Simulation‐based estimators of analytically intractable causal effects
In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirec...
Saved in:
| Published in | Biometrics Vol. 78; no. 3; pp. 1001 - 1017 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Washington
Blackwell Publishing Ltd
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-341X 1541-0420 1541-0420 |
| DOI | 10.1111/biom.13499 |
Cover
| Abstract | In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g‐computation algorithms. We refer to our method as accelerated g‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model. |
|---|---|
| AbstractList | In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data-generating mechanism. Relevant settings include estimating intention-to-treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g-formula implemented via Monte Carlo integration; when simulation-based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely-applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g-computation algorithms. We refer to our method as accelerated g-computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within-imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data-generating mechanism. Relevant settings include estimating intention-to-treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g-formula implemented via Monte Carlo integration; when simulation-based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely-applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g-computation algorithms. We refer to our method as accelerated g-computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within-imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model. In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g‐computation algorithms. We refer to our method as accelerated g‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model. In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g ‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g ‐computation algorithms. We refer to our method as accelerated g ‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model. In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the g‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existing g‐computation algorithms. We refer to our method as accelerated g‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model. |
| Author | Linero, Antonio R. |
| Author_xml | – sequence: 1 givenname: Antonio R. orcidid: 0000-0002-9531-5667 surname: Linero fullname: Linero, Antonio R. email: antonio.linero@austin.utexas.edu organization: University of Texas at Austin |
| BookMark | eNqFkcFKxDAQhoOs4O7qxScoeBGha6ZJm-aoi7oLyh5U8FaSmEKWtFmbFunNR_AZfRKzW0-L6FyGge8fZv5_gka1qzVCp4BnEOpSGlfNgFDOD9AYUgoxpgkeoTHGOIsJhZcjNPF-HUae4mSMFo-m6qxojau_Pj6l8Po10r41lWhd4yNXRqIWtm-NEtb2kanbRqhWSKsjJTovbKTLUqvWH6PDUlivT376FD3f3jzNF_H96m45v7qPFckYj4HLnCiBlQwj5YTJnHJQhJQgNVOZTmkClDBFGAOtQEjIQCZSAysxyXMyRefD3k3j3rpwalEZr7S1otau80WSA3CWEAz_oymhGeSMkYCe7aFr1zXh80Ax4FmKszQNFB4o1TjvG10WyrQ774IrxhaAi20KxTaFYpdCkFzsSTZNMLfpf4dhgN-N1f0fZHG9XD0Mmm87GZoI |
| CitedBy_id | crossref_primary_10_1002_wics_1583 crossref_primary_10_1111_biom_13886 crossref_primary_10_1177_09622802231173491 crossref_primary_10_1093_biomtc_ujae145 |
| Cites_doi | 10.1016/0270-0255(86)90088-6 10.1198/016214504000001880 10.18637/jss.v059.i05 10.1002/sim.5864 10.1080/01621459.1987.10478440 10.2307/2685844 10.1017/S0266466612000655 10.1093/biomet/85.4.935 10.1080/01621459.2014.969424 10.1093/biomet/87.1.113 10.1037/0022-3514.51.6.1173 10.1037/a0020761 10.1111/j.1751-5823.2003.tb00214.x 10.1214/aos/1176345338 10.1097/00001648-200009000-00011 10.1146/annurev-statistics-031219-041110 10.1111/biom.12575 10.1093/biomet/90.1.53 10.1111/biom.12863 10.1111/biom.13417 10.1201/b10905 10.1214/12-EJS675 10.1080/01621459.1999.10473862 10.1214/11-AOS921 10.1214/19-AOS1919 10.1214/17-STS630 10.1111/j.1467-9469.2004.02-123.x 10.1093/biomet/asu060 10.1080/19466315.2014.966920 10.1177/0962280210395740 10.1177/1536867X1201100401 |
| ContentType | Journal Article |
| Copyright | 2021 The International Biometric Society. 2022 The International Biometric Society. |
| Copyright_xml | – notice: 2021 The International Biometric Society. – notice: 2022 The International Biometric Society. |
| DBID | AAYXX CITATION JQ2 7X8 7S9 L.6 |
| DOI | 10.1111/biom.13499 |
| DatabaseName | CrossRef ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 1017 |
| ExternalDocumentID | 10_1111_biom_13499 BIOM13499 |
| Genre | article |
| GrantInformation_xml | – fundername: National Science Foundation funderid: DMS 1712870 |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAWIL AAYXX ABAWQ ABGNP ACHJO ADNBA AEFGJ AEOTA AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJBYB AJNCP CITATION ESTFP H13 PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO AGORE JQ2 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3679-19b83ca0cb3674937b8491c33f1be7c6e5421437c3771ec1ab161b2be17f03883 |
| IEDL.DBID | DR2 |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Fri Oct 03 00:16:47 EDT 2025 Mon Sep 29 04:50:12 EDT 2025 Wed Aug 13 02:48:55 EDT 2025 Wed Oct 01 01:41:40 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Wed Jan 22 16:21:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3679-19b83ca0cb3674937b8491c33f1be7c6e5421437c3771ec1ab161b2be17f03883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9531-5667 |
| PQID | 2719650655 |
| PQPubID | 35366 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2811972301 proquest_miscellaneous_2534618773 proquest_journals_2719650655 crossref_citationtrail_10_1111_biom_13499 crossref_primary_10_1111_biom_13499 wiley_primary_10_1111_biom_13499_BIOM13499 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Biometrics |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2013; 29 2010; 15 1986; 51 2013; 22 2011 2015; 102 2010 2000; 87 2011; 11 2007 1981; 9 2003; 19 2003; 71 1998; 85 1983; 37 2017; 73 2020; 7 2004b; 81 2003; 90 1987; 82 1986; 7 2005; 100 2013; 32 2020 2000; 11 2004a; 31 2015; 110 2019 2014; 59 2020; 48 2018; 74 1999; 94 2012; 6 2018; 33 2014; 6 2012; 40 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 National Research Council (e_1_2_9_21_1) 2010 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Rubin D.B. (e_1_2_9_31_1) 2004 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Ghosh J.K. (e_1_2_9_10_1) 2007 e_1_2_9_9_1 e_1_2_9_26_1 Tsiatis A.A. (e_1_2_9_38_1) 2007 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Raghunathan T.E. (e_1_2_9_23_1) 2003; 19 e_1_2_9_29_1 |
| References_xml | – year: 2011 – volume: 37 start-page: 36 year: 1983 end-page: 48 article-title: A leisurely look at the bootstrap, the jackknife, and cross‐validation publication-title: American Statistician – volume: 102 start-page: 203 year: 2015 end-page: 214 article-title: Double‐bootstrap methods that use a single double‐bootstrap simulation publication-title: Biometrika – volume: 6 start-page: 354 year: 2012 end-page: 381 article-title: The Bernstein‐von‐Mises theorem under misspecification publication-title: Electronic Journal of Statistics – volume: 48 start-page: 2999 year: 2020 end-page: 3020 article-title: Semiparametric Bayesian causal inference publication-title: Annals of Statistics – volume: 81 year: 2004b – volume: 11 start-page: 479 year: 2011 end-page: 517 article-title: gformula: Estimating causal effects in the presence of time‐varying confounding or mediation using the g‐computation formula publication-title: Stata Journal – start-page: 8137 year: 2020 end-page: 8146 article-title: On semi‐parametric inference for BART – year: 2007 – volume: 90 start-page: 53 year: 2003 end-page: 71 article-title: Pattern‐mixture models with proper time dependence publication-title: Biometrika – volume: 85 start-page: 935 year: 1998 end-page: 948 article-title: Large‐sample theory for parametric multiple imputation procedures publication-title: Biometrika – volume: 100 start-page: 322 year: 2005 end-page: 331 article-title: Causal inference using potential outcomes publication-title: Journal of the American Statistical Association – volume: 33 start-page: 198 year: 2018 end-page: 213 article-title: Bayesian approaches for missing not at random outcome data: the role of identifying restrictions publication-title: Statistical Science – volume: 22 start-page: 278 year: 2013 end-page: 295 article-title: Review of inverse probability weighting for dealing with missing data publication-title: Statistical Methods in Medical Research – volume: 59 start-page: 1 year: 2014 end-page: 38 article-title: mediation: R package for causal mediation analysis publication-title: Journal of Statistical Software – volume: 51 start-page: 1173 year: 1986 end-page: 1182 article-title: The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations publication-title: Journal of Personality and Social Psychology – volume: 11 start-page: 550 year: 2000 end-page: 560 article-title: Marginal structural models and causal inference in epidemiology publication-title: Epidemiology – volume: 87 start-page: 113 year: 2000 end-page: 124 article-title: Inference for imputation estimators publication-title: Biometrika – year: 2010 – volume: 29 start-page: 567 year: 2013 end-page: 589 article-title: A warp‐speed method for conducting Monte Carlo experiments involving bootstrap estimators publication-title: Econometric Theory – volume: 7 start-page: 251 year: 2020 end-page: 278 article-title: Bayesian additive regression trees: A review and look forward publication-title: Annual Review of Statistics and Its Application – volume: 73 start-page: 401 year: 2017 end-page: 409 article-title: A framework for Bayesian nonparametric inference for causal effects of mediation publication-title: Biometrics – volume: 32 start-page: 4567 year: 2013 end-page: 4580 article-title: Inverse odds ratio‐weighted estimation for causal mediation analysis publication-title: Statistics in Medicine – volume: 71 start-page: 593 year: 2003 end-page: 607 article-title: Proper and improper multiple imputation publication-title: International Statistical Review – volume: 110 start-page: 45 year: 2015 end-page: 55 article-title: A flexible Bayesian approach to monotone missing data in longitudinal studies with informative dropout with application to a Schizophrenia Clinical Trial publication-title: Journal of the American Statistical Association – volume: 82 start-page: 371 year: 1987 end-page: 386 article-title: Generalized additive models: some applications publication-title: Journal of the American Statistical Association – volume: 74 start-page: 986 year: 2018 end-page: 996 article-title: A Bayesian nonparametric approach to causal inference on quantiles publication-title: Biometrics – volume: 7 start-page: 1393 year: 1986 end-page: 1512 article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survival effect publication-title: Mathematical Modelling – volume: 9 start-page: 130 year: 1981 end-page: 134 article-title: The Bayesian bootstrap publication-title: Annals of Statistics – volume: 94 start-page: 1096 year: 1999 end-page: 1120 article-title: Adjusting for nonignorable dropout using semiparametric nonresponse models publication-title: Journal of the American Statistical Association – volume: 40 start-page: 206 year: 2012 end-page: 237 article-title: The semiparametric Bernstein–von Mises theorem publication-title: Annals of Statistics – volume: 19 start-page: 1 year: 2003 end-page: 16 article-title: Multiple imputation for statistical disclosure limitation publication-title: Journal of Official Statistics – volume: 6 start-page: 338 year: 2014 end-page: 348 article-title: Global sensitivity analysis for repeated measures studies with informative dropout: a fully parametric approach publication-title: Statistics in Biopharmaceutical Research – year: 2019 – volume: 15 start-page: 309 year: 2010 end-page: 334 article-title: A general approach to causal mediation analysis publication-title: Psychological Methods – start-page: 1 year: 2020 end-page: 15 article-title: Causal inference in high dimensions: A marriage between Bayesian modeling and good frequentist properties publication-title: Biometrics – volume: 31 start-page: 161 year: 2004a end-page: 170 article-title: Direct and indirect causal effects via potential outcomes publication-title: Scandinavian Journal of Statistics – ident: e_1_2_9_25_1 doi: 10.1016/0270-0255(86)90088-6 – ident: e_1_2_9_32_1 doi: 10.1198/016214504000001880 – ident: e_1_2_9_37_1 doi: 10.18637/jss.v059.i05 – ident: e_1_2_9_36_1 doi: 10.1002/sim.5864 – volume-title: Multiple imputation for nonresponse in surveys year: 2004 ident: e_1_2_9_31_1 – ident: e_1_2_9_28_1 – ident: e_1_2_9_12_1 doi: 10.1080/01621459.1987.10478440 – ident: e_1_2_9_9_1 doi: 10.2307/2685844 – ident: e_1_2_9_11_1 doi: 10.1017/S0266466612000655 – ident: e_1_2_9_17_1 – ident: e_1_2_9_39_1 doi: 10.1093/biomet/85.4.935 – ident: e_1_2_9_7_1 – ident: e_1_2_9_19_1 doi: 10.1080/01621459.2014.969424 – ident: e_1_2_9_27_1 doi: 10.1093/biomet/87.1.113 – volume: 19 start-page: 1 year: 2003 ident: e_1_2_9_23_1 article-title: Multiple imputation for statistical disclosure limitation publication-title: Journal of Official Statistics – ident: e_1_2_9_3_1 doi: 10.1037/0022-3514.51.6.1173 – ident: e_1_2_9_14_1 doi: 10.1037/a0020761 – ident: e_1_2_9_22_1 doi: 10.1111/j.1751-5823.2003.tb00214.x – ident: e_1_2_9_29_1 doi: 10.1214/aos/1176345338 – volume-title: The Prevention and Treatment of Missing Data in Clinical Trials year: 2010 ident: e_1_2_9_21_1 – ident: e_1_2_9_26_1 doi: 10.1097/00001648-200009000-00011 – ident: e_1_2_9_13_1 doi: 10.1146/annurev-statistics-031219-041110 – ident: e_1_2_9_16_1 doi: 10.1111/biom.12575 – ident: e_1_2_9_15_1 doi: 10.1093/biomet/90.1.53 – ident: e_1_2_9_40_1 doi: 10.1111/biom.12863 – ident: e_1_2_9_2_1 doi: 10.1111/biom.13417 – ident: e_1_2_9_5_1 doi: 10.1201/b10905 – ident: e_1_2_9_18_1 doi: 10.1214/12-EJS675 – ident: e_1_2_9_34_1 doi: 10.1080/01621459.1999.10473862 – ident: e_1_2_9_4_1 doi: 10.1214/11-AOS921 – volume-title: Semiparametric Theory and Missing Data year: 2007 ident: e_1_2_9_38_1 – ident: e_1_2_9_24_1 doi: 10.1214/19-AOS1919 – ident: e_1_2_9_20_1 doi: 10.1214/17-STS630 – ident: e_1_2_9_30_1 doi: 10.1111/j.1467-9469.2004.02-123.x – ident: e_1_2_9_6_1 doi: 10.1093/biomet/asu060 – ident: e_1_2_9_33_1 doi: 10.1080/19466315.2014.966920 – ident: e_1_2_9_35_1 doi: 10.1177/0962280210395740 – volume-title: An Introduction to Bayesian Analysis: Theory and Methods year: 2007 ident: e_1_2_9_10_1 – ident: e_1_2_9_8_1 doi: 10.1177/1536867X1201100401 |
| SSID | ssj0009502 |
| Score | 2.399728 |
| Snippet | In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating... In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data-generating... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1001 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian inference Bayesian theory bootstrap causal inference clinical trials Computation Computer applications Computer simulation Inference Integration Markov chain Markov chains Missing data multiple imputation Regression analysis Regression models sensitivity analysis Standard error variance |
| Title | Simulation‐based estimators of analytically intractable causal effects |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13499 https://www.proquest.com/docview/2719650655 https://www.proquest.com/docview/2534618773 https://www.proquest.com/docview/2811972301 |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEOrBR1WsLyJ6UUjpZjfZBLyoWKpQBR_Qi4TsdgNFbcW0Bz35E_yN_hJnNkmtIoLeEjJLNrs7u99MZr4B2JVSR0IjctPS-K5Ioy4FAUSur0w31GhypTbDu30etG7EWcfvTMFBmQuT80OMHW6kGXa_JgVPVDah5JSeXidyPcreYzyw9tSlN8G428ipwim4S7BOwU1KYTyfTb-eRp8QcxKo2pOmOQ-3ZR_zAJO7-mio6vrlG33jfz9iAeYKCOoc5mtmEaZMvwozeVHK5yrMtsdMrlkVKoRGczLnJWhd9R6Kcl_vr290AHYdYul4IMs9cwapkxDHiXWP3z87PXIc6yElZzk6GWX40iJ8ZBlumifXxy23KMXgah7IyGWRCrlOGlrhrUBIo0IRMc15ypSROjC-8BB5Sc2lZEazRCGSVJ4yTKbEN8NXYLo_6JtVcHDTSBDRNxQCKeGLIGFB6pk0ROxgutigBnvllMS64Cmnchn3cWmv0KDFdtBqsDOWfczZOX6U2ihnNi40NIs9SVyKCMD8GmyPH6Nu0Q-TpG8GI5TxuQhYKCX_RSbMK7c1sOP7dqp_6Ul8dHrRtldrfxFeh4pHWRc2tG0DpodPI7OJWGiotuya_wANpgWM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58IOrBR1Wsz4heFFK6ySabHFWUVq2CWugtZDcbKGorpj3oyZ_gb_SXOLNJaxUR9JaQWbKPzO43k5lvAPaEUCFXiNyU0J7N0zChIIDQ9qROAoUmV2oyvBuXfq3Jz1peq4jNoVyYnB9i6HAjzTD7NSk4OaRHtJzy0yvErheOwyT30VAhTHTtjHDuVnOycArv4qxVsJNSIM9n26_n0SfIHIWq5qw5nc8LqmaGopBCTO4q_Z6sqJdvBI7_HsYCzBUo1DrMP5tFGNOdEkzldSmfSzDbGJK5ZiWYIUCa8zkvQe2m_VBU_Hp_faMzMLGIqOOBjPfM6qZWTDQnxkN-_2y1yXesepSfZam4n-FLiwiSZWientwe1-yiGoOtXF-ENgtl4Kq4qiTeckQ1MuAhU66bMqmF8rXHHQRfQrlCMK1YLBFMSkdqJlKinHFXYKLT7ehVsHDfiBHUVyViKe5xP2Z-6ug0QPigE2xQhv3BmkSqoCqnihn30cBkoUmLzKSVYXco-5gTdPwotTFY2qhQ0ixyBNEpIgbzyrAzfIzqRf9M4o7u9lHGc7nPAiHcX2SCvHhbFTt-YNb6l55ER_Wrhrla-4vwNkzXbhsX0UX98nwdZhxKwjCRbhsw0Xvq602ERj25ZRTgA2pFCa0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCAQHlgKirEFwASlVnThxcmSrylJALFJvUew4EgJaRNoDnPgEvpEvYcZJS0EICW6JMlYc22M_O2_eAGwJoUKuELkpoT2bp2FCJIDQ9qROAoVbrtREeDfO_PoNP256zYKbQ7EwuT5E_8CNPMPM1-Tg-jFJB7yc4tMrpK4XDsMo98KAGH0Hl86A5m41FwsnehdnzUKdlIg8n2W_rkefIHMQqpq1pjadJ1TNjEQhUUzuKt2OrKiXbwKO__6MGZgqUKi1mw-bWRjSrRKM5Xkpn0sw2eiLuWYlmCBAmus5z0H96vahyPj1_vpGa2BikVDHA23eM6udWjHJnJgT8vtn65bOjlWH4rMsFXczfGnBIJmHm9rh9X7dLrIx2Mr1RWizUAauiqtK4i1HVCMDHjLluimTWihfe9xB8CWUKwTTisUSwaR0pGYiJckZdwFGWu2WXgQL540YQX1VIpbiHvdj5qeOTgOEDzrBAmXY7vVJpAqpcsqYcR_1tizUaJFptDJs9m0fc4GOH61Wel0bFU6aRY4gOUXEYF4ZNvqP0b3on0nc0u0u2ngu91kghPuLTZAnb6tixXdMX_9Sk2jv6Lxhrpb-YrwO4xcHtej06OxkGSYcisEwRLcVGOk8dfUqIqOOXDPj_wMFEgkx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation%E2%80%90based+estimators+of+analytically+intractable+causal+effects&rft.jtitle=Biometrics&rft.au=Linero%2C+Antonio+R&rft.date=2022-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=78&rft.issue=3&rft.spage=1001&rft.epage=1017&rft_id=info:doi/10.1111%2Fbiom.13499&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |