Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces

Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimension...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 69; no. 8; pp. 9223 - 9228
Main Authors Liu, Shicong, Gao, Zhen, Zhang, Jun, Renzo, Marco Di, Alouini, Mohamed-Slim
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2020.3005402

Cover

Abstract Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions.
AbstractList Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions.
Author Alouini, Mohamed-Slim
Liu, Shicong
Gao, Zhen
Renzo, Marco Di
Zhang, Jun
Author_xml – sequence: 1
  givenname: Shicong
  surname: Liu
  fullname: Liu, Shicong
  email: scliubit@163.com
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0002-2709-0216
  surname: Gao
  fullname: Gao, Zhen
  email: gaozhen16@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0003-1017-7179
  surname: Zhang
  fullname: Zhang, Jun
  email: buaazhangjun@vip.sina.com
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Marco Di
  surname: Renzo
  fullname: Renzo, Marco Di
  email: marco.direnzo@l2s.centralesupelec.fr
  organization: Laboratoire des Signaux et Systèmes, CNRS, CentraleSupélec, Univ Paris Sud, Université Paris-Saclay, Paris, France
– sequence: 5
  givenname: Mohamed-Slim
  orcidid: 0000-0003-4827-1793
  surname: Alouini
  fullname: Alouini, Mohamed-Slim
  email: slim.alouini@kaust.edu.sa
  organization: Electrical Engineering Program, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
BackLink https://hal.science/hal-03020379$$DView record in HAL
BookMark eNp9kUFPGzEQha0KpCaBOxIXSz31sKm9Y2fjY5RAQYpAggBHy9nMgunG3tpOqv77ehvogUMlS6Oxvzd64zckR847JOSMszHnTH1bPa7GJSvZGBiTgpWfyIArUIUCqY7IgDE-LZQU8jMZxviaWyEUH5BugdjRBTpvo3XP9AZ3wbS5pF8-_KCzGG1MuKFzv-0C5m6PdP5inMOWXsRktyZZ72jjA91un0x-vXYJ29Y-o0v0DpsW69QPvt-FxtQYT8hxY9qIp291RB4uL1bzq2J5-_16PlsWNUyqVIipZKVQrJGbqppCPpMaNqwyuYcJ8DXyim_WMgO8rBSvkZnGrA00vBQ1BxiRr4e5L6bVXchGw2_tjdVXs6Xu7xjk34JK7XlmvxzYLvifO4xJv_pdcNmeLgUIJUsJPTU5UHXwMQZsdG3T3_VTMLbVnOk-CZ2T0H0S-i2JLGQfhO9-_iM5P0gsIv7DVV51CgL-ALq_lSc
CODEN ITVTAB
CitedBy_id crossref_primary_10_34133_icomputing_0065
crossref_primary_10_1109_JIOT_2022_3229768
crossref_primary_10_1109_TVT_2020_3031657
crossref_primary_10_1109_TWC_2022_3219140
crossref_primary_10_1109_TWC_2023_3297732
crossref_primary_10_1109_ACCESS_2021_3124319
crossref_primary_10_1109_IOTM_001_2300111
crossref_primary_10_1109_LWC_2024_3396868
crossref_primary_10_1109_TGCN_2023_3237132
crossref_primary_10_1016_j_sigpro_2024_109710
crossref_primary_10_1109_TVT_2024_3419845
crossref_primary_10_1109_TWC_2021_3115152
crossref_primary_10_1109_TCOMM_2021_3064949
crossref_primary_10_1109_TCOMM_2024_3395333
crossref_primary_10_1002_adom_202403033
crossref_primary_10_3390_s22145405
crossref_primary_10_1109_TITS_2024_3364248
crossref_primary_10_1109_JSTSP_2023_3299175
crossref_primary_10_1109_TWC_2021_3092597
crossref_primary_10_1109_TGCN_2024_3399080
crossref_primary_10_1109_JIOT_2022_3203895
crossref_primary_10_1109_TITS_2022_3184314
crossref_primary_10_1109_TVT_2023_3278459
crossref_primary_10_1109_LWC_2024_3425150
crossref_primary_10_1109_TVT_2023_3306340
crossref_primary_10_1109_JSAC_2021_3087259
crossref_primary_10_1109_TWC_2021_3115161
crossref_primary_10_1109_OJCOMS_2023_3242668
crossref_primary_10_1007_s11277_022_09513_4
crossref_primary_10_1109_TGCN_2023_3281657
crossref_primary_10_1109_TVT_2021_3132305
crossref_primary_10_1016_j_phycom_2021_101386
crossref_primary_10_1109_TCOMM_2022_3175175
crossref_primary_10_1109_MNET_001_2100675
crossref_primary_10_1109_TWC_2023_3307450
crossref_primary_10_1109_LWC_2023_3309844
crossref_primary_10_1109_LWC_2024_3402968
crossref_primary_10_1109_JSAC_2023_3240781
crossref_primary_10_1109_TSP_2022_3217353
crossref_primary_10_1109_TWC_2024_3371703
crossref_primary_10_1109_TVT_2021_3063138
crossref_primary_10_1109_OJCOMS_2022_3210648
crossref_primary_10_3390_s23052777
crossref_primary_10_1109_TVT_2023_3249353
crossref_primary_10_1109_LWC_2022_3147590
crossref_primary_10_1016_j_vehcom_2024_100859
crossref_primary_10_1109_TCOMM_2023_3258484
crossref_primary_10_1109_TCOMM_2021_3085895
crossref_primary_10_1109_TSP_2021_3115938
crossref_primary_10_3390_s22155908
crossref_primary_10_1016_j_jfranklin_2023_12_050
crossref_primary_10_1109_ACCESS_2023_3236909
crossref_primary_10_1109_TIFS_2024_3444193
crossref_primary_10_1109_TWC_2023_3348591
crossref_primary_10_1109_TVT_2022_3211563
crossref_primary_10_1109_TVT_2024_3403910
crossref_primary_10_1016_j_phycom_2025_102667
crossref_primary_10_1109_TGCN_2023_3339819
crossref_primary_10_1080_00207217_2024_2372060
crossref_primary_10_1109_JIOT_2024_3412209
crossref_primary_10_1109_JIOT_2024_3427425
crossref_primary_10_1109_TWC_2023_3257138
crossref_primary_10_3389_frcmn_2022_853416
crossref_primary_10_1109_COMST_2021_3077737
crossref_primary_10_1109_TWC_2023_3256961
crossref_primary_10_1016_j_jiixd_2023_06_010
crossref_primary_10_1109_TWC_2023_3233970
crossref_primary_10_1109_JSAC_2021_3078502
crossref_primary_10_1109_TCOMM_2022_3184640
crossref_primary_10_26599_TST_2023_9010019
crossref_primary_10_1109_ACCESS_2022_3199689
crossref_primary_10_1016_j_dcan_2024_06_006
crossref_primary_10_1109_TVT_2022_3203818
crossref_primary_10_1016_j_dcan_2021_11_002
crossref_primary_10_1016_j_procs_2022_04_035
crossref_primary_10_1109_JPROC_2022_3170358
crossref_primary_10_1109_TWC_2021_3124288
crossref_primary_10_1155_2022_4378718
crossref_primary_10_1109_TMLCN_2025_3547689
crossref_primary_10_7717_peerj_cs_2582
crossref_primary_10_1109_JSEN_2022_3182881
crossref_primary_10_3390_electronics13234702
crossref_primary_10_1049_cmu2_12364
crossref_primary_10_1109_ACCESS_2024_3524218
crossref_primary_10_1109_TWC_2021_3102446
crossref_primary_10_1109_TVT_2022_3233066
crossref_primary_10_1016_j_jnca_2024_103886
crossref_primary_10_1109_TWC_2022_3142767
crossref_primary_10_1109_TWC_2022_3217679
crossref_primary_10_1186_s13638_022_02184_6
crossref_primary_10_1109_TSP_2022_3150145
crossref_primary_10_1109_TVT_2022_3187066
crossref_primary_10_23919_ICN_2022_0009
crossref_primary_10_1007_s10586_024_04627_9
crossref_primary_10_1109_LAWP_2022_3179281
crossref_primary_10_1007_s11277_021_09039_1
crossref_primary_10_1109_TMLCN_2023_3278232
crossref_primary_10_1109_LCOMM_2023_3309033
crossref_primary_10_1109_LWC_2024_3365809
crossref_primary_10_1109_LCOMM_2021_3063464
crossref_primary_10_1109_LCOMM_2022_3178188
crossref_primary_10_1002_ett_4642
crossref_primary_10_1109_TVT_2024_3391941
crossref_primary_10_1109_LCOMM_2022_3169213
crossref_primary_10_1109_MNET_211_2100386
crossref_primary_10_1109_TWC_2024_3413858
crossref_primary_10_1007_s11276_023_03622_z
crossref_primary_10_1016_j_heliyon_2023_e17580
crossref_primary_10_1140_epjp_s13360_025_06093_7
crossref_primary_10_1109_TVT_2023_3299882
crossref_primary_10_1109_TCOMM_2024_3403517
crossref_primary_10_1109_TGCN_2024_3410049
crossref_primary_10_1109_ACCESS_2021_3134961
crossref_primary_10_1016_j_phycom_2024_102445
crossref_primary_10_3390_electronics13183732
crossref_primary_10_1109_LCOMM_2021_3052822
crossref_primary_10_1109_TVT_2023_3269153
crossref_primary_10_3390_s22165971
crossref_primary_10_1109_TCOMM_2023_3263230
crossref_primary_10_1109_TWC_2023_3290618
crossref_primary_10_1109_TWC_2024_3362068
crossref_primary_10_1109_TCOMM_2023_3331521
crossref_primary_10_3390_electronics12244965
crossref_primary_10_1109_COMST_2022_3198273
crossref_primary_10_1109_ACCESS_2023_3266375
crossref_primary_10_1109_TWC_2024_3350069
crossref_primary_10_3390_electronics12071703
crossref_primary_10_1109_COMST_2022_3155305
crossref_primary_10_1109_LCOMM_2021_3138082
crossref_primary_10_1109_LCOMM_2023_3346919
crossref_primary_10_1109_TVT_2022_3224967
crossref_primary_10_1109_JSYST_2023_3235879
crossref_primary_10_1145_3696414
crossref_primary_10_1109_TCOMM_2022_3197625
crossref_primary_10_1109_ACCESS_2020_3032627
crossref_primary_10_1109_LWC_2022_3171043
crossref_primary_10_1109_TCE_2024_3441028
crossref_primary_10_1109_TVT_2022_3147859
crossref_primary_10_1109_TCOMM_2023_3239621
crossref_primary_10_1109_ACCESS_2022_3208284
crossref_primary_10_1109_OJCOMS_2024_3378266
crossref_primary_10_1109_JSTSP_2023_3278942
crossref_primary_10_1109_LWC_2022_3163661
crossref_primary_10_1109_TCOMM_2024_3379399
crossref_primary_10_1109_TVT_2023_3271214
crossref_primary_10_1109_TWC_2024_3399450
crossref_primary_10_1109_JIOT_2024_3486996
crossref_primary_10_1109_LCOMM_2021_3095218
crossref_primary_10_1109_LCOMM_2022_3147200
crossref_primary_10_1109_TWC_2021_3105405
crossref_primary_10_3390_fi16050173
crossref_primary_10_3390_signals4010006
crossref_primary_10_1109_TWC_2023_3273221
crossref_primary_10_1109_JIOT_2023_3273328
crossref_primary_10_1109_COMST_2023_3316283
crossref_primary_10_1109_TCE_2023_3349153
crossref_primary_10_1109_TWC_2022_3160517
crossref_primary_10_1109_TWC_2024_3480314
crossref_primary_10_1109_TVT_2024_3411069
crossref_primary_10_1016_j_comnet_2023_109581
crossref_primary_10_1109_ACCESS_2021_3107316
crossref_primary_10_1109_TCOMM_2023_3265115
crossref_primary_10_1109_TNSM_2022_3229658
crossref_primary_10_1109_TVT_2022_3172229
crossref_primary_10_1109_ACCESS_2021_3133139
crossref_primary_10_3390_signals4010012
crossref_primary_10_1109_TCOMM_2022_3144986
crossref_primary_10_1109_OJCOMS_2024_3399605
crossref_primary_10_1109_TCCN_2024_3422510
crossref_primary_10_1109_TCOMM_2024_3420765
crossref_primary_10_3390_s24206625
crossref_primary_10_1109_TVT_2022_3205370
crossref_primary_10_1109_TWC_2023_3330110
crossref_primary_10_1109_TVT_2023_3241928
crossref_primary_10_48084_etasr_7499
crossref_primary_10_1109_JSTSP_2024_3461308
crossref_primary_10_3390_electronics13152909
crossref_primary_10_3390_math11153397
crossref_primary_10_1109_LCOMM_2021_3079322
crossref_primary_10_1109_TWC_2023_3239340
crossref_primary_10_1109_ACCESS_2022_3157651
crossref_primary_10_1109_TVT_2022_3160471
crossref_primary_10_1109_TWC_2022_3178445
crossref_primary_10_1002_advs_202203747
crossref_primary_10_1109_TGCN_2023_3273909
crossref_primary_10_1038_s41598_021_99722_x
crossref_primary_10_1109_TGCN_2023_3259579
crossref_primary_10_3390_math11143235
crossref_primary_10_1109_TWC_2023_3328437
crossref_primary_10_3390_s24020337
crossref_primary_10_1109_OJCOMS_2024_3487847
crossref_primary_10_1093_nsr_nwad127
Cites_doi 10.1109/LWC.2019.2948632
10.1109/LWC.2019.2961357
10.1109/LWC.2018.2832128
10.1186/s13638-019-1438-9
10.1109/ACCESS.2019.2935192
10.1109/TCOMM.2020.2974457
10.1109/TSP.2019.2959250
10.1109/MCOM.001.1900107
10.1109/MWC.2017.1700147
10.1109/JSAC.2014.2328154
10.1109/ICASSP.2019.8683663
10.1109/TWC.2019.2936025
10.1109/TCOMM.2019.2942911
10.1109/TIP.2017.2662206
10.1109/GLOBECOM38437.2019.9013256
10.1109/LSP.2020.2998357
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
1XC
VOOES
DOI 10.1109/TVT.2020.3005402
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 9228
ExternalDocumentID oai_HAL_hal_03020379v1
10_1109_TVT_2020_3005402
9127834
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61701027
  funderid: 10.13039/501100001809
– fundername: Young Elite Scientists Sponsorship Program by CAST
  grantid: KF20202103
– fundername: Nanjing University of Aeronautics and Astronautics
  funderid: 10.13039/501100004193
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: 4182055; L182024
  funderid: 10.13039/501100004826
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-c367t-48502490f5d77837836c3d07a5d73631be171db50f512791ce0afaba3f124c133
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Fri Sep 12 12:52:41 EDT 2025
Mon Jun 30 10:18:54 EDT 2025
Tue Jul 01 01:44:08 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Wed Aug 27 02:32:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords deep learning
millimeter-wave massive MIMO
channel estimation
intelligent reflecting surfaces
compressive sensing
Machine learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-48502490f5d77837836c3d07a5d73631be171db50f512791ce0afaba3f124c133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1017-7179
0000-0002-2709-0216
0000-0003-4827-1793
0000-0003-0772-8793
OpenAccessLink https://hal.science/hal-03020379
PQID 2434952531
PQPubID 85454
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_TVT_2020_3005402
crossref_primary_10_1109_TVT_2020_3005402
hal_primary_oai_HAL_hal_03020379v1
proquest_journals_2434952531
ieee_primary_9127834
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref15
ref14
ref20
ref11
ref10
taha (ref12) 2019
wang (ref5) 2019
pradhan (ref6) 2019
ref2
ref1
ref17
ref16
ref18
ref8
ref7
ref9
ref4
ref3
trabelsi (ref19) 0
References_xml – ident: ref8
  doi: 10.1109/LWC.2019.2948632
– ident: ref10
  doi: 10.1109/LWC.2019.2961357
– ident: ref17
  doi: 10.1109/LWC.2018.2832128
– ident: ref3
  doi: 10.1186/s13638-019-1438-9
– ident: ref2
  doi: 10.1109/ACCESS.2019.2935192
– ident: ref14
  doi: 10.1109/TCOMM.2020.2974457
– ident: ref20
  doi: 10.1109/TSP.2019.2959250
– year: 2019
  ident: ref6
  article-title: Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems
– ident: ref1
  doi: 10.1109/MCOM.001.1900107
– year: 2019
  ident: ref12
  article-title: Enabling large intelligent surfaces with compressive sensing and deep learning
– ident: ref13
  doi: 10.1109/MWC.2017.1700147
– ident: ref15
  doi: 10.1109/JSAC.2014.2328154
– ident: ref7
  doi: 10.1109/ICASSP.2019.8683663
– ident: ref4
  doi: 10.1109/TWC.2019.2936025
– ident: ref16
  doi: 10.1109/TCOMM.2019.2942911
– ident: ref18
  doi: 10.1109/TIP.2017.2662206
– start-page: 1
  year: 0
  ident: ref19
  article-title: Deep complex networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref11
  doi: 10.1109/GLOBECOM38437.2019.9013256
– year: 2019
  ident: ref5
  article-title: Intelligent reflecting surface-assisted millimeter wave communications: Joint active and passive precoding design
– ident: ref9
  doi: 10.1109/LSP.2020.2998357
SSID ssj0014491
Score 2.691329
Snippet Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9223
SubjectTerms Artificial neural networks
channel estimation
Channels
compressive sensing
Computer simulation
Convolution
deep learning
Engineering Sciences
intelligent reflecting surfaces
Machine learning
Millimeter waves
millimeter-wave massive MIMO
MIMO (control systems)
Neural networks
Noise reduction
Performance enhancement
Reconfigurable intelligent surfaces
Signal and Image processing
Subcarriers
Training
Title Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces
URI https://ieeexplore.ieee.org/document/9127834
https://www.proquest.com/docview/2434952531
https://hal.science/hal-03020379
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLd2exoPwDYQB2OKEC9I613apA19nNimA7E9sNvYW5WkjkBsvdPo7YG_HjvtVQwQ4q0fTpXKjmPH9s8Ar4MxgbYRl9iytommDTBxKGUSVHDBFCag5gLn07NidqE_XOVXG3Aw1MIgYkw-wwlfxlh-vfArPiqblmnsCzGCkTFlV6s1RAy07rvjpbSAySxYhyRlOZ1fzskRzMg_jQZKdm8LGn3hBMjYWeUPdRz3mJNHcLqeXZda8m2yat3E__gNuPF_p_8YHvbGpjjspGMbNrDZgQe_QBDuwvIIcSmOsFl85VMDwWAdNOSsyw4XxD2Wg1qw3ogps3couCKhwWtxTOqhq3wUZPqKm5vPlt6-H0A-W_EJA4cF-MPnq9vA6V9P4OLkeP5ulvRdGBKvCtMm-m3OsIIy5LUxDD-vCq9qaSzdq0KlDlOT1i4nAvq_MvUobbDOKpIB7ckFfgqbzaLBZyCIxjpfYI15oS0Zl752QXIgVwalCz-G6Zoxle8hyrlTxnUVXRVZVsTKillZ9awcw5thxLKD5_gH7Svi9UDGuNqzw48VPyNNl0llyrt0DLvMuIGq59kY9taiUfWL_HuVaUXuZUZa7PnfR72ALZ5Aly-4B5vt7Qpfkg3Tuv0ovD8BumvtYA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLe28QB74GugHQyIEC9I9C5t0mZ9nNimG9zdA9xgb1WTOmLa1juN3h7462envYovId764VSJ7Dp2bP8M8MYb42kbsVGZV2WkaQOMLEoZeeWtN5nxqLnAeTrLxqf6w1l6tgHv-loYRAzJZzjkyxDLrxZuxUdlozwOfSE24U5KXoVpq7X6mIHWXX-8mH5hMgzWQUmZj-Zf5uQKJuShBhMl-WUT2vzGKZCht8ofCjnsMscPYLqeX5tccjFcNXbofvwG3fi_C3gI9ztzUxy08vEINrB-DNs_gRDuwPIQcSkOsV6c87mBYLgOGjJr88MF8Y8loRKsOULS7A0Krkmo8VIckYJoax8FGb_i6uprSW9PepjPRnxCz4EB_vDn1bXnBLAncHp8NH8_jro-DJFTmWkivZ8ysKD0aWUMA9CrzKlKmpLuVaZii7GJK5sSAa0vjx3K0pe2VCQF2pET_BS26kWNuyCIprQuwwrTTJdkXrrKesmhXOmVztwARmvGFK4DKedeGZdFcFZkXhArC2Zl0bFyAG_7EcsWoOMftK-J1z0ZI2uPDyYFPyNdl0hl8pt4ADvMuJ6q49kA9taiUXS_-fci0YoczIT02LO_j3oFd8fz6aSYnMw-Pod7PJk2e3APtprrFb4gi6axL4Mg3wJZBfCx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Denoising+Neural+Network+Assisted+Compressive+Channel+Estimation+for+mmWave+Intelligent+Reflecting+Surfaces&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Liu%2C+Shicong&rft.au=Gao%2C+Zhen&rft.au=Zhang%2C+Jun&rft.au=Renzo%2C+Marco+Di&rft.date=2020-08-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=69&rft.issue=8&rft.spage=9223&rft.epage=9228&rft_id=info:doi/10.1109%2FTVT.2020.3005402&rft.externalDocID=9127834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon