A Bayesian approach to joint feature selection and classifier design
This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 26; no. 9; pp. 1105 - 1111 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.09.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 |
| DOI | 10.1109/TPAMI.2004.55 |
Cover
| Abstract | This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation- maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets. |
|---|---|
| AbstractList | This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets. This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets.This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets. |
| Author | Figueiredo, M.A.T. Harternink, A.J. Krishnapuram, B. Carin, L. |
| Author_xml | – sequence: 1 givenname: B. surname: Krishnapuram fullname: Krishnapuram, B. organization: Dept. of Electr. Eng., Duke Univ., Durham, NC, USA – sequence: 2 givenname: A.J. surname: Harternink fullname: Harternink, A.J. – sequence: 3 givenname: L. surname: Carin fullname: Carin, L. – sequence: 4 givenname: M.A.T. surname: Figueiredo fullname: Figueiredo, M.A.T. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15742887$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0b9PGzEUB3Croioh7dgJqTp1YLvg32ePIS0QiYoOdLZefO-Ko8tdat8N-e9xGlAkJMTk5fO1_d73jJx0fYeEfGV0xhi1lw-_57-WM06pnCn1gUyYFbYUStgTMqFM89IYbk7JWUprSplUVHwip0xVkhtTTciPeXEFO0wBugK229iDfyyGvlj3oRuKBmEYIxYJW_RD6LPp6sK3kFJoAsaizsm_3WfysYE24Zfnc0r-XP98WNyWd_c3y8X8rvRCV0OpmNUaADUIBY2xzDa-ruuVAqs9RwGCN1aiFZ7VFXpma9WoFdVU0BVFCWJKLg735n_-GzENbhOSx7aFDvsxOV1xzfPQ70JuMpPaZvj9FVz3Y-zyEM4YSaWSlGX07RmNqw3WbhvDBuLOvWwxg_IAfOxTitgcCXX7ltz_lty-JadU9uKV92GA_X6HCKF9M3V-SAVEPL4gmDZSiycB7pzd |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1007_s00500_013_1150_3 crossref_primary_10_1142_S0218126612500831 crossref_primary_10_1109_JBHI_2015_2402199 crossref_primary_10_1109_TSP_2011_2123891 crossref_primary_10_1007_s12543_009_0014_0 crossref_primary_10_1186_s12920_023_01579_8 crossref_primary_10_1109_TCBB_2007_1064 crossref_primary_10_1155_2016_7347986 crossref_primary_10_1109_TPAMI_2008_53 crossref_primary_10_1007_s13042_024_02517_5 crossref_primary_10_1109_OJIES_2020_3046044 crossref_primary_10_1109_TNNLS_2021_3058172 crossref_primary_10_1109_TPAMI_2007_250607 crossref_primary_10_3389_fmed_2022_1016459 crossref_primary_10_1016_j_sigpro_2014_12_012 crossref_primary_10_1109_TITB_2009_2038481 crossref_primary_10_1016_j_knosys_2016_10_019 crossref_primary_10_1016_j_neucom_2017_02_057 crossref_primary_10_1109_TIE_2018_2815997 crossref_primary_10_1109_TNNLS_2013_2275077 crossref_primary_10_1007_s11767_005_0017_x crossref_primary_10_1016_j_chinastron_2008_01_012 crossref_primary_10_1109_TGRS_2013_2287510 crossref_primary_10_1109_LSP_2015_2492238 crossref_primary_10_1109_TPAMI_2006_248 crossref_primary_10_1007_s11042_010_0546_7 crossref_primary_10_1016_j_neucom_2016_08_011 crossref_primary_10_1109_JSTARS_2014_2342281 crossref_primary_10_1109_TPAMI_2009_98 crossref_primary_10_1109_TPAMI_2009_55 crossref_primary_10_1109_TPAMI_2005_127 crossref_primary_10_1007_s13369_015_1844_1 crossref_primary_10_1109_TKDE_2013_65 crossref_primary_10_1080_02664763_2019_1579306 crossref_primary_10_1109_TNN_2009_2014060 crossref_primary_10_1142_S0218488513500062 crossref_primary_10_1109_TNNLS_2013_2285784 crossref_primary_10_1007_s10044_007_0089_3 crossref_primary_10_1109_TGRS_2015_2509539 crossref_primary_10_1109_TFUZZ_2018_2833820 crossref_primary_10_1007_s10916_012_9828_0 crossref_primary_10_1007_s11192_020_03422_8 crossref_primary_10_1007_s10044_008_0130_1 crossref_primary_10_1016_j_ecoinf_2010_11_001 crossref_primary_10_1109_TMM_2012_2187179 crossref_primary_10_1109_TNNLS_2023_3262952 crossref_primary_10_1214_16_STS602 crossref_primary_10_1109_TPAMI_2006_238 crossref_primary_10_1137_090772344 crossref_primary_10_1016_j_aei_2022_101600 crossref_primary_10_1109_TIP_2005_860595 crossref_primary_10_1142_S0219720005001533 crossref_primary_10_1016_j_neuroscience_2020_04_006 crossref_primary_10_1109_TNNLS_2014_2321134 crossref_primary_10_1109_TPAMI_2019_2960358 crossref_primary_10_1093_bioadv_vbae199 crossref_primary_10_1186_1471_2105_7_514 crossref_primary_10_1109_TCYB_2013_2260736 crossref_primary_10_1115_1_2927439 crossref_primary_10_1007_s00138_009_0211_1 crossref_primary_10_14358_PERS_75_6_679 crossref_primary_10_1016_j_jmva_2006_06_003 crossref_primary_10_1007_s10044_010_0177_7 crossref_primary_10_1093_bioinformatics_btad135 crossref_primary_10_1109_TITB_2010_2041553 crossref_primary_10_1162_neco_2006_18_4_961 crossref_primary_10_1080_15325008_2016_1201874 crossref_primary_10_1016_j_inffus_2018_11_019 crossref_primary_10_1016_j_neucom_2022_10_053 crossref_primary_10_1111_exd_14974 crossref_primary_10_1142_S0218001415500226 crossref_primary_10_1007_s10994_007_5039_1 crossref_primary_10_1016_j_patcog_2016_06_028 crossref_primary_10_1093_bioinformatics_btn188 crossref_primary_10_1109_TNNLS_2015_2496195 crossref_primary_10_1109_TSMC_2021_3049597 crossref_primary_10_1145_3309541 crossref_primary_10_1016_j_asoc_2007_03_009 |
| Cites_doi | 10.1080/01621459.1993.10476321 10.1049/cp:19991164 10.1145/332306.332328 10.1023/A:1012487302797 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TPAMI.2003.1227989 10.7551/mitpress/4175.001.0001 10.1137/S0895479800380374 10.1016/S0893-6080(99)00020-9 10.1137/1.9781611972719.13 10.1109/34.735807 10.1145/640075.640097 10.1007/978-1-4899-3242-6 10.7551/mitpress/4170.001.0001 10.1007/978-1-4612-0745-0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
| DBID | RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2004.55 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1939-3539 |
| EndPage | 1111 |
| ExternalDocumentID | 2427782801 15742887 10_1109_TPAMI_2004_55 1316846 |
| Genre | orig-research Evaluation Studies Journal Article Comparative Study |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIC RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c367t-51966aae6a35af8919fcdddb5a96c2e3a32f94e93c1d7ec19d5f5b06030b0e4a3 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 |
| IngestDate | Thu Oct 02 08:05:24 EDT 2025 Thu Oct 02 06:37:45 EDT 2025 Fri Jul 25 05:27:34 EDT 2025 Wed Feb 19 01:44:31 EST 2025 Wed Oct 01 06:40:17 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Wed Aug 27 02:47:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-51966aae6a35af8919fcdddb5a96c2e3a32f94e93c1d7ec19d5f5b06030b0e4a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Undefined-3 |
| PMID | 15742887 |
| PQID | 884045401 |
| PQPubID | 85458 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_884045401 pubmed_primary_15742887 crossref_primary_10_1109_TPAMI_2004_55 crossref_citationtrail_10_1109_TPAMI_2004_55 ieee_primary_1316846 proquest_miscellaneous_67262016 proquest_miscellaneous_28201469 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2004-Sept. 2004-09-00 2004-Sep 20040901 |
| PublicationDateYYYYMMDD | 2004-09-01 |
| PublicationDate_xml | – month: 09 year: 2004 text: 2004-Sept. |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2004 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Weston (ref19) ref15 Tipping (ref18) 2001; 1 ref20 Krishnapuram (ref9) ref11 ref10 ref2 ref1 ref17 ref16 ref8 Seeger (ref14) ref7 ref4 Duda (ref3) 2001 ref6 ref5 McCullagh (ref12) 1989 |
| References_xml | – ident: ref1 doi: 10.1080/01621459.1993.10476321 – ident: ref8 doi: 10.1049/cp:19991164 – ident: ref2 doi: 10.1145/332306.332328 – ident: ref5 doi: 10.1023/A:1012487302797 – volume-title: Proc. 2002 Workshop Genomic Signal Processing and Statistics (GENSIPS) ident: ref9 article-title: Logistic Regression and RVM for Cancer Diagnosis from Gene Expression Signatures – volume-title: Proc. Advances in Neural Information Processing Systems (NIPS) 12 ident: ref14 article-title: Bayesian Model Selection for Support Vector Machines, Gaussian Processes, and Other Kernel Classifiers – ident: ref17 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref4 doi: 10.1109/TPAMI.2003.1227989 – ident: ref16 doi: 10.7551/mitpress/4175.001.0001 – ident: ref15 doi: 10.1137/S0895479800380374 – volume-title: Proc. Advances in Neural Information Processing Systems (NIPS) 12 ident: ref19 article-title: Feature Selection for SVMs – ident: ref7 doi: 10.1016/S0893-6080(99)00020-9 – ident: ref11 doi: 10.1137/1.9781611972719.13 – volume-title: Pattern Classification year: 2001 ident: ref3 – ident: ref20 doi: 10.1109/34.735807 – ident: ref10 doi: 10.1145/640075.640097 – volume-title: Generalized Linear Models year: 1989 ident: ref12 doi: 10.1007/978-1-4899-3242-6 – ident: ref6 doi: 10.7551/mitpress/4170.001.0001 – volume: 1 start-page: 211 year: 2001 ident: ref18 article-title: Sparse Bayesian Learning and the Relevance Vector Machine publication-title: J. Machine Learning Research – ident: ref13 doi: 10.1007/978-1-4612-0745-0 |
| SSID | ssj0014503 |
| Score | 2.1922493 |
| Snippet | This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1105 |
| SubjectTerms | Algorithms Artificial Intelligence automatic relevance determination Bayes Theorem Bayesian methods Biomarkers, Tumor - genetics Cluster Analysis Colonic Neoplasms - diagnosis Colonic Neoplasms - genetics Computer Simulation Diagnosis, Computer-Assisted - methods Distribution functions EM algorithm feature selection Gene Expression Profiling - methods Humans Index Terms- Pattern recognition Information Storage and Retrieval - methods Kernel Leukemia - diagnosis Leukemia - genetics Models, Biological Models, Statistical Pattern Recognition, Automated - methods Polynomials relevance vector machines Reproducibility of Results Sensitivity and Specificity sparse probit regression sparsity Statistical learning Supervised learning Support vector machine classification Support vector machines Testing Training data |
| Title | A Bayesian approach to joint feature selection and classifier design |
| URI | https://ieeexplore.ieee.org/document/1316846 https://www.ncbi.nlm.nih.gov/pubmed/15742887 https://www.proquest.com/docview/884045401 https://www.proquest.com/docview/28201469 https://www.proquest.com/docview/67262016 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhgob8rTA2IiJWlspx7LowKkIgaQ2CLHPks8lCCaDvDrsZ2kRYhKbJZykh2fL_4uPn8fwLG0GDzSOgnCjGUBVSoJBGIYJL2-Uqhsuu15C0Z3_PqR3j6xpxacTu_CIKIvPsOua_qzfF2oiftVdhY5lSXKF2Ah6fPqrtb0xIAyr4JsEYyNcJtGzPg0zx7uB6Mbnwp2mVeqYTYf9EV0P7Yir60yH2b67WbYhlEz0KrK5LU7KbOu-vrF4fjfN1mFlRp3kkG1UNaghfk6tBtNB1KH-Dos_yAo3IDLATmXn-guWpKGfZyUBXkpnvOSGPSsoGTstXSsg4nMNVEOjz8bu90S7ctDNuFxePVwcR3UuguBinlSBhbUcS4lchkzafoiEkZprTMmBVc9jGXcM4KiiFWkE1SR0MywLOT2e5GFSGW8BYt5keMOEJsgcUNNpClVDnsJ4-xMmCkmbSvpwGnjglTVpOROG-Mt9clJKFLvPCeWSVPGOnAyNX-v2DjmGW64SZ8ZVfPdgb3Gv2kdq-O0b3Ncx0MYdeBo-tQGmTs5kTkWk3HacziJcjHfgieO2T-yPWxXy2bWdb3adv8e0h4sVcVArmxtHxbLjwkeWJxTZod-gX8DWC_4IA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4q7DA4wMbPwgY-TDuRNmlspz4WtqqwFu1QJG6RYz9LsClBND3AX4_tJG01rRI3S3mSHT-_-Hvx8_cBfJMWg0daJ0GYsSygSiWBQAyDpNdXCpVNtz1vweSWj-7ozT27b8HF4i4MIvriM-y4pj_L14Wau19l3cipLFG-AR8YpZRVt7UWZwaUeR1ki2FsjNtEYsmo2Z3-HkyufTLYYV6rhtmM0JfRrWxGXl1lPdD0G85wFybNUKs6kz-deZl11Os_LI7vfZdPsFMjTzKolspnaGG-B7uNqgOpg3wPtlcoCvfhx4Bcyhd0Vy1Jwz9OyoI8Fg95SQx6XlAy82o61sVE5pooh8gfjN1wifYFIgdwN_w5vRoFtfJCoGKelIGFdZxLiVzGTJq-iIRRWuuMScFVD2MZ94ygKGIV6QRVJDQzLAu5_WJkIVIZH8JmXuR4DMSmSNxQE2lKlUNfwjg7E2aKSdtK2nDRuCBVNS25U8f4m_r0JBSpd56Ty6QpY234vjB_qvg41hnuu0lfGlXz3YbTxr9pHa2ztG-zXMdEGLXhfPHUhpk7O5E5FvNZ2nNIiXKx3oInjts_sj0cVctm2XW92k7-P6Rz-DiaTsbp-Pr21ylsVaVBrojtC2yWz3P8alFPmZ35xf4GeUr7bQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+to+joint+feature+selection+and+classifier+design&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Krishnapuram%2C+Balaji&rft.au=Hartemink%2C+Alexander+J&rft.au=Carin%2C+Lawrence&rft.au=Figueiredo%2C+M%C3%A1rio+A+T&rft.date=2004-09-01&rft.issn=0162-8828&rft.volume=26&rft.issue=9&rft.spage=1105&rft_id=info:doi/10.1109%2FTPAMI.2004.55&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |