Remaining Useful Life Estimation of Aircraft Engines Using Differentiable Architecture Search

Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have been widely used to solve RUL problems. The network architecture has a crucial impact on the experiential perfor...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 10; no. 3; p. 352
Main Authors Mao, Pengli, Lin, Yan, Xue, Song, Zhang, Baochang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math10030352

Cover

Abstract Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have been widely used to solve RUL problems. The network architecture has a crucial impact on the experiential performance. However, most of the network architectures are designed manually based on human experience with a large cost of time. To address these challenges, we propose a neural architecture search (NAS) method based on gradient descent. In this study, we construct the search space with a directed acyclic graph (DAG), where a subgraph represents a network architecture. By using softmax relaxation, the search space becomes continuous and differentiable, then the gradient descent can be used for optimization. Moreover, a partial channel connection method is introduced to accelerate the searching efficiency. The experiment is conducted on C-MAPSS dataset. In the data processing step, a fault detection method is proposed based on the k-means algorithm, which drops large valueless data and promotes the estimation performance. The experimental result shows that our method achieves superior performance with the highest estimation accuracy compared with other popular studies.
AbstractList Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have been widely used to solve RUL problems. The network architecture has a crucial impact on the experiential performance. However, most of the network architectures are designed manually based on human experience with a large cost of time. To address these challenges, we propose a neural architecture search (NAS) method based on gradient descent. In this study, we construct the search space with a directed acyclic graph (DAG), where a subgraph represents a network architecture. By using softmax relaxation, the search space becomes continuous and differentiable, then the gradient descent can be used for optimization. Moreover, a partial channel connection method is introduced to accelerate the searching efficiency. The experiment is conducted on C-MAPSS dataset. In the data processing step, a fault detection method is proposed based on the k-means algorithm, which drops large valueless data and promotes the estimation performance. The experimental result shows that our method achieves superior performance with the highest estimation accuracy compared with other popular studies.
Author Mao, Pengli
Lin, Yan
Xue, Song
Zhang, Baochang
Author_xml – sequence: 1
  givenname: Pengli
  surname: Mao
  fullname: Mao, Pengli
– sequence: 2
  givenname: Yan
  surname: Lin
  fullname: Lin, Yan
– sequence: 3
  givenname: Song
  surname: Xue
  fullname: Xue, Song
– sequence: 4
  givenname: Baochang
  surname: Zhang
  fullname: Zhang, Baochang
BookMark eNqFkd9LHDEQgENRqFXf-gcs9LVb82M32Twe9lqFg0KrjxJmdydnjjU5kyxy_31znohIoXlJJvnmY2byiRz54JGQz4x-E0LTiwfI94xSQUXLP5ATzrmqVXk4enP-SM5T2tCyNBNdo0_I3W98AOedX1e3Ce08VStnsVqm7IrQBV8FWy1cHCLYXC392nlMBd0nfHfWYkSfHfQTVos43LuMQ54jVn8QSnhGji1MCc9f9lNy-2N5c3lVr379vL5crOpBSJVr0VsGGjiCBSoQm553dKRaiUaAlIKDbGVrlYCOqa5tobfYI7Os1zgKVOKUXB-8Y4CN2cZSe9yZAM48X4S4NhCzGyY0AsdWDI2VrNMN9EpLPXay76iWvMS0uOqDa_Zb2D3BNL0KGTX7UZu3oy78lwO_jeFxxpTNJszRl3YNl1wpqtpuX-HXAzXEkFJE-z8pf4cPLj__R47gpn8n_QU-Sp7l
CitedBy_id crossref_primary_10_1088_1402_4896_ad7bfd
crossref_primary_10_1016_j_ifacol_2024_07_582
crossref_primary_10_3390_electronics12143199
crossref_primary_10_1109_ACCESS_2023_3347263
Cites_doi 10.1609/aaai.v32i1.11709
10.1109/PHM.2008.4711423
10.1016/j.compind.2019.02.004
10.23919/FRUCT49677.2020.9211058
10.1038/nature14539
10.1109/72.265960
10.1109/PHM.2008.4711422
10.1109/PHM.2008.4711414
10.1016/j.asoc.2021.107474
10.1007/s11042-017-5204-x
10.1016/j.ejor.2010.11.018
10.3390/math9111245
10.1016/j.ress.2018.11.027
10.1162/neco.1997.9.8.1735
10.1016/j.neucom.2017.05.063
10.1126/science.1091277
10.1162/106365602320169811
10.1109/ACCESS.2019.2919566
10.1016/j.ress.2017.11.021
10.3390/math9233035
10.3390/math9091002
10.1016/j.asoc.2020.106344
10.1109/PHM-Chongqing.2018.00184
10.1109/TPAMI.2020.2969193
10.1109/CVPR.2018.00907
10.1016/j.neucom.2021.01.072
10.1109/ACCESS.2020.2976595
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math10030352
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_3ed53c4f61894ab7969d86b809624ab0
10.3390/math10030352
10_3390_math10030352
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c367t-3bf1a9a2eafa03ee4b280d097343a6632a6565f73a817855abfebe1f1b9ed3e73
IEDL.DBID UNPAY
ISSN 2227-7390
IngestDate Tue Oct 14 19:04:18 EDT 2025
Sun Oct 26 04:06:41 EDT 2025
Fri Jul 25 11:53:05 EDT 2025
Thu Oct 16 04:41:50 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-3bf1a9a2eafa03ee4b280d097343a6632a6565f73a817855abfebe1f1b9ed3e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-7390/10/3/352/pdf?version=1644463364
PQID 2627707587
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_3ed53c4f61894ab7969d86b809624ab0
unpaywall_primary_10_3390_math10030352
proquest_journals_2627707587
crossref_primary_10_3390_math10030352
crossref_citationtrail_10_3390_math10030352
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Elsken (ref_15) 2019; 20
Li (ref_43) 2019; 7
Kenneth (ref_20) 2002; 10
Zabihia (ref_41) 2019; 108
ref_14
ref_36
ref_13
Zhao (ref_28) 2021; 438
ref_12
ref_34
Zhang (ref_37) 2016; 99
ref_31
ref_30
Deng (ref_44) 2020; 93
ref_18
ref_39
ref_16
Jaeger (ref_10) 2004; 304
Ellefsen (ref_42) 2019; 183
Hochreiter (ref_11) 1997; 9
Singh (ref_40) 2017; 78
Ramasso (ref_35) 2014; 5
Li (ref_46) 2020; 8
Li (ref_38) 2018; 172
ref_25
Moa (ref_29) 2021; 108
Wu (ref_32) 2018; 275
ref_24
ref_23
ref_45
ref_22
ref_21
LeCun (ref_3) 2015; 521
Hartigan (ref_33) 1979; 28
ref_2
ref_27
ref_26
ref_9
ref_8
Si (ref_1) 2011; 213
ref_5
ref_4
ref_7
Zhong (ref_17) 2021; 43
ref_6
Peter (ref_19) 1994; 5
References_xml – ident: ref_7
– ident: ref_30
  doi: 10.1609/aaai.v32i1.11709
– ident: ref_5
  doi: 10.1109/PHM.2008.4711423
– volume: 108
  start-page: 186
  year: 2019
  ident: ref_41
  article-title: A multimodal and hybrid deep neural network model for Remaining Useful Life estimation
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.02.004
– ident: ref_24
– volume: 20
  start-page: 1997
  year: 2019
  ident: ref_15
  article-title: Neural Architecture Search: A Survey
  publication-title: J. Mach. Learn. Res.
– ident: ref_26
– ident: ref_34
– ident: ref_45
  doi: 10.23919/FRUCT49677.2020.9211058
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 5
  start-page: 54
  year: 1994
  ident: ref_19
  article-title: An evolutionary algorithm that constructs recurrent neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265960
– ident: ref_4
  doi: 10.1109/PHM.2008.4711422
– ident: ref_2
  doi: 10.1109/PHM.2008.4711414
– volume: 108
  start-page: 107474
  year: 2021
  ident: ref_29
  article-title: Evolutionary neural architecture search for remaining useful life prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107474
– volume: 78
  start-page: 4065
  year: 2017
  ident: ref_40
  article-title: A novel soft computing method for engine rul prediction
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5204-x
– ident: ref_16
– volume: 213
  start-page: 1
  year: 2011
  ident: ref_1
  article-title: Remaining useful life estimation—A review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.11.018
– ident: ref_14
  doi: 10.3390/math9111245
– ident: ref_18
– ident: ref_23
– ident: ref_21
– volume: 5
  start-page: 005
  year: 2014
  ident: ref_35
  article-title: Investigating computational geometry for failure prognostics
  publication-title: Int. J. Progn. Health Manag.
– volume: 183
  start-page: 240
  year: 2019
  ident: ref_42
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.11.027
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_11
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_6
– ident: ref_8
– ident: ref_25
– ident: ref_31
– volume: 275
  start-page: 167
  year: 2018
  ident: ref_32
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– volume: 304
  start-page: 78
  year: 2004
  ident: ref_10
  article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 10
  start-page: 99
  year: 2002
  ident: ref_20
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evol. Comput.
  doi: 10.1162/106365602320169811
– volume: 7
  start-page: 75464
  year: 2019
  ident: ref_43
  article-title: A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919566
– volume: 172
  start-page: 1
  year: 2018
  ident: ref_38
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– ident: ref_27
  doi: 10.3390/math9233035
– ident: ref_9
  doi: 10.3390/math9091002
– ident: ref_13
– volume: 93
  start-page: 106344
  year: 2020
  ident: ref_44
  article-title: A remaining useful life prediction method with long-short term feature processing for aircraft engines
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2020.106344
– ident: ref_36
– ident: ref_39
  doi: 10.1109/PHM-Chongqing.2018.00184
– volume: 28
  start-page: 100
  year: 1979
  ident: ref_33
  article-title: Algorithm AS 136: A K-Means Clustering Algorithm
  publication-title: J. R. Stat. Soc.
– volume: 43
  start-page: 7
  year: 2021
  ident: ref_17
  article-title: BlockQNN: Efficient Block-Wise Neural Network Architecture Generation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2969193
– ident: ref_22
– ident: ref_12
  doi: 10.1109/CVPR.2018.00907
– volume: 99
  start-page: 2306
  year: 2016
  ident: ref_37
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 438
  start-page: 184
  year: 2021
  ident: ref_28
  article-title: A neural architecture search method based on gradient descent for remaining useful life estimation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.072
– volume: 8
  start-page: 41482
  year: 2020
  ident: ref_46
  article-title: A Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters for Domain Adaptation Remaining Useful Life Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976595
SSID ssj0000913849
Score 2.209567
Snippet Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL)....
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 352
SubjectTerms Accident prediction
Aircraft
Aircraft engines
Airplane engines
Algorithms
Computer architecture
Data processing
Design
differentiable architecture search
Fault detection
Food science
Genetic algorithms
Graph theory
Methods
neural architecture search
Neural networks
Optimization
prognostics and health management
remaining useful life estimation
Searching
Useful life
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yF_UgPnF9kYN6kWLzaJMc1xcirgdxYS9SkjTBhbLKPhD_vZO0LvWgXrylJYdhZpL5pp35BqFjYr0h3qeJZSVNOE91op1kSaZDRLeQAvjwHbL_kN8O-N0wG7ZGfYWasJoeuFbcOXNlxiz3OZGKayNUrkqZGwnQm8JzzNZTqVrJVLyDFWGSq7rSnUFefw7474UEl449Rq0YFKn6v-HL5fn4TX-866pqhZqbdbTWYETcq2XbQEtuvIlW-wuC1ekWen6EZZztgAdT5-cVvh95h6_hwNa9iPjV495oYifaz3BNOjjFsT4AXzUzUeBsm8rhXutXAq6rj7fR4Ob66fI2aSYlgIpzMUuY8UQrTZ32OmXOcUNlWgYmHs40YAqqAbZlXjAtiZBZpo0H4xFPjHIlc4LtoM74dex2EXbWQ9ZkFRjRcbj8pOGa5hbWtrQiz7ro7Et3hW1oxMM0i6qAdCJoumhruotOFrvfavqMH_ZdBDMs9gTS6_gCXKFoXKH4yxW66ODLiEVzEqcFzakQgIuk6KLThWF_FWbvP4TZRys0dErEAu8D1JlN5u4Q8MvMHEVX_QSmWe45
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaHtoTR90G2ToEObSzGxJdmSDyVsmg0hNEsIXcilmJEstQGzu90HIf--I7-6PTQ32QhjZjSaGWnm-wA-JtabxPs4sqLkkZQxRui0iFIMHt1SCuDDOeTVJLuYysvb9HYHJl0vTCir7PbEeqMu5zackR_zjCtF_k2rk8XvKLBGhdvVjkIDW2qF8ksNMfYEdnlAxhrA7ul4cn3Tn7oEFEwt86YCXlC-f0xx4a8kLPW692jLN9UQ_v_EnU83swU-3GNVbbmg85fwoo0d2ahR9h7suNkreH7VA6-uXsOPGxrWnA9sunJ-U7Fvd96xMRly06PI5p6N7pZ2iX7NGjDCFavrBthZy5VCNm8qx0ZbVwysqUp-A9Pz8fevF1HLoECiz9Q6EsYnmCN36DEWzknDdVwGhB4pkGINjhTOpV4J1InSaYrGk1ITn5jclcIp8RYGs_nMvQPmrKdsyuakXCdpU9RGIs8sjW1pVZYO4XMnu8K28OKB5aIqKM0Iki62JT2ET_3sRQOr8Z95p0EN_ZwAhl2_mC9_Fq1tFcKVqbDSZ4nOJRqVZ3mpM6MpO-P0HA9hv1Ni0Vroqvi7noZw1Cv20Z95__h3PsAzHnoj6pLufRislxt3QBHL2hy2y_APRbzs0g
  priority: 102
  providerName: ProQuest
Title Remaining Useful Life Estimation of Aircraft Engines Using Differentiable Architecture Search
URI https://www.proquest.com/docview/2627707587
https://www.mdpi.com/2227-7390/10/3/352/pdf?version=1644463364
https://doaj.org/article/3ed53c4f61894ab7969d86b809624ab0
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QE4LM8VhaXyAbigbJPYsZ0T6kLLCrHVakWl5YAi27GhomqrJl0Ev55x4lYFCYS4OdEkcjQPfzOZB8CzxDidOBdHhpZpxFisImUljTLlT3SDLoDzccjzCT-bsndX2VUIuFUhrRJd8VljpH2dZiTQK0fdHtABYoXBqnSvrkMkCZE-OjOUcnYAXZ4hFu9Adzq5GH70E-W2z7bZ7tS_BTHgl8SLdVNntHcONe36f8GYNzeLlfr-Tc3ne8fN-A4U2422WSZfTza1PjE_fuvh-P9fchcOAxIlw1Z07sENu7gPt893bVyrB_DpEpfNBAkyrazbzMn7mbNkhGahrXgkS0eGs7VZK1eTtrVhRZosBPImTF5BC6Lnlgz3fliQNsf5IUzHow-vz6IwjwEZyUUdUe0SlavUKqdiai3TqYxL3--HUYXIJVUIDjMnqJKJkFmmtEMRSVyic1tSK-gRdBbLhX0ExBqHvpnJUVQsQxMrNVMpN7g2pRE868HLLXcKE5qV-5kZ8wKdFs_LYp-XPXi-o161TTr-QHfqGb2j8a21mxvL9eciaGpBbZlRwxxPZM6UFjnPS8m1RF8vxeu4B8dbMSmCvldFylMhEH1J0YMXO9H562Ye_yvhE7iV-pqLJlX8GDr1emOfIhKqdR8O5PhtH7qno8nFZb-JJ_SDCvwE3MMHmw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a22FwQHxqhQE-MC4oWmI7iXOYUMc6dayt0LRKu6BgOzZMitrStJr2z_G38Zw4oRzYbbcksiznvef3Yb_3fgDvI21VZG0YaFbQgPNQBtIIFsTSWXSNIYB155DjSTKc8i9X8dUW_G5rYVxaZasTa0VdzLU7Iz-kCU1TtG8i_bT4FTjUKHe72kJoSA-tUBzVLcZ8Yce5ub3BEK46OjtBfh9Qejq4_DwMPMoALi9JVwFTNpKZpEZaGTJjuKIiLFwXG84k2mMq0eWJbcqkcEj2sVQWfzyykcpMwUzKcN4HsMMZzzD42zkeTL5edKc8ruum4FmTcc9YFh6iH_ozclurrnXasIU1ZMA_fu7ueraQtzeyLDdM3ukTeOx9VdJvhOspbJnZM3g07hq9Vs_h2wU-1hgTZFoZuy7J6NoaMkDF0dREkrkl_eulXkq7Ik3zw4rUeQrkxGOzoI5RpSH9jSsN0mRBv4DpvdDyJWzP5jOzB8Roi9GbzlCYDEclLBSXNNH4rAudJnEPPra0y7VvZ-5QNcocwxpH6XyT0j046EYvmjYe_xl37NjQjXHNt-sP8-WP3O_lnJkiZprbJBIZlyrNkqwQiRIYDVJ8D3uw3zIx9xqhyv_Kbw8-dIy9czGv7p7nHewOL8ejfHQ2OX8ND6mry6jTyfdhe7VcmzfoLa3UWy-SBL7f9y74AwVnKrc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKrVwqEof6vJofYBeqmgT24mdA6qWLssbVVVX4lIF27EBabW7bBYh_lp_Xcd5dXsoN25JZFnOzHge9sx8ANuRcTpyLgwMy2nAeagCZSULYuUtusEQwPlzyLPz5HDIjy_iiyX43dTC-LTKRieWijqfGH9G3qUJFQLtmxRdV6dFfO8Pvk5vA48g5W9aGziNSkRO7MM9hm_F7lEfeb1D6WD_57fDoEYYwKUlYh4w7SKVKmqVUyGzlmsqw9x3sOFMoS2mCt2d2AmmpEexj5V2-NORi3Rqc2YFw3mfwXPhu7j7KvXBQXu-4_ttSp5WufaMpWEXPdDryG-qssppwQqWYAH_eLgv78ZT9XCvRqMFYzd4Da9qL5X0KrFagyU7fgOrZ22L1-It_PqBjyW6BBkWFolFTm-cJfuoMqpqSDJxpHczMzPl5qRqe1iQMkOB9GtUFtQuemRJb-Eyg1T5z-9g-CSUfA_L48nYfgBijcO4zaQoRpaj-pWaK5oYfDa5EUncgS8N7TJTNzL3eBqjDAMaT-lskdId2GlHT6sGHv8Zt-fZ0I7xbbfLD5PZVVbv4ozZPGaGuySSKVdapEmay0RLjAMpvocd2GyYmNW6oMj-Sm4HPreMfXQx64_P8wleoOxnp0fnJxuwQn1BRplHvgnL89md3UI3aa4_lvJI4PKpN8Af6CooUQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wA8bPyaKGzID8ALyprYju08oW5smhCbEKLSeECR7dhQEbVVkw7BX885cauCBEK8OdElcnTn83fO3XcAzzLrTeZ9mlhW0YTzVCfaKZbkOuzoFkMAH84hLy7F-YS_ucqv4oFbE9MqMRSfdk461GkmEqNyXNsjNkKsMFpU_tV1PElCpI_BDGOC34QdkSMWH8DO5PLd-GPoKLd-ts92Z-EtiAG_ZMGsuzqjrX2oo-v_BWPeWs0W-vs3Xddb283ZHpTrifZZJl-PVq05sj9-43D8_y-5C7sRiZJxbzr34Iab3Yc7Fxsa1-YBfHqPw66DBJk0zq9q8nbqHTlFt9BXPJK5J-Pp0i61b0lPbdiQLguBvI6dV9CDmNqR8dYPC9LnOD-Eydnph5PzJPZjQEUK2SbM-EwXmjrtdcqc44aqtAp8P5xpRC5UIzjMvWRaZVLluTYeTSTzmSlcxZxk-zCYzWfuERBnPcZmtkBTcRxdrDJcU2FxbCsrRT6El2vtlDaSlYeeGXWJQUvQZbmtyyE830gvepKOP8gdB0VvZAK1dndjvvxcxpVaMlflzHIvMlVwbWQhikoJozDWo3idDuFgbSZlXO9NSQWVEtGXkkN4sTGdv07m8b8KPoHbNNRcdKniBzBolyt3iEioNU-juf8Eb8UEJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Estimation+of+Aircraft+Engines+Using+Differentiable+Architecture+Search&rft.jtitle=Mathematics+%28Basel%29&rft.au=Mao%2C+Pengli&rft.au=Lin%2C+Yan&rft.au=Xue%2C+Song&rft.au=Zhang%2C+Baochang&rft.date=2022-02-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=3&rft.spage=352&rft_id=info:doi/10.3390%2Fmath10030352&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10030352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon