Simulation‐based estimators of analytically intractable causal effects

In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirec...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 78; no. 3; pp. 1001 - 1017
Main Author Linero, Antonio R.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.09.2022
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.13499

Cover

Abstract In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g‐computation algorithms. We refer to our method as accelerated g‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.
AbstractList In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data-generating mechanism. Relevant settings include estimating intention-to-treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g-formula implemented via Monte Carlo integration; when simulation-based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely-applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g-computation algorithms. We refer to our method as accelerated g-computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within-imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data-generating mechanism. Relevant settings include estimating intention-to-treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g-formula implemented via Monte Carlo integration; when simulation-based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely-applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g-computation algorithms. We refer to our method as accelerated g-computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within-imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.
In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g‐computation algorithms. We refer to our method as accelerated g‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.
In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g ‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g ‐computation algorithms. We refer to our method as accelerated g ‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.
In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g‐computation algorithms. We refer to our method as accelerated g‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.
Author Linero, Antonio R.
Author_xml – sequence: 1
  givenname: Antonio R.
  orcidid: 0000-0002-9531-5667
  surname: Linero
  fullname: Linero, Antonio R.
  email: antonio.linero@austin.utexas.edu
  organization: University of Texas at Austin
BookMark eNqFkcFKxDAQhoOs4O7qxScoeBGha6ZJm-aoi7oLyh5U8FaSmEKWtFmbFunNR_AZfRKzW0-L6FyGge8fZv5_gka1qzVCp4BnEOpSGlfNgFDOD9AYUgoxpgkeoTHGOIsJhZcjNPF-HUae4mSMFo-m6qxojau_Pj6l8Po10r41lWhd4yNXRqIWtm-NEtb2kanbRqhWSKsjJTovbKTLUqvWH6PDUlivT376FD3f3jzNF_H96m45v7qPFckYj4HLnCiBlQwj5YTJnHJQhJQgNVOZTmkClDBFGAOtQEjIQCZSAysxyXMyRefD3k3j3rpwalEZr7S1otau80WSA3CWEAz_oymhGeSMkYCe7aFr1zXh80Ax4FmKszQNFB4o1TjvG10WyrQ774IrxhaAi20KxTaFYpdCkFzsSTZNMLfpf4dhgN-N1f0fZHG9XD0Mmm87GZoI
CitedBy_id crossref_primary_10_1002_wics_1583
crossref_primary_10_1111_biom_13886
crossref_primary_10_1177_09622802231173491
crossref_primary_10_1093_biomtc_ujae145
Cites_doi 10.1016/0270-0255(86)90088-6
10.1198/016214504000001880
10.18637/jss.v059.i05
10.1002/sim.5864
10.1080/01621459.1987.10478440
10.2307/2685844
10.1017/S0266466612000655
10.1093/biomet/85.4.935
10.1080/01621459.2014.969424
10.1093/biomet/87.1.113
10.1037/0022-3514.51.6.1173
10.1037/a0020761
10.1111/j.1751-5823.2003.tb00214.x
10.1214/aos/1176345338
10.1097/00001648-200009000-00011
10.1146/annurev-statistics-031219-041110
10.1111/biom.12575
10.1093/biomet/90.1.53
10.1111/biom.12863
10.1111/biom.13417
10.1201/b10905
10.1214/12-EJS675
10.1080/01621459.1999.10473862
10.1214/11-AOS921
10.1214/19-AOS1919
10.1214/17-STS630
10.1111/j.1467-9469.2004.02-123.x
10.1093/biomet/asu060
10.1080/19466315.2014.966920
10.1177/0962280210395740
10.1177/1536867X1201100401
ContentType Journal Article
Copyright 2021 The International Biometric Society.
2022 The International Biometric Society.
Copyright_xml – notice: 2021 The International Biometric Society.
– notice: 2022 The International Biometric Society.
DBID AAYXX
CITATION
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13499
DatabaseName CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Computer Science Collection
CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1017
ExternalDocumentID 10_1111_biom_13499
BIOM13499
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS 1712870
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAWIL
AAYXX
ABAWQ
ABGNP
ACHJO
ADNBA
AEFGJ
AEOTA
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJBYB
AJNCP
CITATION
ESTFP
H13
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
AGORE
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c3679-19b83ca0cb3674937b8491c33f1be7c6e5421437c3771ec1ab161b2be17f03883
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Oct 03 00:16:47 EDT 2025
Mon Sep 29 04:50:12 EDT 2025
Wed Aug 13 02:48:55 EDT 2025
Wed Oct 01 01:41:40 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Wed Jan 22 16:21:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3679-19b83ca0cb3674937b8491c33f1be7c6e5421437c3771ec1ab161b2be17f03883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9531-5667
PQID 2719650655
PQPubID 35366
PageCount 17
ParticipantIDs proquest_miscellaneous_2811972301
proquest_miscellaneous_2534618773
proquest_journals_2719650655
crossref_citationtrail_10_1111_biom_13499
crossref_primary_10_1111_biom_13499
wiley_primary_10_1111_biom_13499_BIOM13499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Biometrics
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2013; 29
2010; 15
1986; 51
2013; 22
2011
2015; 102
2010
2000; 87
2011; 11
2007
1981; 9
2003; 19
2003; 71
1998; 85
1983; 37
2017; 73
2020; 7
2004b; 81
2003; 90
1987; 82
1986; 7
2005; 100
2013; 32
2020
2000; 11
2004a; 31
2015; 110
2019
2014; 59
2020; 48
2018; 74
1999; 94
2012; 6
2018; 33
2014; 6
2012; 40
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
National Research Council (e_1_2_9_21_1) 2010
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Rubin D.B. (e_1_2_9_31_1) 2004
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Ghosh J.K. (e_1_2_9_10_1) 2007
e_1_2_9_9_1
e_1_2_9_26_1
Tsiatis A.A. (e_1_2_9_38_1) 2007
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Raghunathan T.E. (e_1_2_9_23_1) 2003; 19
e_1_2_9_29_1
References_xml – year: 2011
– volume: 37
  start-page: 36
  year: 1983
  end-page: 48
  article-title: A leisurely look at the bootstrap, the jackknife, and cross‐validation
  publication-title: American Statistician
– volume: 102
  start-page: 203
  year: 2015
  end-page: 214
  article-title: Double‐bootstrap methods that use a single double‐bootstrap simulation
  publication-title: Biometrika
– volume: 6
  start-page: 354
  year: 2012
  end-page: 381
  article-title: The Bernstein‐von‐Mises theorem under misspecification
  publication-title: Electronic Journal of Statistics
– volume: 48
  start-page: 2999
  year: 2020
  end-page: 3020
  article-title: Semiparametric Bayesian causal inference
  publication-title: Annals of Statistics
– volume: 81
  year: 2004b
– volume: 11
  start-page: 479
  year: 2011
  end-page: 517
  article-title: gformula: Estimating causal effects in the presence of time‐varying confounding or mediation using the g‐computation formula
  publication-title: Stata Journal
– start-page: 8137
  year: 2020
  end-page: 8146
  article-title: On semi‐parametric inference for BART
– year: 2007
– volume: 90
  start-page: 53
  year: 2003
  end-page: 71
  article-title: Pattern‐mixture models with proper time dependence
  publication-title: Biometrika
– volume: 85
  start-page: 935
  year: 1998
  end-page: 948
  article-title: Large‐sample theory for parametric multiple imputation procedures
  publication-title: Biometrika
– volume: 100
  start-page: 322
  year: 2005
  end-page: 331
  article-title: Causal inference using potential outcomes
  publication-title: Journal of the American Statistical Association
– volume: 33
  start-page: 198
  year: 2018
  end-page: 213
  article-title: Bayesian approaches for missing not at random outcome data: the role of identifying restrictions
  publication-title: Statistical Science
– volume: 22
  start-page: 278
  year: 2013
  end-page: 295
  article-title: Review of inverse probability weighting for dealing with missing data
  publication-title: Statistical Methods in Medical Research
– volume: 59
  start-page: 1
  year: 2014
  end-page: 38
  article-title: mediation: R package for causal mediation analysis
  publication-title: Journal of Statistical Software
– volume: 51
  start-page: 1173
  year: 1986
  end-page: 1182
  article-title: The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations
  publication-title: Journal of Personality and Social Psychology
– volume: 11
  start-page: 550
  year: 2000
  end-page: 560
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology
– volume: 87
  start-page: 113
  year: 2000
  end-page: 124
  article-title: Inference for imputation estimators
  publication-title: Biometrika
– year: 2010
– volume: 29
  start-page: 567
  year: 2013
  end-page: 589
  article-title: A warp‐speed method for conducting Monte Carlo experiments involving bootstrap estimators
  publication-title: Econometric Theory
– volume: 7
  start-page: 251
  year: 2020
  end-page: 278
  article-title: Bayesian additive regression trees: A review and look forward
  publication-title: Annual Review of Statistics and Its Application
– volume: 73
  start-page: 401
  year: 2017
  end-page: 409
  article-title: A framework for Bayesian nonparametric inference for causal effects of mediation
  publication-title: Biometrics
– volume: 32
  start-page: 4567
  year: 2013
  end-page: 4580
  article-title: Inverse odds ratio‐weighted estimation for causal mediation analysis
  publication-title: Statistics in Medicine
– volume: 71
  start-page: 593
  year: 2003
  end-page: 607
  article-title: Proper and improper multiple imputation
  publication-title: International Statistical Review
– volume: 110
  start-page: 45
  year: 2015
  end-page: 55
  article-title: A flexible Bayesian approach to monotone missing data in longitudinal studies with informative dropout with application to a Schizophrenia Clinical Trial
  publication-title: Journal of the American Statistical Association
– volume: 82
  start-page: 371
  year: 1987
  end-page: 386
  article-title: Generalized additive models: some applications
  publication-title: Journal of the American Statistical Association
– volume: 74
  start-page: 986
  year: 2018
  end-page: 996
  article-title: A Bayesian nonparametric approach to causal inference on quantiles
  publication-title: Biometrics
– volume: 7
  start-page: 1393
  year: 1986
  end-page: 1512
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survival effect
  publication-title: Mathematical Modelling
– volume: 9
  start-page: 130
  year: 1981
  end-page: 134
  article-title: The Bayesian bootstrap
  publication-title: Annals of Statistics
– volume: 94
  start-page: 1096
  year: 1999
  end-page: 1120
  article-title: Adjusting for nonignorable dropout using semiparametric nonresponse models
  publication-title: Journal of the American Statistical Association
– volume: 40
  start-page: 206
  year: 2012
  end-page: 237
  article-title: The semiparametric Bernstein–von Mises theorem
  publication-title: Annals of Statistics
– volume: 19
  start-page: 1
  year: 2003
  end-page: 16
  article-title: Multiple imputation for statistical disclosure limitation
  publication-title: Journal of Official Statistics
– volume: 6
  start-page: 338
  year: 2014
  end-page: 348
  article-title: Global sensitivity analysis for repeated measures studies with informative dropout: a fully parametric approach
  publication-title: Statistics in Biopharmaceutical Research
– year: 2019
– volume: 15
  start-page: 309
  year: 2010
  end-page: 334
  article-title: A general approach to causal mediation analysis
  publication-title: Psychological Methods
– start-page: 1
  year: 2020
  end-page: 15
  article-title: Causal inference in high dimensions: A marriage between Bayesian modeling and good frequentist properties
  publication-title: Biometrics
– volume: 31
  start-page: 161
  year: 2004a
  end-page: 170
  article-title: Direct and indirect causal effects via potential outcomes
  publication-title: Scandinavian Journal of Statistics
– ident: e_1_2_9_25_1
  doi: 10.1016/0270-0255(86)90088-6
– ident: e_1_2_9_32_1
  doi: 10.1198/016214504000001880
– ident: e_1_2_9_37_1
  doi: 10.18637/jss.v059.i05
– ident: e_1_2_9_36_1
  doi: 10.1002/sim.5864
– volume-title: Multiple imputation for nonresponse in surveys
  year: 2004
  ident: e_1_2_9_31_1
– ident: e_1_2_9_28_1
– ident: e_1_2_9_12_1
  doi: 10.1080/01621459.1987.10478440
– ident: e_1_2_9_9_1
  doi: 10.2307/2685844
– ident: e_1_2_9_11_1
  doi: 10.1017/S0266466612000655
– ident: e_1_2_9_17_1
– ident: e_1_2_9_39_1
  doi: 10.1093/biomet/85.4.935
– ident: e_1_2_9_7_1
– ident: e_1_2_9_19_1
  doi: 10.1080/01621459.2014.969424
– ident: e_1_2_9_27_1
  doi: 10.1093/biomet/87.1.113
– volume: 19
  start-page: 1
  year: 2003
  ident: e_1_2_9_23_1
  article-title: Multiple imputation for statistical disclosure limitation
  publication-title: Journal of Official Statistics
– ident: e_1_2_9_3_1
  doi: 10.1037/0022-3514.51.6.1173
– ident: e_1_2_9_14_1
  doi: 10.1037/a0020761
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1751-5823.2003.tb00214.x
– ident: e_1_2_9_29_1
  doi: 10.1214/aos/1176345338
– volume-title: The Prevention and Treatment of Missing Data in Clinical Trials
  year: 2010
  ident: e_1_2_9_21_1
– ident: e_1_2_9_26_1
  doi: 10.1097/00001648-200009000-00011
– ident: e_1_2_9_13_1
  doi: 10.1146/annurev-statistics-031219-041110
– ident: e_1_2_9_16_1
  doi: 10.1111/biom.12575
– ident: e_1_2_9_15_1
  doi: 10.1093/biomet/90.1.53
– ident: e_1_2_9_40_1
  doi: 10.1111/biom.12863
– ident: e_1_2_9_2_1
  doi: 10.1111/biom.13417
– ident: e_1_2_9_5_1
  doi: 10.1201/b10905
– ident: e_1_2_9_18_1
  doi: 10.1214/12-EJS675
– ident: e_1_2_9_34_1
  doi: 10.1080/01621459.1999.10473862
– ident: e_1_2_9_4_1
  doi: 10.1214/11-AOS921
– volume-title: Semiparametric Theory and Missing Data
  year: 2007
  ident: e_1_2_9_38_1
– ident: e_1_2_9_24_1
  doi: 10.1214/19-AOS1919
– ident: e_1_2_9_20_1
  doi: 10.1214/17-STS630
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1467-9469.2004.02-123.x
– ident: e_1_2_9_6_1
  doi: 10.1093/biomet/asu060
– ident: e_1_2_9_33_1
  doi: 10.1080/19466315.2014.966920
– ident: e_1_2_9_35_1
  doi: 10.1177/0962280210395740
– volume-title: An Introduction to Bayesian Analysis: Theory and Methods
  year: 2007
  ident: e_1_2_9_10_1
– ident: e_1_2_9_8_1
  doi: 10.1177/1536867X1201100401
SSID ssj0009502
Score 2.399728
Snippet In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating...
In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data-generating...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1001
SubjectTerms Algorithms
Bayesian analysis
Bayesian inference
Bayesian theory
bootstrap
causal inference
clinical trials
Computation
Computer applications
Computer simulation
Inference
Integration
Markov chain
Markov chains
Missing data
multiple imputation
Regression analysis
Regression models
sensitivity analysis
Standard error
variance
Title Simulation‐based estimators of analytically intractable causal effects
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13499
https://www.proquest.com/docview/2719650655
https://www.proquest.com/docview/2534618773
https://www.proquest.com/docview/2811972301
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEOrBR1WsLyJ6UUjpZjfZBLyoWKpQBR_Qi4TsdgNFbcW0Bz35E_yN_hJnNkmtIoLeEjJLNrs7u99MZr4B2JVSR0IjctPS-K5Ioy4FAUSur0w31GhypTbDu30etG7EWcfvTMFBmQuT80OMHW6kGXa_JgVPVDah5JSeXidyPcreYzyw9tSlN8G428ipwim4S7BOwU1KYTyfTb-eRp8QcxKo2pOmOQ-3ZR_zAJO7-mio6vrlG33jfz9iAeYKCOoc5mtmEaZMvwozeVHK5yrMtsdMrlkVKoRGczLnJWhd9R6Kcl_vr290AHYdYul4IMs9cwapkxDHiXWP3z87PXIc6yElZzk6GWX40iJ8ZBlumifXxy23KMXgah7IyGWRCrlOGlrhrUBIo0IRMc15ypSROjC-8BB5Sc2lZEazRCGSVJ4yTKbEN8NXYLo_6JtVcHDTSBDRNxQCKeGLIGFB6pk0ROxgutigBnvllMS64Cmnchn3cWmv0KDFdtBqsDOWfczZOX6U2ihnNi40NIs9SVyKCMD8GmyPH6Nu0Q-TpG8GI5TxuQhYKCX_RSbMK7c1sOP7dqp_6Ul8dHrRtldrfxFeh4pHWRc2tG0DpodPI7OJWGiotuya_wANpgWM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58IOrBR1Wsz4heFFK6ySabHFWUVq2CWugtZDcbKGorpj3oyZ_gb_SXOLNJaxUR9JaQWbKPzO43k5lvAPaEUCFXiNyU0J7N0zChIIDQ9qROAoUmV2oyvBuXfq3Jz1peq4jNoVyYnB9i6HAjzTD7NSk4OaRHtJzy0yvErheOwyT30VAhTHTtjHDuVnOycArv4qxVsJNSIM9n26_n0SfIHIWq5qw5nc8LqmaGopBCTO4q_Z6sqJdvBI7_HsYCzBUo1DrMP5tFGNOdEkzldSmfSzDbGJK5ZiWYIUCa8zkvQe2m_VBU_Hp_faMzMLGIqOOBjPfM6qZWTDQnxkN-_2y1yXesepSfZam4n-FLiwiSZWientwe1-yiGoOtXF-ENgtl4Kq4qiTeckQ1MuAhU66bMqmF8rXHHQRfQrlCMK1YLBFMSkdqJlKinHFXYKLT7ehVsHDfiBHUVyViKe5xP2Z-6ug0QPigE2xQhv3BmkSqoCqnihn30cBkoUmLzKSVYXco-5gTdPwotTFY2qhQ0ixyBNEpIgbzyrAzfIzqRf9M4o7u9lHGc7nPAiHcX2SCvHhbFTt-YNb6l55ER_Wrhrla-4vwNkzXbhsX0UX98nwdZhxKwjCRbhsw0Xvq602ERj25ZRTgA2pFCa0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCAQHlgKirEFwASlVnThxcmSrylJALFJvUew4EgJaRNoDnPgEvpEvYcZJS0EICW6JMlYc22M_O2_eAGwJoUKuELkpoT2bp2FCJIDQ9qROAoVbrtREeDfO_PoNP256zYKbQ7EwuT5E_8CNPMPM1-Tg-jFJB7yc4tMrpK4XDsMo98KAGH0Hl86A5m41FwsnehdnzUKdlIg8n2W_rkefIHMQqpq1pjadJ1TNjEQhUUzuKt2OrKiXbwKO__6MGZgqUKi1mw-bWRjSrRKM5Xkpn0sw2eiLuWYlmCBAmus5z0H96vahyPj1_vpGa2BikVDHA23eM6udWjHJnJgT8vtn65bOjlWH4rMsFXczfGnBIJmHm9rh9X7dLrIx2Mr1RWizUAauiqtK4i1HVCMDHjLluimTWihfe9xB8CWUKwTTisUSwaR0pGYiJckZdwFGWu2WXgQL540YQX1VIpbiHvdj5qeOTgOEDzrBAmXY7vVJpAqpcsqYcR_1tizUaJFptDJs9m0fc4GOH61Wel0bFU6aRY4gOUXEYF4ZNvqP0b3on0nc0u0u2ngu91kghPuLTZAnb6tixXdMX_9Sk2jv6Lxhrpb-YrwO4xcHtej06OxkGSYcisEwRLcVGOk8dfUqIqOOXDPj_wMFEgkx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation%E2%80%90based+estimators+of+analytically+intractable+causal+effects&rft.jtitle=Biometrics&rft.au=Linero%2C+Antonio+R&rft.date=2022-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=78&rft.issue=3&rft.spage=1001&rft.epage=1017&rft_id=info:doi/10.1111%2Fbiom.13499&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon