Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces
Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimension...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 69; no. 8; pp. 9223 - 9228 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2020.3005402 |
Cover
Abstract | Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions. |
---|---|
AbstractList | Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions. |
Author | Alouini, Mohamed-Slim Liu, Shicong Gao, Zhen Renzo, Marco Di Zhang, Jun |
Author_xml | – sequence: 1 givenname: Shicong surname: Liu fullname: Liu, Shicong email: scliubit@163.com organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Zhen orcidid: 0000-0002-2709-0216 surname: Gao fullname: Gao, Zhen email: gaozhen16@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Jun orcidid: 0000-0003-1017-7179 surname: Zhang fullname: Zhang, Jun email: buaazhangjun@vip.sina.com organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Marco Di surname: Renzo fullname: Renzo, Marco Di email: marco.direnzo@l2s.centralesupelec.fr organization: Laboratoire des Signaux et Systèmes, CNRS, CentraleSupélec, Univ Paris Sud, Université Paris-Saclay, Paris, France – sequence: 5 givenname: Mohamed-Slim orcidid: 0000-0003-4827-1793 surname: Alouini fullname: Alouini, Mohamed-Slim email: slim.alouini@kaust.edu.sa organization: Electrical Engineering Program, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia |
BackLink | https://hal.science/hal-03020379$$DView record in HAL |
BookMark | eNp9kUFPGzEQha0KpCaBOxIXSz31sKm9Y2fjY5RAQYpAggBHy9nMgunG3tpOqv77ehvogUMlS6Oxvzd64zckR847JOSMszHnTH1bPa7GJSvZGBiTgpWfyIArUIUCqY7IgDE-LZQU8jMZxviaWyEUH5BugdjRBTpvo3XP9AZ3wbS5pF8-_KCzGG1MuKFzv-0C5m6PdP5inMOWXsRktyZZ72jjA91un0x-vXYJ29Y-o0v0DpsW69QPvt-FxtQYT8hxY9qIp291RB4uL1bzq2J5-_16PlsWNUyqVIipZKVQrJGbqppCPpMaNqwyuYcJ8DXyim_WMgO8rBSvkZnGrA00vBQ1BxiRr4e5L6bVXchGw2_tjdVXs6Xu7xjk34JK7XlmvxzYLvifO4xJv_pdcNmeLgUIJUsJPTU5UHXwMQZsdG3T3_VTMLbVnOk-CZ2T0H0S-i2JLGQfhO9-_iM5P0gsIv7DVV51CgL-ALq_lSc |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_34133_icomputing_0065 crossref_primary_10_1109_JIOT_2022_3229768 crossref_primary_10_1109_TVT_2020_3031657 crossref_primary_10_1109_TWC_2022_3219140 crossref_primary_10_1109_TWC_2023_3297732 crossref_primary_10_1109_ACCESS_2021_3124319 crossref_primary_10_1109_IOTM_001_2300111 crossref_primary_10_1109_LWC_2024_3396868 crossref_primary_10_1109_TGCN_2023_3237132 crossref_primary_10_1016_j_sigpro_2024_109710 crossref_primary_10_1109_TVT_2024_3419845 crossref_primary_10_1109_TWC_2021_3115152 crossref_primary_10_1109_TCOMM_2021_3064949 crossref_primary_10_1109_TCOMM_2024_3395333 crossref_primary_10_1002_adom_202403033 crossref_primary_10_3390_s22145405 crossref_primary_10_1109_TITS_2024_3364248 crossref_primary_10_1109_JSTSP_2023_3299175 crossref_primary_10_1109_TWC_2021_3092597 crossref_primary_10_1109_TGCN_2024_3399080 crossref_primary_10_1109_JIOT_2022_3203895 crossref_primary_10_1109_TITS_2022_3184314 crossref_primary_10_1109_TVT_2023_3278459 crossref_primary_10_1109_LWC_2024_3425150 crossref_primary_10_1109_TVT_2023_3306340 crossref_primary_10_1109_JSAC_2021_3087259 crossref_primary_10_1109_TWC_2021_3115161 crossref_primary_10_1109_OJCOMS_2023_3242668 crossref_primary_10_1007_s11277_022_09513_4 crossref_primary_10_1109_TGCN_2023_3281657 crossref_primary_10_1109_TVT_2021_3132305 crossref_primary_10_1016_j_phycom_2021_101386 crossref_primary_10_1109_TCOMM_2022_3175175 crossref_primary_10_1109_MNET_001_2100675 crossref_primary_10_1109_TWC_2023_3307450 crossref_primary_10_1109_LWC_2023_3309844 crossref_primary_10_1109_LWC_2024_3402968 crossref_primary_10_1109_JSAC_2023_3240781 crossref_primary_10_1109_TSP_2022_3217353 crossref_primary_10_1109_TWC_2024_3371703 crossref_primary_10_1109_TVT_2021_3063138 crossref_primary_10_1109_OJCOMS_2022_3210648 crossref_primary_10_3390_s23052777 crossref_primary_10_1109_TVT_2023_3249353 crossref_primary_10_1109_LWC_2022_3147590 crossref_primary_10_1016_j_vehcom_2024_100859 crossref_primary_10_1109_TCOMM_2023_3258484 crossref_primary_10_1109_TCOMM_2021_3085895 crossref_primary_10_1109_TSP_2021_3115938 crossref_primary_10_3390_s22155908 crossref_primary_10_1016_j_jfranklin_2023_12_050 crossref_primary_10_1109_ACCESS_2023_3236909 crossref_primary_10_1109_TIFS_2024_3444193 crossref_primary_10_1109_TWC_2023_3348591 crossref_primary_10_1109_TVT_2022_3211563 crossref_primary_10_1109_TVT_2024_3403910 crossref_primary_10_1016_j_phycom_2025_102667 crossref_primary_10_1109_TGCN_2023_3339819 crossref_primary_10_1080_00207217_2024_2372060 crossref_primary_10_1109_JIOT_2024_3412209 crossref_primary_10_1109_JIOT_2024_3427425 crossref_primary_10_1109_TWC_2023_3257138 crossref_primary_10_3389_frcmn_2022_853416 crossref_primary_10_1109_COMST_2021_3077737 crossref_primary_10_1109_TWC_2023_3256961 crossref_primary_10_1016_j_jiixd_2023_06_010 crossref_primary_10_1109_TWC_2023_3233970 crossref_primary_10_1109_JSAC_2021_3078502 crossref_primary_10_1109_TCOMM_2022_3184640 crossref_primary_10_26599_TST_2023_9010019 crossref_primary_10_1109_ACCESS_2022_3199689 crossref_primary_10_1016_j_dcan_2024_06_006 crossref_primary_10_1109_TVT_2022_3203818 crossref_primary_10_1016_j_dcan_2021_11_002 crossref_primary_10_1016_j_procs_2022_04_035 crossref_primary_10_1109_JPROC_2022_3170358 crossref_primary_10_1109_TWC_2021_3124288 crossref_primary_10_1155_2022_4378718 crossref_primary_10_1109_TMLCN_2025_3547689 crossref_primary_10_7717_peerj_cs_2582 crossref_primary_10_1109_JSEN_2022_3182881 crossref_primary_10_3390_electronics13234702 crossref_primary_10_1049_cmu2_12364 crossref_primary_10_1109_ACCESS_2024_3524218 crossref_primary_10_1109_TWC_2021_3102446 crossref_primary_10_1109_TVT_2022_3233066 crossref_primary_10_1016_j_jnca_2024_103886 crossref_primary_10_1109_TWC_2022_3142767 crossref_primary_10_1109_TWC_2022_3217679 crossref_primary_10_1186_s13638_022_02184_6 crossref_primary_10_1109_TSP_2022_3150145 crossref_primary_10_1109_TVT_2022_3187066 crossref_primary_10_23919_ICN_2022_0009 crossref_primary_10_1007_s10586_024_04627_9 crossref_primary_10_1109_LAWP_2022_3179281 crossref_primary_10_1007_s11277_021_09039_1 crossref_primary_10_1109_TMLCN_2023_3278232 crossref_primary_10_1109_LCOMM_2023_3309033 crossref_primary_10_1109_LWC_2024_3365809 crossref_primary_10_1109_LCOMM_2021_3063464 crossref_primary_10_1109_LCOMM_2022_3178188 crossref_primary_10_1002_ett_4642 crossref_primary_10_1109_TVT_2024_3391941 crossref_primary_10_1109_LCOMM_2022_3169213 crossref_primary_10_1109_MNET_211_2100386 crossref_primary_10_1109_TWC_2024_3413858 crossref_primary_10_1007_s11276_023_03622_z crossref_primary_10_1016_j_heliyon_2023_e17580 crossref_primary_10_1140_epjp_s13360_025_06093_7 crossref_primary_10_1109_TVT_2023_3299882 crossref_primary_10_1109_TCOMM_2024_3403517 crossref_primary_10_1109_TGCN_2024_3410049 crossref_primary_10_1109_ACCESS_2021_3134961 crossref_primary_10_1016_j_phycom_2024_102445 crossref_primary_10_3390_electronics13183732 crossref_primary_10_1109_LCOMM_2021_3052822 crossref_primary_10_1109_TVT_2023_3269153 crossref_primary_10_3390_s22165971 crossref_primary_10_1109_TCOMM_2023_3263230 crossref_primary_10_1109_TWC_2023_3290618 crossref_primary_10_1109_TWC_2024_3362068 crossref_primary_10_1109_TCOMM_2023_3331521 crossref_primary_10_3390_electronics12244965 crossref_primary_10_1109_COMST_2022_3198273 crossref_primary_10_1109_ACCESS_2023_3266375 crossref_primary_10_1109_TWC_2024_3350069 crossref_primary_10_3390_electronics12071703 crossref_primary_10_1109_COMST_2022_3155305 crossref_primary_10_1109_LCOMM_2021_3138082 crossref_primary_10_1109_LCOMM_2023_3346919 crossref_primary_10_1109_TVT_2022_3224967 crossref_primary_10_1109_JSYST_2023_3235879 crossref_primary_10_1145_3696414 crossref_primary_10_1109_TCOMM_2022_3197625 crossref_primary_10_1109_ACCESS_2020_3032627 crossref_primary_10_1109_LWC_2022_3171043 crossref_primary_10_1109_TCE_2024_3441028 crossref_primary_10_1109_TVT_2022_3147859 crossref_primary_10_1109_TCOMM_2023_3239621 crossref_primary_10_1109_ACCESS_2022_3208284 crossref_primary_10_1109_OJCOMS_2024_3378266 crossref_primary_10_1109_JSTSP_2023_3278942 crossref_primary_10_1109_LWC_2022_3163661 crossref_primary_10_1109_TCOMM_2024_3379399 crossref_primary_10_1109_TVT_2023_3271214 crossref_primary_10_1109_TWC_2024_3399450 crossref_primary_10_1109_JIOT_2024_3486996 crossref_primary_10_1109_LCOMM_2021_3095218 crossref_primary_10_1109_LCOMM_2022_3147200 crossref_primary_10_1109_TWC_2021_3105405 crossref_primary_10_3390_fi16050173 crossref_primary_10_3390_signals4010006 crossref_primary_10_1109_TWC_2023_3273221 crossref_primary_10_1109_JIOT_2023_3273328 crossref_primary_10_1109_COMST_2023_3316283 crossref_primary_10_1109_TCE_2023_3349153 crossref_primary_10_1109_TWC_2022_3160517 crossref_primary_10_1109_TWC_2024_3480314 crossref_primary_10_1109_TVT_2024_3411069 crossref_primary_10_1016_j_comnet_2023_109581 crossref_primary_10_1109_ACCESS_2021_3107316 crossref_primary_10_1109_TCOMM_2023_3265115 crossref_primary_10_1109_TNSM_2022_3229658 crossref_primary_10_1109_TVT_2022_3172229 crossref_primary_10_1109_ACCESS_2021_3133139 crossref_primary_10_3390_signals4010012 crossref_primary_10_1109_TCOMM_2022_3144986 crossref_primary_10_1109_OJCOMS_2024_3399605 crossref_primary_10_1109_TCCN_2024_3422510 crossref_primary_10_1109_TCOMM_2024_3420765 crossref_primary_10_3390_s24206625 crossref_primary_10_1109_TVT_2022_3205370 crossref_primary_10_1109_TWC_2023_3330110 crossref_primary_10_1109_TVT_2023_3241928 crossref_primary_10_48084_etasr_7499 crossref_primary_10_1109_JSTSP_2024_3461308 crossref_primary_10_3390_electronics13152909 crossref_primary_10_3390_math11153397 crossref_primary_10_1109_LCOMM_2021_3079322 crossref_primary_10_1109_TWC_2023_3239340 crossref_primary_10_1109_ACCESS_2022_3157651 crossref_primary_10_1109_TVT_2022_3160471 crossref_primary_10_1109_TWC_2022_3178445 crossref_primary_10_1002_advs_202203747 crossref_primary_10_1109_TGCN_2023_3273909 crossref_primary_10_1038_s41598_021_99722_x crossref_primary_10_1109_TGCN_2023_3259579 crossref_primary_10_3390_math11143235 crossref_primary_10_1109_TWC_2023_3328437 crossref_primary_10_3390_s24020337 crossref_primary_10_1109_OJCOMS_2024_3487847 crossref_primary_10_1093_nsr_nwad127 |
Cites_doi | 10.1109/LWC.2019.2948632 10.1109/LWC.2019.2961357 10.1109/LWC.2018.2832128 10.1186/s13638-019-1438-9 10.1109/ACCESS.2019.2935192 10.1109/TCOMM.2020.2974457 10.1109/TSP.2019.2959250 10.1109/MCOM.001.1900107 10.1109/MWC.2017.1700147 10.1109/JSAC.2014.2328154 10.1109/ICASSP.2019.8683663 10.1109/TWC.2019.2936025 10.1109/TCOMM.2019.2942911 10.1109/TIP.2017.2662206 10.1109/GLOBECOM38437.2019.9013256 10.1109/LSP.2020.2998357 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M 1XC VOOES |
DOI | 10.1109/TVT.2020.3005402 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 9228 |
ExternalDocumentID | oai_HAL_hal_03020379v1 10_1109_TVT_2020_3005402 9127834 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61701027 funderid: 10.13039/501100001809 – fundername: Young Elite Scientists Sponsorship Program by CAST grantid: KF20202103 – fundername: Nanjing University of Aeronautics and Astronautics funderid: 10.13039/501100004193 – fundername: Natural Science Foundation of Beijing Municipality grantid: 4182055; L182024 funderid: 10.13039/501100004826 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M 1XC VOOES |
ID | FETCH-LOGICAL-c367t-48502490f5d77837836c3d07a5d73631be171db50f512791ce0afaba3f124c133 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Fri Sep 12 12:52:41 EDT 2025 Mon Jun 30 10:18:54 EDT 2025 Tue Jul 01 01:44:08 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Wed Aug 27 02:32:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | deep learning millimeter-wave massive MIMO channel estimation intelligent reflecting surfaces compressive sensing Machine learning |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-48502490f5d77837836c3d07a5d73631be171db50f512791ce0afaba3f124c133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1017-7179 0000-0002-2709-0216 0000-0003-4827-1793 0000-0003-0772-8793 |
OpenAccessLink | https://hal.science/hal-03020379 |
PQID | 2434952531 |
PQPubID | 85454 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_TVT_2020_3005402 crossref_primary_10_1109_TVT_2020_3005402 hal_primary_oai_HAL_hal_03020379v1 proquest_journals_2434952531 ieee_primary_9127834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref15 ref14 ref20 ref11 ref10 taha (ref12) 2019 wang (ref5) 2019 pradhan (ref6) 2019 ref2 ref1 ref17 ref16 ref18 ref8 ref7 ref9 ref4 ref3 trabelsi (ref19) 0 |
References_xml | – ident: ref8 doi: 10.1109/LWC.2019.2948632 – ident: ref10 doi: 10.1109/LWC.2019.2961357 – ident: ref17 doi: 10.1109/LWC.2018.2832128 – ident: ref3 doi: 10.1186/s13638-019-1438-9 – ident: ref2 doi: 10.1109/ACCESS.2019.2935192 – ident: ref14 doi: 10.1109/TCOMM.2020.2974457 – ident: ref20 doi: 10.1109/TSP.2019.2959250 – year: 2019 ident: ref6 article-title: Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems – ident: ref1 doi: 10.1109/MCOM.001.1900107 – year: 2019 ident: ref12 article-title: Enabling large intelligent surfaces with compressive sensing and deep learning – ident: ref13 doi: 10.1109/MWC.2017.1700147 – ident: ref15 doi: 10.1109/JSAC.2014.2328154 – ident: ref7 doi: 10.1109/ICASSP.2019.8683663 – ident: ref4 doi: 10.1109/TWC.2019.2936025 – ident: ref16 doi: 10.1109/TCOMM.2019.2942911 – ident: ref18 doi: 10.1109/TIP.2017.2662206 – start-page: 1 year: 0 ident: ref19 article-title: Deep complex networks publication-title: Proc Int Conf Learn Represent – ident: ref11 doi: 10.1109/GLOBECOM38437.2019.9013256 – year: 2019 ident: ref5 article-title: Intelligent reflecting surface-assisted millimeter wave communications: Joint active and passive precoding design – ident: ref9 doi: 10.1109/LSP.2020.2998357 |
SSID | ssj0014491 |
Score | 2.691329 |
Snippet | Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9223 |
SubjectTerms | Artificial neural networks channel estimation Channels compressive sensing Computer simulation Convolution deep learning Engineering Sciences intelligent reflecting surfaces Machine learning Millimeter waves millimeter-wave massive MIMO MIMO (control systems) Neural networks Noise reduction Performance enhancement Reconfigurable intelligent surfaces Signal and Image processing Subcarriers Training |
Title | Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces |
URI | https://ieeexplore.ieee.org/document/9127834 https://www.proquest.com/docview/2434952531 https://hal.science/hal-03020379 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLd2exoPwDYQB2OKEC9I613apA19nNimA7E9sNvYW5WkjkBsvdPo7YG_HjvtVQwQ4q0fTpXKjmPH9s8Ar4MxgbYRl9iytommDTBxKGUSVHDBFCag5gLn07NidqE_XOVXG3Aw1MIgYkw-wwlfxlh-vfArPiqblmnsCzGCkTFlV6s1RAy07rvjpbSAySxYhyRlOZ1fzskRzMg_jQZKdm8LGn3hBMjYWeUPdRz3mJNHcLqeXZda8m2yat3E__gNuPF_p_8YHvbGpjjspGMbNrDZgQe_QBDuwvIIcSmOsFl85VMDwWAdNOSsyw4XxD2Wg1qw3ogps3couCKhwWtxTOqhq3wUZPqKm5vPlt6-H0A-W_EJA4cF-MPnq9vA6V9P4OLkeP5ulvRdGBKvCtMm-m3OsIIy5LUxDD-vCq9qaSzdq0KlDlOT1i4nAvq_MvUobbDOKpIB7ckFfgqbzaLBZyCIxjpfYI15oS0Zl752QXIgVwalCz-G6Zoxle8hyrlTxnUVXRVZVsTKillZ9awcw5thxLKD5_gH7Svi9UDGuNqzw48VPyNNl0llyrt0DLvMuIGq59kY9taiUfWL_HuVaUXuZUZa7PnfR72ALZ5Aly-4B5vt7Qpfkg3Tuv0ovD8BumvtYA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLe28QB74GugHQyIEC9I9C5t0mZ9nNimG9zdA9xgb1WTOmLa1juN3h7462envYovId764VSJ7Dp2bP8M8MYb42kbsVGZV2WkaQOMLEoZeeWtN5nxqLnAeTrLxqf6w1l6tgHv-loYRAzJZzjkyxDLrxZuxUdlozwOfSE24U5KXoVpq7X6mIHWXX-8mH5hMgzWQUmZj-Zf5uQKJuShBhMl-WUT2vzGKZCht8ofCjnsMscPYLqeX5tccjFcNXbofvwG3fi_C3gI9ztzUxy08vEINrB-DNs_gRDuwPIQcSkOsV6c87mBYLgOGjJr88MF8Y8loRKsOULS7A0Krkmo8VIckYJoax8FGb_i6uprSW9PepjPRnxCz4EB_vDn1bXnBLAncHp8NH8_jro-DJFTmWkivZ8ysKD0aWUMA9CrzKlKmpLuVaZii7GJK5sSAa0vjx3K0pe2VCQF2pET_BS26kWNuyCIprQuwwrTTJdkXrrKesmhXOmVztwARmvGFK4DKedeGZdFcFZkXhArC2Zl0bFyAG_7EcsWoOMftK-J1z0ZI2uPDyYFPyNdl0hl8pt4ADvMuJ6q49kA9taiUXS_-fci0YoczIT02LO_j3oFd8fz6aSYnMw-Pod7PJk2e3APtprrFb4gi6axL4Mg3wJZBfCx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Denoising+Neural+Network+Assisted+Compressive+Channel+Estimation+for+mmWave+Intelligent+Reflecting+Surfaces&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Liu%2C+Shicong&rft.au=Gao%2C+Zhen&rft.au=Zhang%2C+Jun&rft.au=Renzo%2C+Marco+Di&rft.date=2020-08-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=69&rft.issue=8&rft.spage=9223&rft.epage=9228&rft_id=info:doi/10.1109%2FTVT.2020.3005402&rft.externalDocID=9127834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |