Remaining Useful Life Estimation of Aircraft Engines Using Differentiable Architecture Search
Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have been widely used to solve RUL problems. The network architecture has a crucial impact on the experiential perfor...
Saved in:
| Published in | Mathematics (Basel) Vol. 10; no. 3; p. 352 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-7390 2227-7390 |
| DOI | 10.3390/math10030352 |
Cover
| Abstract | Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have been widely used to solve RUL problems. The network architecture has a crucial impact on the experiential performance. However, most of the network architectures are designed manually based on human experience with a large cost of time. To address these challenges, we propose a neural architecture search (NAS) method based on gradient descent. In this study, we construct the search space with a directed acyclic graph (DAG), where a subgraph represents a network architecture. By using softmax relaxation, the search space becomes continuous and differentiable, then the gradient descent can be used for optimization. Moreover, a partial channel connection method is introduced to accelerate the searching efficiency. The experiment is conducted on C-MAPSS dataset. In the data processing step, a fault detection method is proposed based on the k-means algorithm, which drops large valueless data and promotes the estimation performance. The experimental result shows that our method achieves superior performance with the highest estimation accuracy compared with other popular studies. |
|---|---|
| AbstractList | Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have been widely used to solve RUL problems. The network architecture has a crucial impact on the experiential performance. However, most of the network architectures are designed manually based on human experience with a large cost of time. To address these challenges, we propose a neural architecture search (NAS) method based on gradient descent. In this study, we construct the search space with a directed acyclic graph (DAG), where a subgraph represents a network architecture. By using softmax relaxation, the search space becomes continuous and differentiable, then the gradient descent can be used for optimization. Moreover, a partial channel connection method is introduced to accelerate the searching efficiency. The experiment is conducted on C-MAPSS dataset. In the data processing step, a fault detection method is proposed based on the k-means algorithm, which drops large valueless data and promotes the estimation performance. The experimental result shows that our method achieves superior performance with the highest estimation accuracy compared with other popular studies. |
| Author | Mao, Pengli Lin, Yan Xue, Song Zhang, Baochang |
| Author_xml | – sequence: 1 givenname: Pengli surname: Mao fullname: Mao, Pengli – sequence: 2 givenname: Yan surname: Lin fullname: Lin, Yan – sequence: 3 givenname: Song surname: Xue fullname: Xue, Song – sequence: 4 givenname: Baochang surname: Zhang fullname: Zhang, Baochang |
| BookMark | eNqFkd9LHDEQgENRqFXf-gcs9LVb82M32Twe9lqFg0KrjxJmdydnjjU5kyxy_31znohIoXlJJvnmY2byiRz54JGQz4x-E0LTiwfI94xSQUXLP5ATzrmqVXk4enP-SM5T2tCyNBNdo0_I3W98AOedX1e3Ce08VStnsVqm7IrQBV8FWy1cHCLYXC392nlMBd0nfHfWYkSfHfQTVos43LuMQ54jVn8QSnhGji1MCc9f9lNy-2N5c3lVr379vL5crOpBSJVr0VsGGjiCBSoQm553dKRaiUaAlIKDbGVrlYCOqa5tobfYI7Os1zgKVOKUXB-8Y4CN2cZSe9yZAM48X4S4NhCzGyY0AsdWDI2VrNMN9EpLPXay76iWvMS0uOqDa_Zb2D3BNL0KGTX7UZu3oy78lwO_jeFxxpTNJszRl3YNl1wpqtpuX-HXAzXEkFJE-z8pf4cPLj__R47gpn8n_QU-Sp7l |
| CitedBy_id | crossref_primary_10_1088_1402_4896_ad7bfd crossref_primary_10_1016_j_ifacol_2024_07_582 crossref_primary_10_3390_electronics12143199 crossref_primary_10_1109_ACCESS_2023_3347263 |
| Cites_doi | 10.1609/aaai.v32i1.11709 10.1109/PHM.2008.4711423 10.1016/j.compind.2019.02.004 10.23919/FRUCT49677.2020.9211058 10.1038/nature14539 10.1109/72.265960 10.1109/PHM.2008.4711422 10.1109/PHM.2008.4711414 10.1016/j.asoc.2021.107474 10.1007/s11042-017-5204-x 10.1016/j.ejor.2010.11.018 10.3390/math9111245 10.1016/j.ress.2018.11.027 10.1162/neco.1997.9.8.1735 10.1016/j.neucom.2017.05.063 10.1126/science.1091277 10.1162/106365602320169811 10.1109/ACCESS.2019.2919566 10.1016/j.ress.2017.11.021 10.3390/math9233035 10.3390/math9091002 10.1016/j.asoc.2020.106344 10.1109/PHM-Chongqing.2018.00184 10.1109/TPAMI.2020.2969193 10.1109/CVPR.2018.00907 10.1016/j.neucom.2021.01.072 10.1109/ACCESS.2020.2976595 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/math10030352 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_3ed53c4f61894ab7969d86b809624ab0 10.3390/math10030352 10_3390_math10030352 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c367t-3bf1a9a2eafa03ee4b280d097343a6632a6565f73a817855abfebe1f1b9ed3e73 |
| IEDL.DBID | UNPAY |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:04:18 EDT 2025 Sun Oct 26 04:06:41 EDT 2025 Fri Jul 25 11:53:05 EDT 2025 Thu Oct 16 04:41:50 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-3bf1a9a2eafa03ee4b280d097343a6632a6565f73a817855abfebe1f1b9ed3e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-7390/10/3/352/pdf?version=1644463364 |
| PQID | 2627707587 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3ed53c4f61894ab7969d86b809624ab0 unpaywall_primary_10_3390_math10030352 proquest_journals_2627707587 crossref_primary_10_3390_math10030352 crossref_citationtrail_10_3390_math10030352 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Elsken (ref_15) 2019; 20 Li (ref_43) 2019; 7 Kenneth (ref_20) 2002; 10 Zabihia (ref_41) 2019; 108 ref_14 ref_36 ref_13 Zhao (ref_28) 2021; 438 ref_12 ref_34 Zhang (ref_37) 2016; 99 ref_31 ref_30 Deng (ref_44) 2020; 93 ref_18 ref_39 ref_16 Jaeger (ref_10) 2004; 304 Ellefsen (ref_42) 2019; 183 Hochreiter (ref_11) 1997; 9 Singh (ref_40) 2017; 78 Ramasso (ref_35) 2014; 5 Li (ref_46) 2020; 8 Li (ref_38) 2018; 172 ref_25 Moa (ref_29) 2021; 108 Wu (ref_32) 2018; 275 ref_24 ref_23 ref_45 ref_22 ref_21 LeCun (ref_3) 2015; 521 Hartigan (ref_33) 1979; 28 ref_2 ref_27 ref_26 ref_9 ref_8 Si (ref_1) 2011; 213 ref_5 ref_4 ref_7 Zhong (ref_17) 2021; 43 ref_6 Peter (ref_19) 1994; 5 |
| References_xml | – ident: ref_7 – ident: ref_30 doi: 10.1609/aaai.v32i1.11709 – ident: ref_5 doi: 10.1109/PHM.2008.4711423 – volume: 108 start-page: 186 year: 2019 ident: ref_41 article-title: A multimodal and hybrid deep neural network model for Remaining Useful Life estimation publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.02.004 – ident: ref_24 – volume: 20 start-page: 1997 year: 2019 ident: ref_15 article-title: Neural Architecture Search: A Survey publication-title: J. Mach. Learn. Res. – ident: ref_26 – ident: ref_34 – ident: ref_45 doi: 10.23919/FRUCT49677.2020.9211058 – volume: 521 start-page: 436 year: 2015 ident: ref_3 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 5 start-page: 54 year: 1994 ident: ref_19 article-title: An evolutionary algorithm that constructs recurrent neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.265960 – ident: ref_4 doi: 10.1109/PHM.2008.4711422 – ident: ref_2 doi: 10.1109/PHM.2008.4711414 – volume: 108 start-page: 107474 year: 2021 ident: ref_29 article-title: Evolutionary neural architecture search for remaining useful life prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107474 – volume: 78 start-page: 4065 year: 2017 ident: ref_40 article-title: A novel soft computing method for engine rul prediction publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5204-x – ident: ref_16 – volume: 213 start-page: 1 year: 2011 ident: ref_1 article-title: Remaining useful life estimation—A review on the statistical data driven approaches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.11.018 – ident: ref_14 doi: 10.3390/math9111245 – ident: ref_18 – ident: ref_23 – ident: ref_21 – volume: 5 start-page: 005 year: 2014 ident: ref_35 article-title: Investigating computational geometry for failure prognostics publication-title: Int. J. Progn. Health Manag. – volume: 183 start-page: 240 year: 2019 ident: ref_42 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.11.027 – volume: 9 start-page: 1735 year: 1997 ident: ref_11 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_6 – ident: ref_8 – ident: ref_25 – ident: ref_31 – volume: 275 start-page: 167 year: 2018 ident: ref_32 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 304 start-page: 78 year: 2004 ident: ref_10 article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume: 10 start-page: 99 year: 2002 ident: ref_20 article-title: Evolving neural networks through augmenting topologies publication-title: Evol. Comput. doi: 10.1162/106365602320169811 – volume: 7 start-page: 75464 year: 2019 ident: ref_43 article-title: A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919566 – volume: 172 start-page: 1 year: 2018 ident: ref_38 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 – ident: ref_27 doi: 10.3390/math9233035 – ident: ref_9 doi: 10.3390/math9091002 – ident: ref_13 – volume: 93 start-page: 106344 year: 2020 ident: ref_44 article-title: A remaining useful life prediction method with long-short term feature processing for aircraft engines publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2020.106344 – ident: ref_36 – ident: ref_39 doi: 10.1109/PHM-Chongqing.2018.00184 – volume: 28 start-page: 100 year: 1979 ident: ref_33 article-title: Algorithm AS 136: A K-Means Clustering Algorithm publication-title: J. R. Stat. Soc. – volume: 43 start-page: 7 year: 2021 ident: ref_17 article-title: BlockQNN: Efficient Block-Wise Neural Network Architecture Generation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2969193 – ident: ref_22 – ident: ref_12 doi: 10.1109/CVPR.2018.00907 – volume: 99 start-page: 2306 year: 2016 ident: ref_37 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 438 start-page: 184 year: 2021 ident: ref_28 article-title: A neural architecture search method based on gradient descent for remaining useful life estimation publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.072 – volume: 8 start-page: 41482 year: 2020 ident: ref_46 article-title: A Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters for Domain Adaptation Remaining Useful Life Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976595 |
| SSID | ssj0000913849 |
| Score | 2.209567 |
| Snippet | Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL).... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 352 |
| SubjectTerms | Accident prediction Aircraft Aircraft engines Airplane engines Algorithms Computer architecture Data processing Design differentiable architecture search Fault detection Food science Genetic algorithms Graph theory Methods neural architecture search Neural networks Optimization prognostics and health management remaining useful life estimation Searching Useful life |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yF_UgPnF9kYN6kWLzaJMc1xcirgdxYS9SkjTBhbLKPhD_vZO0LvWgXrylJYdhZpL5pp35BqFjYr0h3qeJZSVNOE91op1kSaZDRLeQAvjwHbL_kN8O-N0wG7ZGfYWasJoeuFbcOXNlxiz3OZGKayNUrkqZGwnQm8JzzNZTqVrJVLyDFWGSq7rSnUFefw7474UEl449Rq0YFKn6v-HL5fn4TX-866pqhZqbdbTWYETcq2XbQEtuvIlW-wuC1ekWen6EZZztgAdT5-cVvh95h6_hwNa9iPjV495oYifaz3BNOjjFsT4AXzUzUeBsm8rhXutXAq6rj7fR4Ob66fI2aSYlgIpzMUuY8UQrTZ32OmXOcUNlWgYmHs40YAqqAbZlXjAtiZBZpo0H4xFPjHIlc4LtoM74dex2EXbWQ9ZkFRjRcbj8pOGa5hbWtrQiz7ro7Et3hW1oxMM0i6qAdCJoumhruotOFrvfavqMH_ZdBDMs9gTS6_gCXKFoXKH4yxW66ODLiEVzEqcFzakQgIuk6KLThWF_FWbvP4TZRys0dErEAu8D1JlN5u4Q8MvMHEVX_QSmWe45 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaHtoTR90G2ToEObSzGxJdmSDyVsmg0hNEsIXcilmJEstQGzu90HIf--I7-6PTQ32QhjZjSaGWnm-wA-JtabxPs4sqLkkZQxRui0iFIMHt1SCuDDOeTVJLuYysvb9HYHJl0vTCir7PbEeqMu5zackR_zjCtF_k2rk8XvKLBGhdvVjkIDW2qF8ksNMfYEdnlAxhrA7ul4cn3Tn7oEFEwt86YCXlC-f0xx4a8kLPW692jLN9UQ_v_EnU83swU-3GNVbbmg85fwoo0d2ahR9h7suNkreH7VA6-uXsOPGxrWnA9sunJ-U7Fvd96xMRly06PI5p6N7pZ2iX7NGjDCFavrBthZy5VCNm8qx0ZbVwysqUp-A9Pz8fevF1HLoECiz9Q6EsYnmCN36DEWzknDdVwGhB4pkGINjhTOpV4J1InSaYrGk1ITn5jclcIp8RYGs_nMvQPmrKdsyuakXCdpU9RGIs8sjW1pVZYO4XMnu8K28OKB5aIqKM0Iki62JT2ET_3sRQOr8Z95p0EN_ZwAhl2_mC9_Fq1tFcKVqbDSZ4nOJRqVZ3mpM6MpO-P0HA9hv1Ni0Vroqvi7noZw1Cv20Z95__h3PsAzHnoj6pLufRislxt3QBHL2hy2y_APRbzs0g priority: 102 providerName: ProQuest |
| Title | Remaining Useful Life Estimation of Aircraft Engines Using Differentiable Architecture Search |
| URI | https://www.proquest.com/docview/2627707587 https://www.mdpi.com/2227-7390/10/3/352/pdf?version=1644463364 https://doaj.org/article/3ed53c4f61894ab7969d86b809624ab0 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QE4LM8VhaXyAbigbJPYsZ0T6kLLCrHVakWl5YAi27GhomqrJl0Ev55x4lYFCYS4OdEkcjQPfzOZB8CzxDidOBdHhpZpxFisImUljTLlT3SDLoDzccjzCT-bsndX2VUIuFUhrRJd8VljpH2dZiTQK0fdHtABYoXBqnSvrkMkCZE-OjOUcnYAXZ4hFu9Adzq5GH70E-W2z7bZ7tS_BTHgl8SLdVNntHcONe36f8GYNzeLlfr-Tc3ne8fN-A4U2422WSZfTza1PjE_fuvh-P9fchcOAxIlw1Z07sENu7gPt893bVyrB_DpEpfNBAkyrazbzMn7mbNkhGahrXgkS0eGs7VZK1eTtrVhRZosBPImTF5BC6Lnlgz3fliQNsf5IUzHow-vz6IwjwEZyUUdUe0SlavUKqdiai3TqYxL3--HUYXIJVUIDjMnqJKJkFmmtEMRSVyic1tSK-gRdBbLhX0ExBqHvpnJUVQsQxMrNVMpN7g2pRE868HLLXcKE5qV-5kZ8wKdFs_LYp-XPXi-o161TTr-QHfqGb2j8a21mxvL9eciaGpBbZlRwxxPZM6UFjnPS8m1RF8vxeu4B8dbMSmCvldFylMhEH1J0YMXO9H562Ye_yvhE7iV-pqLJlX8GDr1emOfIhKqdR8O5PhtH7qno8nFZb-JJ_SDCvwE3MMHmw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a22FwQHxqhQE-MC4oWmI7iXOYUMc6dayt0LRKu6BgOzZMitrStJr2z_G38Zw4oRzYbbcksiznvef3Yb_3fgDvI21VZG0YaFbQgPNQBtIIFsTSWXSNIYB155DjSTKc8i9X8dUW_G5rYVxaZasTa0VdzLU7Iz-kCU1TtG8i_bT4FTjUKHe72kJoSA-tUBzVLcZ8Yce5ub3BEK46OjtBfh9Qejq4_DwMPMoALi9JVwFTNpKZpEZaGTJjuKIiLFwXG84k2mMq0eWJbcqkcEj2sVQWfzyykcpMwUzKcN4HsMMZzzD42zkeTL5edKc8ruum4FmTcc9YFh6iH_ozclurrnXasIU1ZMA_fu7ueraQtzeyLDdM3ukTeOx9VdJvhOspbJnZM3g07hq9Vs_h2wU-1hgTZFoZuy7J6NoaMkDF0dREkrkl_eulXkq7Ik3zw4rUeQrkxGOzoI5RpSH9jSsN0mRBv4DpvdDyJWzP5jOzB8Roi9GbzlCYDEclLBSXNNH4rAudJnEPPra0y7VvZ-5QNcocwxpH6XyT0j046EYvmjYe_xl37NjQjXHNt-sP8-WP3O_lnJkiZprbJBIZlyrNkqwQiRIYDVJ8D3uw3zIx9xqhyv_Kbw8-dIy9czGv7p7nHewOL8ejfHQ2OX8ND6mry6jTyfdhe7VcmzfoLa3UWy-SBL7f9y74AwVnKrc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKrVwqEof6vJofYBeqmgT24mdA6qWLssbVVVX4lIF27EBabW7bBYh_lp_Xcd5dXsoN25JZFnOzHge9sx8ANuRcTpyLgwMy2nAeagCZSULYuUtusEQwPlzyLPz5HDIjy_iiyX43dTC-LTKRieWijqfGH9G3qUJFQLtmxRdV6dFfO8Pvk5vA48g5W9aGziNSkRO7MM9hm_F7lEfeb1D6WD_57fDoEYYwKUlYh4w7SKVKmqVUyGzlmsqw9x3sOFMoS2mCt2d2AmmpEexj5V2-NORi3Rqc2YFw3mfwXPhu7j7KvXBQXu-4_ttSp5WufaMpWEXPdDryG-qssppwQqWYAH_eLgv78ZT9XCvRqMFYzd4Da9qL5X0KrFagyU7fgOrZ22L1-It_PqBjyW6BBkWFolFTm-cJfuoMqpqSDJxpHczMzPl5qRqe1iQMkOB9GtUFtQuemRJb-Eyg1T5z-9g-CSUfA_L48nYfgBijcO4zaQoRpaj-pWaK5oYfDa5EUncgS8N7TJTNzL3eBqjDAMaT-lskdId2GlHT6sGHv8Zt-fZ0I7xbbfLD5PZVVbv4ozZPGaGuySSKVdapEmay0RLjAMpvocd2GyYmNW6oMj-Sm4HPreMfXQx64_P8wleoOxnp0fnJxuwQn1BRplHvgnL89md3UI3aa4_lvJI4PKpN8Af6CooUQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wA8bPyaKGzID8ALyprYju08oW5smhCbEKLSeECR7dhQEbVVkw7BX885cauCBEK8OdElcnTn83fO3XcAzzLrTeZ9mlhW0YTzVCfaKZbkOuzoFkMAH84hLy7F-YS_ucqv4oFbE9MqMRSfdk461GkmEqNyXNsjNkKsMFpU_tV1PElCpI_BDGOC34QdkSMWH8DO5PLd-GPoKLd-ts92Z-EtiAG_ZMGsuzqjrX2oo-v_BWPeWs0W-vs3Xddb283ZHpTrifZZJl-PVq05sj9-43D8_y-5C7sRiZJxbzr34Iab3Yc7Fxsa1-YBfHqPw66DBJk0zq9q8nbqHTlFt9BXPJK5J-Pp0i61b0lPbdiQLguBvI6dV9CDmNqR8dYPC9LnOD-Eydnph5PzJPZjQEUK2SbM-EwXmjrtdcqc44aqtAp8P5xpRC5UIzjMvWRaZVLluTYeTSTzmSlcxZxk-zCYzWfuERBnPcZmtkBTcRxdrDJcU2FxbCsrRT6El2vtlDaSlYeeGXWJQUvQZbmtyyE830gvepKOP8gdB0VvZAK1dndjvvxcxpVaMlflzHIvMlVwbWQhikoJozDWo3idDuFgbSZlXO9NSQWVEtGXkkN4sTGdv07m8b8KPoHbNNRcdKniBzBolyt3iEioNU-juf8Eb8UEJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Estimation+of+Aircraft+Engines+Using+Differentiable+Architecture+Search&rft.jtitle=Mathematics+%28Basel%29&rft.au=Mao%2C+Pengli&rft.au=Lin%2C+Yan&rft.au=Xue%2C+Song&rft.au=Zhang%2C+Baochang&rft.date=2022-02-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=3&rft.spage=352&rft_id=info:doi/10.3390%2Fmath10030352&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10030352 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |