKBmEYIxYJW_RD6LPp6sK3kFJoAsaizsm_3WfysYE24Zfnc0r-XP98WNyWd_c3y8X8rvRCV0OpmNUaADUIBY2xzDa-ruuVAqs9RwGCN1aiFZ7VFXpma9WoFdVU0BVFCWJKLg735n_-GzENbhOSx7aFDvsxOV1xzfPQ70JuMpPaZvj9FVz3Y-zyEM4YSaWSlGX07RmNqw3WbhvDBuLOvWwxg_IAfOxTitgcCXX7ltz_lty-JadU9uKV92GA_X6HCKF9M3V-SAVEPL4gmDZSiycB7pzd
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s00500_013_1150_3
crossref_primary_10_1142_S0218126612500831
crossref_primary_10_1109_JBHI_2015_2402199
crossref_primary_10_1109_TSP_2011_2123891
crossref_primary_10_1007_s12543_009_0014_0
crossref_primary_10_1186_s12920_023_01579_8
crossref_primary_10_1109_TCBB_2007_1064
crossref_primary_10_1155_2016_7347986
crossref_primary_10_1109_TPAMI_2008_53
crossref_primary_10_1007_s13042_024_02517_5
crossref_primary_10_1109_OJIES_2020_3046044
crossref_primary_10_1109_TNNLS_2021_3058172
crossref_primary_10_1109_TPAMI_2007_250607
crossref_primary_10_3389_fmed_2022_1016459
crossref_primary_10_1016_j_sigpro_2014_12_012
crossref_primary_10_1109_TITB_2009_2038481
crossref_primary_10_1016_j_knosys_2016_10_019
crossref_primary_10_1016_j_neucom_2017_02_057
crossref_primary_10_1109_TIE_2018_2815997
crossref_primary_10_1109_TNNLS_2013_2275077
crossref_primary_10_1007_s11767_005_0017_x
crossref_primary_10_1016_j_chinastron_2008_01_012
crossref_primary_10_1109_TGRS_2013_2287510
crossref_primary_10_1109_LSP_2015_2492238
crossref_primary_10_1109_TPAMI_2006_248
crossref_primary_10_1007_s11042_010_0546_7
crossref_primary_10_1016_j_neucom_2016_08_011
crossref_primary_10_1109_JSTARS_2014_2342281
crossref_primary_10_1109_TPAMI_2009_98
crossref_primary_10_1109_TPAMI_2009_55
crossref_primary_10_1109_TPAMI_2005_127
crossref_primary_10_1007_s13369_015_1844_1
crossref_primary_10_1109_TKDE_2013_65
crossref_primary_10_1080_02664763_2019_1579306
crossref_primary_10_1109_TNN_2009_2014060
crossref_primary_10_1142_S0218488513500062
crossref_primary_10_1109_TNNLS_2013_2285784
crossref_primary_10_1007_s10044_007_0089_3
crossref_primary_10_1109_TGRS_2015_2509539
crossref_primary_10_1109_TFUZZ_2018_2833820
crossref_primary_10_1007_s10916_012_9828_0
crossref_primary_10_1007_s11192_020_03422_8
crossref_primary_10_1007_s10044_008_0130_1
crossref_primary_10_1016_j_ecoinf_2010_11_001
crossref_primary_10_1109_TMM_2012_2187179
crossref_primary_10_1109_TNNLS_2023_3262952
crossref_primary_10_1214_16_STS602
crossref_primary_10_1109_TPAMI_2006_238
crossref_primary_10_1137_090772344
crossref_primary_10_1016_j_aei_2022_101600
crossref_primary_10_1109_TIP_2005_860595
crossref_primary_10_1142_S0219720005001533
crossref_primary_10_1016_j_neuroscience_2020_04_006
crossref_primary_10_1109_TNNLS_2014_2321134
crossref_primary_10_1109_TPAMI_2019_2960358
crossref_primary_10_1093_bioadv_vbae199
crossref_primary_10_1186_1471_2105_7_514
crossref_primary_10_1109_TCYB_2013_2260736
crossref_primary_10_1115_1_2927439
crossref_primary_10_1007_s00138_009_0211_1
crossref_primary_10_14358_PERS_75_6_679
crossref_primary_10_1016_j_jmva_2006_06_003
crossref_primary_10_1007_s10044_010_0177_7
crossref_primary_10_1093_bioinformatics_btad135
crossref_primary_10_1109_TITB_2010_2041553
crossref_primary_10_1162_neco_2006_18_4_961
crossref_primary_10_1080_15325008_2016_1201874
crossref_primary_10_1016_j_inffus_2018_11_019
crossref_primary_10_1016_j_neucom_2022_10_053
crossref_primary_10_1111_exd_14974
crossref_primary_10_1142_S0218001415500226
crossref_primary_10_1007_s10994_007_5039_1
crossref_primary_10_1016_j_patcog_2016_06_028
crossref_primary_10_1093_bioinformatics_btn188
crossref_primary_10_1109_TNNLS_2015_2496195
crossref_primary_10_1109_TSMC_2021_3049597
crossref_primary_10_1145_3309541
crossref_primary_10_1016_j_asoc_2007_03_009
Cites_doi 10.1080/01621459.1993.10476321
10.1049/cp:19991164
10.1145/332306.332328
10.1023/A:1012487302797
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TPAMI.2003.1227989
10.7551/mitpress/4175.001.0001
10.1137/S0895479800380374
10.1016/S0893-6080(99)00020-9
10.1137/1.9781611972719.13
10.1109/34.735807
10.1145/640075.640097
10.1007/978-1-4899-3242-6
10.7551/mitpress/4170.001.0001
10.1007/978-1-4612-0745-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2004.55
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
EndPage 1111
ExternalDocumentID 2427782801
15742887
10_1109_TPAMI_2004_55
1316846
Genre orig-research
Evaluation Studies
Journal Article
Comparative Study
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c367t-51966aae6a35af8919fcdddb5a96c2e3a32f94e93c1d7ec19d5f5b06030b0e4a3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Thu Oct 02 08:05:24 EDT 2025
Thu Oct 02 06:37:45 EDT 2025
Fri Jul 25 05:27:34 EDT 2025
Wed Feb 19 01:44:31 EST 2025
Wed Oct 01 06:40:17 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Wed Aug 27 02:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-51966aae6a35af8919fcdddb5a96c2e3a32f94e93c1d7ec19d5f5b06030b0e4a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 15742887
PQID 884045401
PQPubID 85458
PageCount 7
ParticipantIDs proquest_journals_884045401
pubmed_primary_15742887
crossref_primary_10_1109_TPAMI_2004_55
crossref_citationtrail_10_1109_TPAMI_2004_55
ieee_primary_1316846
proquest_miscellaneous_67262016
proquest_miscellaneous_28201469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-Sept.
2004-09-00
2004-Sep
20040901
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-Sept.
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2004
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Weston (ref19)
ref15
Tipping (ref18) 2001; 1
ref20
Krishnapuram (ref9)
ref11
ref10
ref2
ref1
ref17
ref16
ref8
Seeger (ref14)
ref7
ref4
Duda (ref3) 2001
ref6
ref5
McCullagh (ref12) 1989
References_xml – ident: ref1
  doi: 10.1080/01621459.1993.10476321
– ident: ref8
  doi: 10.1049/cp:19991164
– ident: ref2
  doi: 10.1145/332306.332328
– ident: ref5
  doi: 10.1023/A:1012487302797
– volume-title: Proc. 2002 Workshop Genomic Signal Processing and Statistics (GENSIPS)
  ident: ref9
  article-title: Logistic Regression and RVM for Cancer Diagnosis from Gene Expression Signatures
– volume-title: Proc. Advances in Neural Information Processing Systems (NIPS) 12
  ident: ref14
  article-title: Bayesian Model Selection for Support Vector Machines, Gaussian Processes, and Other Kernel Classifiers
– ident: ref17
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref4
  doi: 10.1109/TPAMI.2003.1227989
– ident: ref16
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref15
  doi: 10.1137/S0895479800380374
– volume-title: Proc. Advances in Neural Information Processing Systems (NIPS) 12
  ident: ref19
  article-title: Feature Selection for SVMs
– ident: ref7
  doi: 10.1016/S0893-6080(99)00020-9
– ident: ref11
  doi: 10.1137/1.9781611972719.13
– volume-title: Pattern Classification
  year: 2001
  ident: ref3
– ident: ref20
  doi: 10.1109/34.735807
– ident: ref10
  doi: 10.1145/640075.640097
– volume-title: Generalized Linear Models
  year: 1989
  ident: ref12
  doi: 10.1007/978-1-4899-3242-6
– ident: ref6
  doi: 10.7551/mitpress/4170.001.0001
– volume: 1
  start-page: 211
  year: 2001
  ident: ref18
  article-title: Sparse Bayesian Learning and the Relevance Vector Machine
  publication-title: J. Machine Learning Research
– ident: ref13
  doi: 10.1007/978-1-4612-0745-0
SSID ssj0014503
Score 2.1922493
Snippet This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1105
SubjectTerms Algorithms
Artificial Intelligence
automatic relevance determination
Bayes Theorem
Bayesian methods
Biomarkers, Tumor - genetics
Cluster Analysis
Colonic Neoplasms - diagnosis
Colonic Neoplasms - genetics
Computer Simulation
Diagnosis, Computer-Assisted - methods
Distribution functions
EM algorithm
feature selection
Gene Expression Profiling - methods
Humans
Index Terms- Pattern recognition
Information Storage and Retrieval - methods
Kernel
Leukemia - diagnosis
Leukemia - genetics
Models, Biological
Models, Statistical
Pattern Recognition, Automated - methods
Polynomials
relevance vector machines
Reproducibility of Results
Sensitivity and Specificity
sparse probit regression
sparsity
Statistical learning
Supervised learning
Support vector machine classification
Support vector machines
Testing
Training data
Title A Bayesian approach to joint feature selection and classifier design
URI https://ieeexplore.ieee.org/document/1316846
https://www.ncbi.nlm.nih.gov/pubmed/15742887
https://www.proquest.com/docview/884045401
https://www.proquest.com/docview/28201469
https://www.proquest.com/docview/67262016
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhgob8rTA2IiJWlspx7LowKkIgaQ2CLHPks8lCCaDvDrsZ2kRYhKbJZykh2fL_4uPn8fwLG0GDzSOgnCjGUBVSoJBGIYJL2-Uqhsuu15C0Z3_PqR3j6xpxacTu_CIKIvPsOua_qzfF2oiftVdhY5lSXKF2Ah6fPqrtb0xIAyr4JsEYyNcJtGzPg0zx7uB6Mbnwp2mVeqYTYf9EV0P7Yir60yH2b67WbYhlEz0KrK5LU7KbOu-vrF4fjfN1mFlRp3kkG1UNaghfk6tBtNB1KH-Dos_yAo3IDLATmXn-guWpKGfZyUBXkpnvOSGPSsoGTstXSsg4nMNVEOjz8bu90S7ctDNuFxePVwcR3UuguBinlSBhbUcS4lchkzafoiEkZprTMmBVc9jGXcM4KiiFWkE1SR0MywLOT2e5GFSGW8BYt5keMOEJsgcUNNpClVDnsJ4-xMmCkmbSvpwGnjglTVpOROG-Mt9clJKFLvPCeWSVPGOnAyNX-v2DjmGW64SZ8ZVfPdgb3Gv2kdq-O0b3Ncx0MYdeBo-tQGmTs5kTkWk3HacziJcjHfgieO2T-yPWxXy2bWdb3adv8e0h4sVcVArmxtHxbLjwkeWJxTZod-gX8DWC_4IA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4q7DA4wMbPwgY-TDuRNmlspz4WtqqwFu1QJG6RYz9LsClBND3AX4_tJG01rRI3S3mSHT-_-Hvx8_cBfJMWg0daJ0GYsSygSiWBQAyDpNdXCpVNtz1vweSWj-7ozT27b8HF4i4MIvriM-y4pj_L14Wau19l3cipLFG-AR8YpZRVt7UWZwaUeR1ki2FsjNtEYsmo2Z3-HkyufTLYYV6rhtmM0JfRrWxGXl1lPdD0G85wFybNUKs6kz-deZl11Os_LI7vfZdPsFMjTzKolspnaGG-B7uNqgOpg3wPtlcoCvfhx4Bcyhd0Vy1Jwz9OyoI8Fg95SQx6XlAy82o61sVE5pooh8gfjN1wifYFIgdwN_w5vRoFtfJCoGKelIGFdZxLiVzGTJq-iIRRWuuMScFVD2MZ94ygKGIV6QRVJDQzLAu5_WJkIVIZH8JmXuR4DMSmSNxQE2lKlUNfwjg7E2aKSdtK2nDRuCBVNS25U8f4m_r0JBSpd56Ty6QpY234vjB_qvg41hnuu0lfGlXz3YbTxr9pHa2ztG-zXMdEGLXhfPHUhpk7O5E5FvNZ2nNIiXKx3oInjts_sj0cVctm2XW92k7-P6Rz-DiaTsbp-Pr21ylsVaVBrojtC2yWz3P8alFPmZ35xf4GeUr7bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+to+joint+feature+selection+and+classifier+design&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Krishnapuram%2C+Balaji&rft.au=Hartemink%2C+Alexander+J&rft.au=Carin%2C+Lawrence&rft.au=Figueiredo%2C+M%C3%A1rio+A+T&rft.date=2004-09-01&rft.issn=0162-8828&rft.volume=26&rft.issue=9&rft.spage=1105&rft_id=info:doi/10.1109%2FTPAMI.2004.55&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon