Automatic detection method of tunnel lining multi‐defects via an enhanced You Only Look Once network
Aiming to solve the challenges of low detection accuracy, poor anti‐interference ability, and slow detection speed in the traditional tunnel lining defect detection methods, a novel deep learning‐based model, named You Only Look Once network v4 enhanced by EfficientNet and depthwise separable convol...
Saved in:
| Published in | Computer-aided civil and infrastructure engineering Vol. 37; no. 6; pp. 762 - 780 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1093-9687 1467-8667 |
| DOI | 10.1111/mice.12836 |
Cover
| Abstract | Aiming to solve the challenges of low detection accuracy, poor anti‐interference ability, and slow detection speed in the traditional tunnel lining defect detection methods, a novel deep learning‐based model, named You Only Look Once network v4 enhanced by EfficientNet and depthwise separable convolution (DSC; YOLOv4‐ED), is proposed. In the YOLOv4‐ED, EfficientNet is used as the backbone to improve the identification accuracy of indistinguishable defect targets in complex tunnel background and light conditions. Furthermore, DSC block is introduced to reduce the storage space of the model and thereby enhance the detection efficiency. The experimental results indicate that the mean average precision, F1 score, Model Size, and FPS of YOLOv4‐ED are 81.84%, 81.99%, 49.3 MB, and 43.5 f/s, respectively, which is superior to the comparison models in both detection accuracy and efficiency. Based on robust and cost‐effective YOLOv4‐ED, a tunnel lining defect detection platform (TLDDP) with the capacity of automated inspection of various lining defects (i.e., water leakage, crack, rebar‐exposed) is built. The established TLDDP can realize the high‐precision and automatic detection of multiple tunnel lining defects under different lighting and complex background conditions of the practical in‐service tunnel. |
|---|---|
| AbstractList | Aiming to solve the challenges of low detection accuracy, poor anti‐interference ability, and slow detection speed in the traditional tunnel lining defect detection methods, a novel deep learning‐based model, named You Only Look Once network v4 enhanced by EfficientNet and depthwise separable convolution (DSC; YOLOv4‐ED), is proposed. In the YOLOv4‐ED, EfficientNet is used as the backbone to improve the identification accuracy of indistinguishable defect targets in complex tunnel background and light conditions. Furthermore, DSC block is introduced to reduce the storage space of the model and thereby enhance the detection efficiency. The experimental results indicate that the mean average precision,
F
1 score,
Model Size
, and
FPS
of YOLOv4‐ED are 81.84%, 81.99%, 49.3 MB, and 43.5 f/s, respectively, which is superior to the comparison models in both detection accuracy and efficiency. Based on robust and cost‐effective YOLOv4‐ED, a tunnel lining defect detection platform (TLDDP) with the capacity of automated inspection of various lining defects (i.e., water leakage, crack, rebar‐exposed) is built. The established TLDDP can realize the high‐precision and automatic detection of multiple tunnel lining defects under different lighting and complex background conditions of the practical in‐service tunnel. Aiming to solve the challenges of low detection accuracy, poor anti‐interference ability, and slow detection speed in the traditional tunnel lining defect detection methods, a novel deep learning‐based model, named You Only Look Once network v4 enhanced by EfficientNet and depthwise separable convolution (DSC; YOLOv4‐ED), is proposed. In the YOLOv4‐ED, EfficientNet is used as the backbone to improve the identification accuracy of indistinguishable defect targets in complex tunnel background and light conditions. Furthermore, DSC block is introduced to reduce the storage space of the model and thereby enhance the detection efficiency. The experimental results indicate that the mean average precision, F1 score, Model Size, and FPS of YOLOv4‐ED are 81.84%, 81.99%, 49.3 MB, and 43.5 f/s, respectively, which is superior to the comparison models in both detection accuracy and efficiency. Based on robust and cost‐effective YOLOv4‐ED, a tunnel lining defect detection platform (TLDDP) with the capacity of automated inspection of various lining defects (i.e., water leakage, crack, rebar‐exposed) is built. The established TLDDP can realize the high‐precision and automatic detection of multiple tunnel lining defects under different lighting and complex background conditions of the practical in‐service tunnel. Aiming to solve the challenges of low detection accuracy, poor anti‐interference ability, and slow detection speed in the traditional tunnel lining defect detection methods, a novel deep learning‐based model, named You Only Look Once network v4 enhanced by EfficientNet and depthwise separable convolution (DSC; YOLOv4‐ED), is proposed. In the YOLOv4‐ED, EfficientNet is used as the backbone to improve the identification accuracy of indistinguishable defect targets in complex tunnel background and light conditions. Furthermore, DSC block is introduced to reduce the storage space of the model and thereby enhance the detection efficiency. The experimental results indicate that the mean average precision, F1 score, Model Size, and FPS of YOLOv4‐ED are 81.84%, 81.99%, 49.3 MB, and 43.5 f/s, respectively, which is superior to the comparison models in both detection accuracy and efficiency. Based on robust and cost‐effective YOLOv4‐ED, a tunnel lining defect detection platform (TLDDP) with the capacity of automated inspection of various lining defects (i.e., water leakage, crack, rebar‐exposed) is built. The established TLDDP can realize the high‐precision and automatic detection of multiple tunnel lining defects under different lighting and complex background conditions of the practical in‐service tunnel. |
| Author | Gong, Chenjie Zhou, Zhong Zhang, Junjie |
| Author_xml | – sequence: 1 givenname: Zhong surname: Zhou fullname: Zhou, Zhong organization: Hunan Tieyuan Civil Engineering Testing Co., Ltd – sequence: 2 givenname: Junjie surname: Zhang fullname: Zhang, Junjie organization: Central South University – sequence: 3 givenname: Chenjie surname: Gong fullname: Gong, Chenjie email: gongcj@csu.edu.cn organization: Hunan Tieyuan Civil Engineering Testing Co., Ltd |
| BookMark | eNp9kLFOwzAURS1UJNrCwhdYYkNKcWzHbsaqKlCpqAsMTJFrv1C3iV0Sh6obn8A38iWkhAkh7vLucO57eneAes47QOgyJqO41U1pNYxiOmbiBPVjLmQ0FkL2Wk9SFqViLM_QoK43pBXnrI_ySRN8qYLV2EAAHax3uISw9gb7HIfGOShwYZ11L7hsimA_3z8M5C1Z4zersHIY3Fo5DQY_-wYvXXHAC--3rdOAHYS9r7bn6DRXRQ0XP3OInm5nj9P7aLG8m08ni0gzIUWUGmok1UCFSZOEc6p1DAaUZFIakqhUCq3FSlCV8NQQxjRJIB-LlPOV4SpnQ3TV7d1V_rWBOmQb31SuPZlRSQVhMqWspUhH6crXdQV5pm1Qx9dDpWyRxSQ7tpkd28y-22wj178iu8qWqjr8DccdvLcFHP4hs4f5dNZlvgDL34k5 |
| CitedBy_id | crossref_primary_10_3390_buildings12101555 crossref_primary_10_1016_j_undsp_2024_08_007 crossref_primary_10_1111_mice_12991 crossref_primary_10_3390_su16104285 crossref_primary_10_1111_mice_13042 crossref_primary_10_1177_14759217231222557 crossref_primary_10_1016_j_ijmst_2024_03_003 crossref_primary_10_3390_app12178506 crossref_primary_10_1111_mice_12998 crossref_primary_10_1016_j_tust_2023_105572 crossref_primary_10_1061_JCEMD4_COENG_14089 crossref_primary_10_1016_j_jrmge_2022_03_015 crossref_primary_10_1061_JPCFEV_CFENG_4928 crossref_primary_10_1016_j_asej_2024_102983 crossref_primary_10_26599_JIC_2023_9180004 crossref_primary_10_3390_app12094556 crossref_primary_10_1016_j_autcon_2023_105098 crossref_primary_10_3390_electronics12153222 crossref_primary_10_1016_j_autcon_2023_105014 crossref_primary_10_1016_j_autcon_2023_104840 crossref_primary_10_1002_nag_3367 crossref_primary_10_1111_mice_12914 crossref_primary_10_3390_jmse10111709 crossref_primary_10_1109_ACCESS_2022_3224594 crossref_primary_10_1007_s13349_024_00900_y crossref_primary_10_1016_j_measurement_2023_114009 crossref_primary_10_3390_s24186007 crossref_primary_10_1016_j_aei_2024_102578 crossref_primary_10_1016_j_aei_2023_102214 crossref_primary_10_1016_j_autcon_2022_104668 crossref_primary_10_3390_app12105142 crossref_primary_10_1007_s10064_023_03286_1 crossref_primary_10_1016_j_engappai_2024_109422 crossref_primary_10_1016_j_tust_2022_104737 crossref_primary_10_1007_s40515_025_00558_z crossref_primary_10_1007_s11709_023_0948_z crossref_primary_10_1016_j_autcon_2024_105280 crossref_primary_10_1007_s13349_025_00909_x crossref_primary_10_3390_electronics13020253 crossref_primary_10_1109_ACCESS_2023_3330843 crossref_primary_10_1016_j_ijrmms_2024_105933 crossref_primary_10_1016_j_tust_2023_105107 crossref_primary_10_3390_technologies10050107 crossref_primary_10_1016_j_engfailanal_2022_106387 crossref_primary_10_3390_app131910583 crossref_primary_10_3390_app12104845 crossref_primary_10_1111_mice_12984 crossref_primary_10_32604_sdhm_2024_042388 crossref_primary_10_1016_j_jweia_2024_105698 crossref_primary_10_1051_e3sconf_202454804001 crossref_primary_10_1016_j_autcon_2024_105727 crossref_primary_10_1016_j_cscm_2023_e02555 crossref_primary_10_1016_j_compgeo_2022_104999 crossref_primary_10_1016_j_tust_2025_106508 crossref_primary_10_1587_transinf_2023EDP7073 crossref_primary_10_1007_s11694_023_02351_3 crossref_primary_10_1016_j_autcon_2023_105186 crossref_primary_10_1016_j_engappai_2022_105478 crossref_primary_10_1111_mice_13241 crossref_primary_10_1177_14759217241254748 crossref_primary_10_3390_app12104919 crossref_primary_10_1016_j_engfailanal_2023_107327 crossref_primary_10_1016_j_tust_2022_104567 crossref_primary_10_1016_j_conbuildmat_2023_131621 crossref_primary_10_3233_ICA_230709 crossref_primary_10_1049_itr2_12497 crossref_primary_10_1111_mice_13003 crossref_primary_10_1111_mice_13124 crossref_primary_10_1111_mice_13366 crossref_primary_10_1111_mice_12949 crossref_primary_10_1061_JCEMD4_COENG_13512 crossref_primary_10_3390_app14104148 crossref_primary_10_1016_j_aei_2023_102032 crossref_primary_10_1109_ACCESS_2024_3437154 crossref_primary_10_1007_s11709_023_0965_y crossref_primary_10_1016_j_engappai_2022_105225 crossref_primary_10_1109_TNNLS_2023_3266243 crossref_primary_10_1016_j_isprsjprs_2023_04_011 crossref_primary_10_1155_2022_8357463 crossref_primary_10_3390_su15021292 crossref_primary_10_1177_14759217241267794 crossref_primary_10_1109_TCSVT_2024_3433555 crossref_primary_10_1111_mice_13097 crossref_primary_10_1016_j_advengsoft_2024_103691 crossref_primary_10_1038_s41598_024_75723_4 crossref_primary_10_1016_j_engfailanal_2025_109332 crossref_primary_10_1111_mice_13019 crossref_primary_10_21595_jme_2024_23977 crossref_primary_10_3390_app14051892 crossref_primary_10_1109_ACCESS_2024_3519321 crossref_primary_10_1016_j_engappai_2025_110035 crossref_primary_10_3390_su14148383 crossref_primary_10_1016_j_autcon_2023_104915 crossref_primary_10_32604_cmc_2023_043566 crossref_primary_10_1016_j_tust_2023_105432 crossref_primary_10_1111_mice_13067 crossref_primary_10_1016_j_jii_2025_100790 crossref_primary_10_1016_j_tust_2024_105713 crossref_primary_10_1111_mice_12932 crossref_primary_10_1016_j_autcon_2022_104595 crossref_primary_10_1177_14759217231171696 crossref_primary_10_1016_j_autcon_2022_104633 crossref_primary_10_1016_j_tust_2024_106124 crossref_primary_10_1109_JSEN_2023_3344124 crossref_primary_10_3390_s23167106 crossref_primary_10_1016_j_tust_2022_104811 crossref_primary_10_1111_mice_13181 crossref_primary_10_1016_j_tust_2023_105428 crossref_primary_10_1080_17499518_2023_2172187 crossref_primary_10_1016_j_engfailanal_2024_109082 crossref_primary_10_1016_j_engappai_2023_107085 crossref_primary_10_1016_j_conbuildmat_2024_138240 crossref_primary_10_1186_s40537_025_01065_1 crossref_primary_10_1080_17499518_2024_2337380 crossref_primary_10_1111_mice_13110 crossref_primary_10_3390_s22197400 crossref_primary_10_1093_iti_liad019 crossref_primary_10_1007_s11760_024_03786_x crossref_primary_10_1111_mice_13117 crossref_primary_10_1016_j_aei_2025_103127 crossref_primary_10_1016_j_ghm_2024_01_001 crossref_primary_10_1016_j_undsp_2022_07_003 crossref_primary_10_1016_j_compgeo_2022_105002 crossref_primary_10_3390_s24175452 crossref_primary_10_1016_j_undsp_2024_06_005 crossref_primary_10_1016_j_patcog_2024_111251 |
| Cites_doi | 10.1007/s00521-019-04359-7 10.1061/(ASCE)CP.1943-5487.0000516 10.1109/TNNLS.2017.2682102 10.1109/ICPR.2006.98 10.1109/CVPR.2014.81 10.1109/TIP.2020.2994445 10.1016/j.tust.2018.04.002 10.1109/TSMC.1979.4310076 10.1002/widm.1308 10.1111/mice.12367 10.3233/ICA-2010-0345 10.1111/mice.12686 10.1007/s11554-021-01130-x 10.1109/CVPR.2017.690 10.1016/j.autcon.2021.103934 10.1111/mice.12263 10.1111/mice.12613 10.1061/AJRUA6.0000989 10.1177/1475921720938486 10.1016/j.tust.2017.05.010 10.1111/mice.12731 10.1155/2021/8846442 10.1016/j.patcog.2019.01.006 10.1016/j.imavis.2011.10.003 10.1016/j.tust.2020.103724 10.1007/978-3-319-46448-0_2 10.1016/j.autcon.2019.102920 10.1109/TITS.2019.2910595 10.1016/j.soildyn.2017.05.013 10.1061/(ASCE)CO.1943-7862.0001047 10.1016/j.autcon.2020.103357 10.1016/j.tust.2020.103594 10.1016/j.tust.2016.12.008 10.28991/cej-2019-03091316 10.1111/mice.12564 10.1111/j.1467-8667.2005.00376.x 10.1109/TNNLS.2018.2876865 10.3141/2225-10 10.1016/j.tust.2021.104082 10.1111/mice.12580 10.1111/exsy.12647 10.1016/j.ijleo.2015.09.147 10.1109/CVPR.2018.00913 10.1109/ICPR.2006.479 10.1061/(ASCE)GM.1943-5622.0001371 10.1007/978-981-15-5093-5_9 10.1109/CISP.2008.13 10.1111/mice.12497 10.1016/j.tust.2020.103658 10.1061/(ASCE)CO.1943-7862.0001570 10.1111/mice.12519 10.1002/stc.2187 10.4028/www.scientific.net/AMM.580-583.1218 10.1109/TPAMI.2015.2389824 10.1007/s00521-019-04146-4 |
| ContentType | Journal Article |
| Copyright | 2022 2022 Computer‐Aided Civil and Infrastructure Engineering |
| Copyright_xml | – notice: 2022 – notice: 2022 Computer‐Aided Civil and Infrastructure Engineering |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.12836 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 780 |
| ExternalDocumentID | 10_1111_mice_12836 MICE12836 |
| Genre | article |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3676-9d2d72ce26d955442cc1edea7377d05a976cc6b62a549d033c05ef86944bd4af3 |
| IEDL.DBID | DR2 |
| ISSN | 1093-9687 |
| IngestDate | Sun Jul 13 04:13:45 EDT 2025 Wed Oct 01 04:16:00 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Wed Jan 22 16:26:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3676-9d2d72ce26d955442cc1edea7377d05a976cc6b62a549d033c05ef86944bd4af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2726037923 |
| PQPubID | 2045171 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2726037923 crossref_citationtrail_10_1111_mice_12836 crossref_primary_10_1111_mice_12836 wiley_primary_10_1111_mice_12836_MICE12836 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 37 2019; 90 2021; 20 2017b; 100 2010; 17 2016; 30 2019; 19 2005; 20 2016; 142 2021; 36 2018; 4 2021; 115 2019; 21 2017; 32 2022; 37 2018; 77 2018; 33 2011; 29 2017a; 28 1979; 9 2021; 2021 2018; 144 2017; 63 2019; 9 2011; 2225 2019; 5 2019; 30 2017; 68 2021; 108 2021; 107 2008 2020; 37 2020; 106 2006 2020; 35 2016; 127 2020; 32 2019; 107 2018; 25 2015; 28 2021 2020 2021; 18 2019 2018 2017 2016 2015 2014; 580 2014 2021; 132 2020; 119 2020; 29 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Ren S. (e_1_2_10_45_1) 2015; 28 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 Wan Z. (e_1_2_10_53_1) 2020 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Girshick R. (e_1_2_10_15_1) 2015 Tan M. (e_1_2_10_49_1) 2019 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Redmon J. (e_1_2_10_44_1) 2016 e_1_2_10_50_1 Wang P. (e_1_2_10_55_1) 2021; 2021 e_1_2_10_60_1 e_1_2_10_62_1 Alekseychuk O. (e_1_2_10_5_1) 2006 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 106 year: 2020 article-title: Evolutionary hybrid neural network approach to predict shield tunneling‐induced ground settlements publication-title: Tunnelling and Underground Space Technology – start-page: 850 year: 2006 end-page: 855 – volume: 33 start-page: 638 issue: 8 year: 2018 end-page: 654 article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 5 start-page: 1119 issue: 5 year: 2019 end-page: 1123 article-title: Analysis and study on crack characteristics of highway tunnel lining publication-title: Civil Engineering Journal – start-page: 1440 year: 2015 end-page: 1448 article-title: Fast R‐CNN – volume: 18 start-page: 1 year: 2021 end-page: 11 article-title: Efficient real‐time defect detection for spillway tunnel using deep learning publication-title: Journal of Real‐Time Image Processing – volume: 36 start-page: 227 issue: 2 year: 2021 end-page: 241 article-title: Learning‐based image scale estimation using surface textures for quantitative visual inspection of regions‐of‐interest publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 37 start-page: 386 issue: 3 year: 2022 end-page: 402 article-title: An optimization strategy to improve the deep learning‐based recognition model of leakage in shield tunnels publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 2021 year: 2021 article-title: Automatic identification and location of tunnel lining cracks publication-title: Advances in Civil Engineering – volume: 17 start-page: 197 issue: 3 year: 2010 end-page: 210 article-title: Enhanced probabilistic neural network with local decision circles: A robust classifier publication-title: Integrated Computer‐Aided Engineering – volume: 36 start-page: 61 issue: 1 year: 2021 end-page: 72 article-title: Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2018 – volume: 25 issue: 8 year: 2018 article-title: Sensing dynamic displacements in masonry rail bridges using 2D digital image correlation publication-title: Structural Control and Health Monitoring – volume: 32 start-page: 8675 issue: 12 year: 2020 end-page: 8690 article-title: A dynamic ensemble learning algorithm for neural networks publication-title: Neural Computing and Applications – volume: 68 start-page: 38 year: 2017 end-page: 57 article-title: Comparison of the structural behavior of reinforced concrete and steel fiber reinforced concrete tunnel segmental joints publication-title: Tunnelling and Underground Space Technology – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 article-title: A threshold selection method from gray‐level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 35 start-page: 373 issue: 4 year: 2020 end-page: 388 article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 580 year: 2014 end-page: 587 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – start-page: 21 year: 2016 end-page: 37 article-title: SSD: Single shot multibox detector – volume: 4 issue: 4 year: 2018 article-title: Characterization of crack and leakage defects of concrete linings of road tunnels in China publication-title: ASCE‐ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering – volume: 36 start-page: 126 issue: 2 year: 2021 end-page: 142 article-title: Uncertainty‐assisted deep vision structural health monitoring publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 30 issue: 3 year: 2016 article-title: Distortion‐free image mosaicing for tunnel inspection based on robust cylindrical surface estimation through structure from motion publication-title: ASCE Journal of Computing in Civil Engineering – volume: 107 year: 2019 article-title: Instance‐level recognition and quantification for concrete surface bughole based on deep learning publication-title: Automation in Construction – start-page: 7263 year: 2017 end-page: 7271 article-title: YOLO9000: Better, faster, stronger – year: 2020 article-title: Slender object detection: Diagnoses and improvements publication-title: arXiv preprint – volume: 90 start-page: 119 year: 2019 end-page: 133 article-title: Wider or deeper: Revisiting the ResNet model for visual recognition publication-title: Pattern Recognition – start-page: 792 year: 2008 end-page: 796 – volume: 29 start-page: 861 issue: 12 year: 2011 end-page: 872 article-title: FoSA: F* seed‐growing approach for crack‐line detection from pavement images publication-title: Image and Vision Computing – year: 2015 – volume: 107 year: 2021 article-title: Analyses of the defects in highway tunnels in China publication-title: Tunnelling and Underground Space Technology – volume: 142 issue: 2 year: 2016 article-title: A novel machine learning model for estimation of sale prices of real estate units publication-title: Journal of Construction Engineering and Management – volume: 32 start-page: 6393 issue: 10 year: 2020 end-page: 6404 article-title: FEMa: A finite element machine for fast learning publication-title: Neural Computing and Applications – volume: 20 start-page: 484 issue: 2 year: 2021 end-page: 499 article-title: Imaging‐based crack detection on concrete surfaces using You Only Look Once network publication-title: Structural Health Monitoring – volume: 9 issue: 5 year: 2019 article-title: Tunnel crack detection using coarse‐to‐fine region localization and edge detection publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – start-page: 91 year: 2021 end-page: 101 – volume: 144 issue: 12 year: 2018 article-title: Novel machine learning model for construction cost estimation taking into account economic variables and indices publication-title: Journal of Construction Engineering and Management – volume: 37 issue: 6 year: 2020 article-title: Deep learning techniques for recommender systems based on collaborative filtering publication-title: Expert Systems – volume: 28 start-page: 3074 issue: 12 year: 2017a end-page: 3083 article-title: A new neural dynamic classification algorithm publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 20 start-page: 52 issue: 1 year: 2005 end-page: 61 article-title: Monitoring crack changes in concrete structures publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 901 year: 2006 end-page: 904 article-title: A method for crack detection on a concrete structure – volume: 100 start-page: 417 year: 2017b end-page: 427 article-title: NEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimization publication-title: Soil Dynamics and Earthquake Engineering – volume: 77 start-page: 166 year: 2018 end-page: 176 article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel publication-title: Tunnelling and Underground Space Technology – volume: 21 start-page: 1525 issue: 4 year: 2019 end-page: 1535 article-title: Feature pyramid and hierarchical boosting network for pavement crack detection publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2016 – volume: 19 issue: 4 year: 2019 article-title: Cracking performance of an operational tunnel lining due to local construction defects publication-title: International Journal of Geomechanics – volume: 35 start-page: 549 issue: 6 year: 2020 end-page: 564 article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 28 start-page: 91 year: 2015 end-page: 99 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – start-page: 6105 year: 2019 end-page: 6114 – volume: 29 start-page: 6864 year: 2020 end-page: 6872 article-title: Multi‐atlas brain parcellation using squeeze‐and‐excitation fully convolutional networks publication-title: IEEE Transactions on Image Processing – volume: 132 year: 2021 article-title: A deep learning‐based approach for refined crack evaluation from shield tunnel lining images publication-title: Automation in Construction – volume: 36 start-page: 1585 issue: 12 year: 2021 end-page: 1599 article-title: Autonomous detection of damage to multiple steel surfaces from 360° panoramas using deep neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 2225 start-page: 89 issue: 1 year: 2011 end-page: 98 article-title: Dynamic programming and connected component analysis for an enhanced pavement distress segmentation algorithm publication-title: Transportation Research Record – year: 2006 – volume: 108 year: 2021 article-title: A novel tunnel‐lining crack recognition system based on digital image technology publication-title: Tunnelling and Underground Space Technology – start-page: 8759 year: 2018 end-page: 8768 article-title: Path aggregation network for instance segmentation – volume: 30 start-page: 3212 issue: 11 year: 2019 end-page: 3232 article-title: Object detection with deep learning: A review publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 119 year: 2020 article-title: A spatial‐channel hierarchical deep learning network for pixel‐level automated crack detection publication-title: Automation in Construction – start-page: 779 year: 2016 end-page: 788 article-title: You only look once: Unified, real‐time object detection – volume: 63 start-page: 54 year: 2017 end-page: 68 article-title: Development and application of the integrated sealant test apparatus for sealing gaskets in tunnel segmental joints publication-title: Tunnelling and Underground Space Technology – volume: 580 start-page: 1218 year: 2014 end-page: 1222 – year: 2017 – volume: 37 start-page: 1904 issue: 9 year: 2015 end-page: 1916 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 127 start-page: 1030 issue: 3 year: 2016 end-page: 1033 article-title: Detection crack in image using Otsu method and multiple filtering in image processing techniques publication-title: Optik – volume: 115 year: 2021 article-title: Sealing performance of a precast tunnel gasketed joint under high hydrostatic pressures: Site investigation and detailed numerical modeling publication-title: Tunnelling and Underground Space Technology – ident: e_1_2_10_4_1 doi: 10.1007/s00521-019-04359-7 – ident: e_1_2_10_7_1 doi: 10.1061/(ASCE)CP.1943-5487.0000516 – ident: e_1_2_10_39_1 doi: 10.1109/TNNLS.2017.2682102 – ident: e_1_2_10_14_1 doi: 10.1109/ICPR.2006.98 – ident: e_1_2_10_16_1 doi: 10.1109/CVPR.2014.81 – ident: e_1_2_10_50_1 doi: 10.1109/TIP.2020.2994445 – ident: e_1_2_10_20_1 doi: 10.1016/j.tust.2018.04.002 – ident: e_1_2_10_52_1 – ident: e_1_2_10_34_1 doi: 10.1109/TSMC.1979.4310076 – ident: e_1_2_10_25_1 doi: 10.1002/widm.1308 – ident: e_1_2_10_58_1 doi: 10.1111/mice.12367 – ident: e_1_2_10_3_1 doi: 10.3233/ICA-2010-0345 – ident: e_1_2_10_30_1 doi: 10.1111/mice.12686 – volume-title: Detection of crack‐like indications in digital radiography by global optimisation of a probabilistic estimation function year: 2006 ident: e_1_2_10_5_1 – ident: e_1_2_10_12_1 doi: 10.1007/s11554-021-01130-x – ident: e_1_2_10_42_1 doi: 10.1109/CVPR.2017.690 – ident: e_1_2_10_65_1 doi: 10.1016/j.autcon.2021.103934 – ident: e_1_2_10_6_1 doi: 10.1111/mice.12263 – ident: e_1_2_10_36_1 doi: 10.1111/mice.12613 – ident: e_1_2_10_43_1 – ident: e_1_2_10_54_1 doi: 10.1061/AJRUA6.0000989 – ident: e_1_2_10_19_1 – start-page: 779 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: e_1_2_10_44_1 – ident: e_1_2_10_10_1 doi: 10.1177/1475921720938486 – ident: e_1_2_10_17_1 doi: 10.1016/j.tust.2017.05.010 – year: 2020 ident: e_1_2_10_53_1 article-title: Slender object detection: Diagnoses and improvements publication-title: arXiv preprint – ident: e_1_2_10_59_1 doi: 10.1111/mice.12731 – volume: 2021 start-page: 8846442 year: 2021 ident: e_1_2_10_55_1 article-title: Automatic identification and location of tunnel lining cracks publication-title: Advances in Civil Engineering doi: 10.1155/2021/8846442 – ident: e_1_2_10_57_1 doi: 10.1016/j.patcog.2019.01.006 – ident: e_1_2_10_27_1 doi: 10.1016/j.imavis.2011.10.003 – ident: e_1_2_10_23_1 doi: 10.1016/j.tust.2020.103724 – start-page: 6105 volume-title: International Conference on Machine Learning year: 2019 ident: e_1_2_10_49_1 – ident: e_1_2_10_29_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_10_56_1 doi: 10.1016/j.autcon.2019.102920 – ident: e_1_2_10_60_1 doi: 10.1109/TITS.2019.2910595 – ident: e_1_2_10_40_1 doi: 10.1016/j.soildyn.2017.05.013 – ident: e_1_2_10_38_1 doi: 10.1061/(ASCE)CO.1943-7862.0001047 – volume: 28 start-page: 91 year: 2015 ident: e_1_2_10_45_1 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_35_1 doi: 10.1016/j.autcon.2020.103357 – start-page: 1440 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2015 ident: e_1_2_10_15_1 – ident: e_1_2_10_62_1 doi: 10.1016/j.tust.2020.103594 – ident: e_1_2_10_11_1 doi: 10.1016/j.tust.2016.12.008 – ident: e_1_2_10_63_1 doi: 10.28991/cej-2019-03091316 – ident: e_1_2_10_8_1 doi: 10.1111/mice.12564 – ident: e_1_2_10_47_1 doi: 10.1111/j.1467-8667.2005.00376.x – ident: e_1_2_10_66_1 doi: 10.1109/TNNLS.2018.2876865 – ident: e_1_2_10_21_1 doi: 10.3141/2225-10 – ident: e_1_2_10_24_1 doi: 10.1016/j.tust.2021.104082 – ident: e_1_2_10_46_1 doi: 10.1111/mice.12580 – ident: e_1_2_10_31_1 doi: 10.1111/exsy.12647 – ident: e_1_2_10_48_1 doi: 10.1016/j.ijleo.2015.09.147 – ident: e_1_2_10_28_1 doi: 10.1109/CVPR.2018.00913 – ident: e_1_2_10_33_1 doi: 10.1109/ICPR.2006.479 – ident: e_1_2_10_13_1 doi: 10.1061/(ASCE)GM.1943-5622.0001371 – ident: e_1_2_10_51_1 – ident: e_1_2_10_32_1 doi: 10.1007/978-981-15-5093-5_9 – ident: e_1_2_10_26_1 doi: 10.1109/CISP.2008.13 – ident: e_1_2_10_9_1 doi: 10.1111/mice.12497 – ident: e_1_2_10_61_1 doi: 10.1016/j.tust.2020.103658 – ident: e_1_2_10_41_1 doi: 10.1061/(ASCE)CO.1943-7862.0001570 – ident: e_1_2_10_22_1 doi: 10.1111/mice.12519 – ident: e_1_2_10_2_1 doi: 10.1002/stc.2187 – ident: e_1_2_10_64_1 doi: 10.4028/www.scientific.net/AMM.580-583.1218 – ident: e_1_2_10_18_1 doi: 10.1109/TPAMI.2015.2389824 – ident: e_1_2_10_37_1 doi: 10.1007/s00521-019-04146-4 |
| SSID | ssj0000443 |
| Score | 2.6445987 |
| Snippet | Aiming to solve the challenges of low detection accuracy, poor anti‐interference ability, and slow detection speed in the traditional tunnel lining defect... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 762 |
| SubjectTerms | Accuracy Defects Inspection Service tunnels Tunnel linings |
| Title | Automatic detection method of tunnel lining multi‐defects via an enhanced You Only Look Once network |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12836 https://www.proquest.com/docview/2726037923 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8667 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8667 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1093-9687 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL2IK134FscXAd0odOgkaToFNyKKiA8QBTdS8rhBceiI0xF05Sf4jX6JSdrqKCLoLoQ0tElOcm45ORdg08UUmFmBkXeDi3g3iR2klIko1x2TJhpNkPyfnIrDS350lVyNwU5zF6byh_j44eaREfZrD3CpBiMg99na2253Zd5vu8NEiKfOR7yjeK2uz1iUiW5ae5N6Gc_no19Po0-KOUpUw0lzMA3XzTtWApO79rBUbf38zb7xvx8xA1M1BSW71ZqZhTEs5mC6pqOkBvvAVTUZH5q6OZgcsS-cB7s7LPvB8pUYLIOmqyBVSmrSt6Qceg0N6YUUFCQoF99eXg0GAQl5vJVEFgSLm6BBIG7bIWdF74kcO9rvShpJUUnUF-DyYP9i7zCq8zZE2vu_RZmhJqUaqTCZYyucat1BgzJlaWriRDoGpLVQgkoXnJqYMR0naLsi41wZLi1bhPGiX-ASEBrbRAluFWbS9dORyJnk3DIVayvRtGCrmb9c16bmPrdGL2-CGz_CeRjhFmx8tL2vrDx-bLXaLIO8hvMgp6kL-5i3WmzBdpjPX3rIHX72Q2n5L41XYIL6qxVBTLkK4-XDENcc4SnVeljY73vh_gQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL107cPWh7XrNpr1Y4LtZQMHR5Ll-LGUhLRNOhgt9M3I0hUbC05p7EL3tJ-w37hfUkmWG6-MwfYmhCywpCudK47OAXhvcwrMjMDIqcFFfJjENqQKHVGuBjpNFGpP-Z-di8klP71KrgI3x72FafQhHi7cXGT4_doFuLuQ7kS5s2vv2-2ViSewwYVNVBwm-txRj-KBX5-xKBPDNKiTOiLP6tvfz6MVyOxCVX_WjLcaQ9Wllyh0FJNv_boq-ur7IwHH__6NbXgeUCg5apbNC1jDcge2AiIlId6Xtqo1fWjrdmCzo2D4EsxRXS286ivRWHlaV0kaV2qyMKSqHY2GzL0LBfHkxV8_fmr0HBJy-1USWRIsv3gaArE7D_lUzu_I1CJ_W1JIyoal_goux6OL40kUrBsi5STgokxTnVKFVOjMAhZOlRqgRpmyNNVxIi0IUkoUgkqbn-qYMRUnaIYi47zQXBr2GtbLRYm7QGhskkJwU2AmbT8DiZxJzg0rYmUk6h58aCcwV0HX3NlrzPM2v3EjnPsR7sG7h7bXjZrHH1vtt-sgDxG9zGlqMz_m1BZ78NFP6F96yG0IjXzpzb80fgtPJxezaT49OT_bg2fUvbTw3Mp9WK9uajyw-KcqDv0qvwdc-wI0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dSxwxFL1UC6IPtX7hWlsD9UVhltkkk9l5FHWx9aMiCr4NmeQGS5fZxZ0V7JM_wd_YX2KSyehaRNC3EJLAJLnJucPJOQCbNqfAzAiMnBpcxLtJbEOq0BHlqqPTRKH2lP_jE3FwwX9eJpeBm-PewtT6EI8_3Fxk-PPaBTgOtZmIcmfX3rbHKxNT8JEnWdcx-vbOJtSjeODXZyzKRDcN6qSOyPPU9_l99AQyJ6Gqv2t687Wh6shLFDqKyZ_2uCra6u9_Ao7v_ozP8CmgULJTb5sF-IDlIswHREpCvI9sVWP60NQtwtyEguESmJ1xNfCqr0Rj5WldJaldqcnAkGrsaDSk710oiCcv_ru71-g5JOTmtySyJFheeRoCsScP-VX2b8mRRf62pJCUNUt9GS56--e7B1GwboiUk4CLMk11ShVSoTMLWDhVqoMaZcrSVMeJtCBIKVEIKm1-qmPGVJyg6YqM80JzadgKTJeDEleB0NgkheCmwEzacToSOZOcG1bEykjULdhqFjBXQdfc2Wv08ya_cTOc-xluwffHtsNazePFVuvNPshDRI9ymtrMjzm1xRZs-wV9ZYTchtC-L629pfEGzJzu9fKjHyeHX2CWuocWnlq5DtPV9Ri_WvhTFd_8Jn8AAp0BuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+method+of+tunnel+lining+multi%E2%80%90defects+via+an+enhanced+You+Only+Look+Once+network&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Zhou%2C+Zhong&rft.au=Zhang%2C+Junjie&rft.au=Gong%2C+Chenjie&rft.date=2022-05-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=37&rft.issue=6&rft.spage=762&rft.epage=780&rft_id=info:doi/10.1111%2Fmice.12836&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12836 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |