Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes

The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with high-dimension variables, treating the whole process as a single subject will degrade the representation accuracy. It may result from the followin...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 84; pp. 377 - 388
Main Authors Li, Wenqing, Zhao, Chunhui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text
ISSN0967-0661
1873-6939
DOI10.1016/j.conengprac.2018.12.009

Cover

Abstract The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with high-dimension variables, treating the whole process as a single subject will degrade the representation accuracy. It may result from the following reasons: First, fault may disturb a part of variables rather than the whole process where the fault information may be buried by the unaffected variables. Second, fault characteristics may be hybrid, in which linear fault patterns and nonlinear fault patterns coexist. Therefore, an effective process decomposition mechanism is of great demand to well describe the complex fault characteristics of large-scale processes. This paper proposes a fault characteristics decomposition based probabilistic and distributed fault diagnosis method. First, process is decomposed into different subsets by evaluating fault effects from linear and nonlinear aspects. Based on the decomposition result, distributed diagnosis models are developed where different fault modeling strategies are implemented for different subsets to closely describe fault characteristics. For online application, probabilistic fault diagnosis is implemented at two levels. At the lower level, distributed diagnosis models are adopted to reveal the underlying characteristics of new sample in each subset; at the upper level, the final affiliation can be revealed by integrating the results from each subset in a probabilistic way. The effectiveness of the proposed algorithm is tested by both the numerical example and industrial processes. •The whole process is decomposed into different subsets with affected variables distinguished from unaffected variables.•A distributed fault modeling strategy is proposed to extract the underlying characteristics from different subsets.•Fault diagnosis results are calculated in a probabilistic way to tell more information.•The efficacy of the proposed method is verified by numerical examples and industrial applications.
AbstractList The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with high-dimension variables, treating the whole process as a single subject will degrade the representation accuracy. It may result from the following reasons: First, fault may disturb a part of variables rather than the whole process where the fault information may be buried by the unaffected variables. Second, fault characteristics may be hybrid, in which linear fault patterns and nonlinear fault patterns coexist. Therefore, an effective process decomposition mechanism is of great demand to well describe the complex fault characteristics of large-scale processes. This paper proposes a fault characteristics decomposition based probabilistic and distributed fault diagnosis method. First, process is decomposed into different subsets by evaluating fault effects from linear and nonlinear aspects. Based on the decomposition result, distributed diagnosis models are developed where different fault modeling strategies are implemented for different subsets to closely describe fault characteristics. For online application, probabilistic fault diagnosis is implemented at two levels. At the lower level, distributed diagnosis models are adopted to reveal the underlying characteristics of new sample in each subset; at the upper level, the final affiliation can be revealed by integrating the results from each subset in a probabilistic way. The effectiveness of the proposed algorithm is tested by both the numerical example and industrial processes. •The whole process is decomposed into different subsets with affected variables distinguished from unaffected variables.•A distributed fault modeling strategy is proposed to extract the underlying characteristics from different subsets.•Fault diagnosis results are calculated in a probabilistic way to tell more information.•The efficacy of the proposed method is verified by numerical examples and industrial applications.
Author Li, Wenqing
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Wenqing
  surname: Li
  fullname: Li, Wenqing
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China
– sequence: 2
  givenname: Chunhui
  surname: Zhao
  fullname: Zhao, Chunhui
  email: chhzhao@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China
BookMark eNqNkMtKBDEQRYMoOD7-IT_QbdLRTGcjqKgjCG50HSqVypihp3tIMoIrf91uHwhudHWhuPdAnQO22w89McalqKWQ-mRV43jol5sEWDdCtrVsaiHMDpvJdq4qbZTZZTNh9LwSWst9dpDzSoxTY-SMvS1eXYqeB9h2heMzjJhCKeYSMXNPOKw3Q44lDj13kMnzTRocuNh9VLgfI0W3LfTN8BGW_TjJPAyJd5CWVGWEjnjs_XZqQzdBkHKmfMT2AnSZjr_ykD3dXD9eLar7h9u7q4v7CpXWpQpOniGoNkgnvAqnpCiAmUtomzYECughyFapBkRQrjHyFFujvTTOYBM0qkPWfnIxDTknCnaT4hrSq5XCTiLtyv6ItJNIKxs7ihyn57-mGAtMRkqC2P0HcPkJoPHBl0jJZozUI_mYCIv1Q_wb8g7Xrp66
CitedBy_id crossref_primary_10_1016_j_jprocont_2022_06_011
crossref_primary_10_1109_TIM_2023_3308224
crossref_primary_10_1016_j_compchemeng_2021_107587
crossref_primary_10_1007_s11063_024_11577_1
crossref_primary_10_1016_j_conengprac_2024_105951
crossref_primary_10_1115_1_4044445
crossref_primary_10_1016_j_measurement_2024_114749
crossref_primary_10_1016_j_conengprac_2021_104778
crossref_primary_10_1002_aic_17826
crossref_primary_10_1109_TSMC_2022_3224747
crossref_primary_10_1016_j_jprocont_2021_03_004
crossref_primary_10_1016_j_jprocont_2020_11_004
crossref_primary_10_3390_pr8010024
crossref_primary_10_1016_j_jprocont_2021_03_007
crossref_primary_10_1109_TASE_2021_3080977
crossref_primary_10_1016_j_jprocont_2023_103088
crossref_primary_10_1016_j_jfranklin_2020_05_037
crossref_primary_10_1007_s10845_021_01752_9
Cites_doi 10.1002/cem.667
10.1016/j.chemolab.2017.08.004
10.1016/j.chemolab.2013.10.014
10.1016/j.chemolab.2015.05.019
10.1021/acs.iecr.6b03743
10.1109/TASE.2012.2230628
10.1021/acs.iecr.7b00156
10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
10.1016/j.chemolab.2016.01.001
10.1021/acs.iecr.6b03221
10.1016/j.conengprac.2017.09.021
10.1021/ie000141+
10.1016/j.chemolab.2014.01.009
10.1109/TCST.2016.2576018
10.1109/TIE.2015.2466557
10.1109/TIE.2017.2782232
10.1002/aic.690420810
10.1016/j.jprocont.2008.12.001
10.1109/TIE.2017.2745452
10.1016/j.conengprac.2012.01.005
10.1016/j.conengprac.2017.07.009
10.1016/S0967-0661(00)00060-5
10.1109/TIE.2014.2370936
10.1016/j.applthermaleng.2015.10.104
10.1016/j.eswa.2007.11.043
10.1016/j.arcontrol.2004.12.002
10.1016/j.chemolab.2015.06.008
10.1016/S0031-3203(03)00136-5
10.1016/0169-7439(95)80036-9
10.1016/j.conengprac.2013.06.008
10.1016/j.compchemeng.2017.09.005
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2018.12.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 388
ExternalDocumentID 10_1016_j_conengprac_2018_12_009
S0967066118307135
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-fb15ca38f1b0d3f4e3efa971a828ffefcdaf18332a0f3b2914c896d19b9c2f6c3
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Sat Oct 25 05:12:33 EDT 2025
Thu Apr 24 22:53:52 EDT 2025
Fri Feb 23 02:35:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Probability
Large-scale process
Distributed fault diagnosis
Hybrid fault characteristics decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-fb15ca38f1b0d3f4e3efa971a828ffefcdaf18332a0f3b2914c896d19b9c2f6c3
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_conengprac_2018_12_009
crossref_citationtrail_10_1016_j_conengprac_2018_12_009
elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_12_009
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Gao (b32) 2016; 24
Zhao, Wang, Gao (b35) 2016; 55
Jiang, Yan, Huang (b12) 2016; 63
Li, Zhao, Gao (b15) 2018; 65
Zhao, Sun (b34) 2013; 21
Chen, Zhao, Liu (b4) 2017; 169
Qi, Fu, Chen (b18) 2016; 94
Song, Tan, Shi (b21) 2016; 151
Wang, Zhao (b23) 2017; 68
Araujo, Giné (b1) 1980
Yu, Zhao (b27) 2018; 65
Zhao, Gao (b30) 2014; 133
Rashidi, Singh, Zhao (b20) 2018; 70
Chiang, Russell, Braatz (b5) 2001
Cawley, Talbot (b3) 2003; 36
Liu, Chai, Qin (b16) 2014; 20
Jackson (b11) 1991
Zhao, Gao (b31) 2015; 146
Dong, McAvoy (b7) 1996; 42
Isermann (b10) 2005; 29
Zhang, Zhao, Wang, Wang (b29) 2017; 56
Yang, Gao (b26) 2000; 8
Li, Cui (b14) 2009; 36
Zhao, Gao (b33) 2017; 25
Giantomassi, Ferracuti, Iarlori, Ippoliti, Longhi (b8) 2015; 62
Sun, Zhang, Zhao, Gao (b22) 2017; 56
Ding (b6) 2008
Kourti, MacGregor (b13) 1995; 28
Yue, Qin (b28) 2001; 40
Qin, Valle, Piovoso (b19) 2001; 15
Zhao, Zhang (b36) 2014; 130
Cao, Lu, Zhang, Gao (b2) 2018; 108
Westerhuis, Kourti, MacGregor (b24) 1998; 12
Liu, Qin, Chai (b17) 2013; 10
He, Wang, Yang, Yang (b9) 2009; 19
Yan, Yao (b25) 2015; 146
Rashidi (10.1016/j.conengprac.2018.12.009_b20) 2018; 70
Isermann (10.1016/j.conengprac.2018.12.009_b10) 2005; 29
Cao (10.1016/j.conengprac.2018.12.009_b2) 2018; 108
Chen (10.1016/j.conengprac.2018.12.009_b4) 2017; 169
Jackson (10.1016/j.conengprac.2018.12.009_b11) 1991
Zhao (10.1016/j.conengprac.2018.12.009_b32) 2016; 24
Qin (10.1016/j.conengprac.2018.12.009_b19) 2001; 15
Ding (10.1016/j.conengprac.2018.12.009_b6) 2008
Yu (10.1016/j.conengprac.2018.12.009_b27) 2018; 65
He (10.1016/j.conengprac.2018.12.009_b9) 2009; 19
Qi (10.1016/j.conengprac.2018.12.009_b18) 2016; 94
Zhao (10.1016/j.conengprac.2018.12.009_b35) 2016; 55
Jiang (10.1016/j.conengprac.2018.12.009_b12) 2016; 63
Zhao (10.1016/j.conengprac.2018.12.009_b36) 2014; 130
Wang (10.1016/j.conengprac.2018.12.009_b23) 2017; 68
Chiang (10.1016/j.conengprac.2018.12.009_b5) 2001
Zhao (10.1016/j.conengprac.2018.12.009_b33) 2017; 25
Araujo (10.1016/j.conengprac.2018.12.009_b1) 1980
Dong (10.1016/j.conengprac.2018.12.009_b7) 1996; 42
Yang (10.1016/j.conengprac.2018.12.009_b26) 2000; 8
Kourti (10.1016/j.conengprac.2018.12.009_b13) 1995; 28
Li (10.1016/j.conengprac.2018.12.009_b15) 2018; 65
Zhao (10.1016/j.conengprac.2018.12.009_b34) 2013; 21
Song (10.1016/j.conengprac.2018.12.009_b21) 2016; 151
Giantomassi (10.1016/j.conengprac.2018.12.009_b8) 2015; 62
Westerhuis (10.1016/j.conengprac.2018.12.009_b24) 1998; 12
Cawley (10.1016/j.conengprac.2018.12.009_b3) 2003; 36
Liu (10.1016/j.conengprac.2018.12.009_b16) 2014; 20
Zhao (10.1016/j.conengprac.2018.12.009_b31) 2015; 146
Li (10.1016/j.conengprac.2018.12.009_b14) 2009; 36
Sun (10.1016/j.conengprac.2018.12.009_b22) 2017; 56
Zhang (10.1016/j.conengprac.2018.12.009_b29) 2017; 56
Yue (10.1016/j.conengprac.2018.12.009_b28) 2001; 40
Liu (10.1016/j.conengprac.2018.12.009_b17) 2013; 10
Yan (10.1016/j.conengprac.2018.12.009_b25) 2015; 146
Zhao (10.1016/j.conengprac.2018.12.009_b30) 2014; 133
References_xml – volume: 108
  start-page: 128
  year: 2018
  end-page: 138
  ident: b2
  article-title: Online average-based system modeling method for batch process
  publication-title: Computers & Chemical Engineering
– year: 2008
  ident: b6
  article-title: Model-based fault diagnosis techniques: design schemes, algorithms, and tools
– volume: 146
  start-page: 136
  year: 2015
  end-page: 146
  ident: b25
  article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO)
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 36
  start-page: 1423
  year: 2009
  end-page: 1432
  ident: b14
  article-title: Improved kernel fisher discriminant analysis for fault diagnosis
  publication-title: Expert Systems with Applications
– volume: 151
  start-page: 190
  year: 2016
  end-page: 200
  ident: b21
  article-title: Time-space locality preserving coordination for multimode process monitoring
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 28
  start-page: 3
  year: 1995
  end-page: 21
  ident: b13
  article-title: Process analysis, monitoring and diagnosis, using multivariate projection methods
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 24
  start-page: 928
  year: 2016
  end-page: 939
  ident: b32
  article-title: Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 56
  start-page: 6993
  year: 2017
  end-page: 7008
  ident: b22
  article-title: A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information
  publication-title: Industrial and Engineering Chemistry Research
– volume: 68
  start-page: 32
  year: 2017
  end-page: 45
  ident: b23
  article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes
  publication-title: Control Engineering Practice
– volume: 42
  start-page: 2199
  year: 1996
  end-page: 2208
  ident: b7
  article-title: Batch tracking via nonlinear principal component analysis
  publication-title: AIChE Journal
– volume: 40
  start-page: 4403
  year: 2001
  end-page: 4414
  ident: b28
  article-title: Reconstruction-based fault identification using a combined index
  publication-title: Industrial and Engineering Chemistry Research
– year: 2001
  ident: b5
  article-title: Fisher discriminant analysis, fault detection and diagnosis in industrial systems
– volume: 130
  start-page: 135
  year: 2014
  end-page: 150
  ident: b36
  article-title: Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 63
  start-page: 377
  year: 2016
  end-page: 386
  ident: b12
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 19
  start-page: 923
  year: 2009
  end-page: 931
  ident: b9
  article-title: Variable-weighted Fisher discriminant analysis for process fault diagnosis
  publication-title: Journal of Process Control
– volume: 8
  start-page: 1285
  year: 2000
  end-page: 1296
  ident: b26
  article-title: Adaptive control of the filling velocity of thermoplastics injection molding
  publication-title: Control Engineering Practice
– volume: 146
  start-page: 396
  year: 2015
  end-page: 406
  ident: b31
  article-title: A nested-loop Fisher discriminant analysis algorithm
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 133
  start-page: 1
  year: 2014
  end-page: 16
  ident: b30
  article-title: Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring
  publication-title: Chemometrics and Intelligent Laboratory Systems
– year: 1980
  ident: b1
  article-title: The central limit theorem for real and Banach valued random variables
– volume: 65
  start-page: 2683
  year: 2018
  end-page: 2692
  ident: b15
  article-title: Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 12
  start-page: 301
  year: 1998
  end-page: 321
  ident: b24
  article-title: Analysis of multiblock and hierarchical PCA and PLS models
  publication-title: Journal of Chemometrics
– volume: 65
  start-page: 5931
  year: 2018
  end-page: 5940
  ident: b27
  article-title: Sparse Exponential Discriminant Analysis and Its Application to Fault Diagnosis
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 20
  start-page: 511
  year: 2014
  end-page: 518
  ident: b16
  article-title: Fault diagnosis of continuous annealing processes using a reconstruction-based method
  publication-title: Control Engineering Practice
– volume: 10
  start-page: 687
  year: 2013
  end-page: 698
  ident: b17
  article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 15
  start-page: 715
  year: 2001
  end-page: 742
  ident: b19
  article-title: On unifying multiblock analysis with application to decentralized process monitoring
  publication-title: Journal of Chemometrics
– volume: 55
  start-page: 12896
  year: 2016
  end-page: 12908
  ident: b35
  article-title: Probabilistic fault diagnosis based on Monte Carlo and NeLFDA for industrial processes
  publication-title: Industrial and Engineering Chemistry Research
– volume: 29
  start-page: 71
  year: 2005
  end-page: 85
  ident: b10
  article-title: Model-based fault-detection and diagnosis–status and applications
  publication-title: Annual Reviews in control
– volume: 70
  start-page: 134
  year: 2018
  end-page: 147
  ident: b20
  article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes
  publication-title: Control Engineering Practice
– year: 1991
  ident: b11
  article-title: A user’s guide to principal components
– volume: 56
  start-page: 728
  year: 2017
  end-page: 740
  ident: b29
  article-title: Pseudo time-slice construction using variable moving window-k nearest neighbor (VMW-kNN) rule for sequential uneven phase division and batch process monitoring
  publication-title: Industrial and Engineering Chemistry Research
– volume: 36
  start-page: 2585
  year: 2003
  end-page: 2592
  ident: b3
  article-title: Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers
  publication-title: Pattern Recognition
– volume: 169
  start-page: 53
  year: 2017
  end-page: 63
  ident: b4
  article-title: Distributed plant-wide process monitoring based on PCA with minimal redundancy maximal relevance
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 21
  start-page: 1396
  year: 2013
  end-page: 1409
  ident: b34
  article-title: Subspace decomposition approach of fault deviations and its application to fault reconstruction
  publication-title: Control Engineering Practice
– volume: 25
  start-page: 842
  year: 2017
  end-page: 854
  ident: b33
  article-title: Critical-to-Fault-Degradation Variable Analysis and Direction Extraction for Online Fault Prognostic
  publication-title: IEEE Transactions on Control System Technology
– volume: 94
  start-page: 472
  year: 2016
  end-page: 477
  ident: b18
  article-title: Research on a feature selection method based on median impact value for modeling in thermal power plant
  publication-title: Applied Thermal Engineering
– volume: 62
  start-page: 1770
  year: 2015
  end-page: 1780
  ident: b8
  article-title: Electric motor fault detection and diagnosis by kernel density estimation and Kullback–Leibler divergence based on stator current measurements
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 15
  start-page: 715
  year: 2001
  ident: 10.1016/j.conengprac.2018.12.009_b19
  article-title: On unifying multiblock analysis with application to decentralized process monitoring
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.667
– volume: 169
  start-page: 53
  year: 2017
  ident: 10.1016/j.conengprac.2018.12.009_b4
  article-title: Distributed plant-wide process monitoring based on PCA with minimal redundancy maximal relevance
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2017.08.004
– year: 1991
  ident: 10.1016/j.conengprac.2018.12.009_b11
– volume: 130
  start-page: 135
  year: 2014
  ident: 10.1016/j.conengprac.2018.12.009_b36
  article-title: Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2013.10.014
– volume: 146
  start-page: 136
  year: 2015
  ident: 10.1016/j.conengprac.2018.12.009_b25
  article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO)
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2015.05.019
– volume: 56
  start-page: 728
  year: 2017
  ident: 10.1016/j.conengprac.2018.12.009_b29
  article-title: Pseudo time-slice construction using variable moving window-k nearest neighbor (VMW-kNN) rule for sequential uneven phase division and batch process monitoring
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.6b03743
– volume: 10
  start-page: 687
  year: 2013
  ident: 10.1016/j.conengprac.2018.12.009_b17
  article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2012.2230628
– volume: 56
  start-page: 6993
  year: 2017
  ident: 10.1016/j.conengprac.2018.12.009_b22
  article-title: A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.7b00156
– year: 2001
  ident: 10.1016/j.conengprac.2018.12.009_b5
– volume: 24
  start-page: 928
  year: 2016
  ident: 10.1016/j.conengprac.2018.12.009_b32
  article-title: Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 12
  start-page: 301
  year: 1998
  ident: 10.1016/j.conengprac.2018.12.009_b24
  article-title: Analysis of multiblock and hierarchical PCA and PLS models
  publication-title: Journal of Chemometrics
  doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
– volume: 151
  start-page: 190
  year: 2016
  ident: 10.1016/j.conengprac.2018.12.009_b21
  article-title: Time-space locality preserving coordination for multimode process monitoring
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2016.01.001
– volume: 55
  start-page: 12896
  year: 2016
  ident: 10.1016/j.conengprac.2018.12.009_b35
  article-title: Probabilistic fault diagnosis based on Monte Carlo and NeLFDA for industrial processes
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.6b03221
– volume: 70
  start-page: 134
  year: 2018
  ident: 10.1016/j.conengprac.2018.12.009_b20
  article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.09.021
– volume: 40
  start-page: 4403
  year: 2001
  ident: 10.1016/j.conengprac.2018.12.009_b28
  article-title: Reconstruction-based fault identification using a combined index
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie000141+
– volume: 133
  start-page: 1
  year: 2014
  ident: 10.1016/j.conengprac.2018.12.009_b30
  article-title: Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2014.01.009
– volume: 25
  start-page: 842
  year: 2017
  ident: 10.1016/j.conengprac.2018.12.009_b33
  article-title: Critical-to-Fault-Degradation Variable Analysis and Direction Extraction for Online Fault Prognostic
  publication-title: IEEE Transactions on Control System Technology
  doi: 10.1109/TCST.2016.2576018
– volume: 63
  start-page: 377
  year: 2016
  ident: 10.1016/j.conengprac.2018.12.009_b12
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2015.2466557
– volume: 65
  start-page: 5931
  year: 2018
  ident: 10.1016/j.conengprac.2018.12.009_b27
  article-title: Sparse Exponential Discriminant Analysis and Its Application to Fault Diagnosis
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2782232
– volume: 42
  start-page: 2199
  year: 1996
  ident: 10.1016/j.conengprac.2018.12.009_b7
  article-title: Batch tracking via nonlinear principal component analysis
  publication-title: AIChE Journal
  doi: 10.1002/aic.690420810
– volume: 19
  start-page: 923
  year: 2009
  ident: 10.1016/j.conengprac.2018.12.009_b9
  article-title: Variable-weighted Fisher discriminant analysis for process fault diagnosis
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2008.12.001
– year: 2008
  ident: 10.1016/j.conengprac.2018.12.009_b6
– volume: 65
  start-page: 2683
  year: 2018
  ident: 10.1016/j.conengprac.2018.12.009_b15
  article-title: Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2745452
– volume: 20
  start-page: 511
  year: 2014
  ident: 10.1016/j.conengprac.2018.12.009_b16
  article-title: Fault diagnosis of continuous annealing processes using a reconstruction-based method
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2012.01.005
– volume: 68
  start-page: 32
  year: 2017
  ident: 10.1016/j.conengprac.2018.12.009_b23
  article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.07.009
– volume: 8
  start-page: 1285
  year: 2000
  ident: 10.1016/j.conengprac.2018.12.009_b26
  article-title: Adaptive control of the filling velocity of thermoplastics injection molding
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(00)00060-5
– volume: 62
  start-page: 1770
  year: 2015
  ident: 10.1016/j.conengprac.2018.12.009_b8
  article-title: Electric motor fault detection and diagnosis by kernel density estimation and Kullback–Leibler divergence based on stator current measurements
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2370936
– volume: 94
  start-page: 472
  year: 2016
  ident: 10.1016/j.conengprac.2018.12.009_b18
  article-title: Research on a feature selection method based on median impact value for modeling in thermal power plant
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2015.10.104
– volume: 36
  start-page: 1423
  year: 2009
  ident: 10.1016/j.conengprac.2018.12.009_b14
  article-title: Improved kernel fisher discriminant analysis for fault diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.11.043
– year: 1980
  ident: 10.1016/j.conengprac.2018.12.009_b1
– volume: 29
  start-page: 71
  year: 2005
  ident: 10.1016/j.conengprac.2018.12.009_b10
  article-title: Model-based fault-detection and diagnosis–status and applications
  publication-title: Annual Reviews in control
  doi: 10.1016/j.arcontrol.2004.12.002
– volume: 146
  start-page: 396
  year: 2015
  ident: 10.1016/j.conengprac.2018.12.009_b31
  article-title: A nested-loop Fisher discriminant analysis algorithm
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2015.06.008
– volume: 36
  start-page: 2585
  year: 2003
  ident: 10.1016/j.conengprac.2018.12.009_b3
  article-title: Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(03)00136-5
– volume: 28
  start-page: 3
  year: 1995
  ident: 10.1016/j.conengprac.2018.12.009_b13
  article-title: Process analysis, monitoring and diagnosis, using multivariate projection methods
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(95)80036-9
– volume: 21
  start-page: 1396
  issue: 10
  year: 2013
  ident: 10.1016/j.conengprac.2018.12.009_b34
  article-title: Subspace decomposition approach of fault deviations and its application to fault reconstruction
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.06.008
– volume: 108
  start-page: 128
  year: 2018
  ident: 10.1016/j.conengprac.2018.12.009_b2
  article-title: Online average-based system modeling method for batch process
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2017.09.005
SSID ssj0016991
Score 2.362793
Snippet The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 377
SubjectTerms Distributed fault diagnosis
Hybrid fault characteristics decomposition
Large-scale process
Probability
Title Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes
URI https://dx.doi.org/10.1016/j.conengprac.2018.12.009
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68xnaz200WT6VYqmIvWugt7FMqpRTbHrzoX3cmj9qCoOAxYSeEmbAzG74HIVfOxnDkaoWIGyEjETMbGa_bUQKrHffQ4QXynR8Hsj8U96P2qEa6FRcGYZXl3l_s6fluXd5pltlszsbj5hMM3wk0TJiQeW40hwx2kaCLwfXHCubBpCpc82Axsu1ZieYpMF5w5PTTF-QjIcgrzX8MIjTxpxa11nZ6-2SvnBdpp3ilA1Lz00Oyu6YieEQ---9Iu6JBLycLajcVmKnziBovoVkUm5aj6CKTK-viEupQOxdtr3z1DFfg78ZzCiMtnSBYPJpDMT0dr5w-6KygGPj5MRn2bp-7_aj0VYgsl3IRBcPaVvM0MNNyPAjPfdAqYRpOXyH4YJ0OkFQe61bgJlZM2FRJx5RRNg7S8hOyNYXMnRJqcL7URmiJOnxMpiq0DGdcuGCUEaxOkiqVmS1Fx9H7YpJV6LLX7LsIGRYhY3EGRagTtoqcFcIbf4i5qaqVbXxEGfSHX6PP_hV9TnbgShXwtAuytXhb-kuYVxamkX-QDbLduXvoD74AJ4TxSg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA61HtSD-MS3OXhd22zSbIMnKUrV6kULvYU8pVJKsfXgRf-6M_uoCoKC191MWGZCZmb55vsIOfEuhZarGRNuhUxEylxig2klGaz2PECGFzjvfHsnu31xPWgNaqRTzcIgrLK8-4s7Pb-tyyeN0puNyXDYuIfiO4OECRUyz4XmFsiiaKUZdmCnb3OcB5OqkM2D1Thuz0o4TwHygp4zjB9xIAlRXu38zyBiE3_KUV_yzuUaWS0LRnpefNM6qYXxBln5QiO4Sd67rzh3RaN5Gc2o-07BTH1A2HiJzaKYtTxFGZmcWheXUI_kuah7Fao9fAHAG04p1LR0hGjxZArRDHQ4l_qgk2LGIEy3SP_y4qHTTUphhcRxKWdJtKzlDG9HZpueRxF4iEZlzED7FWOIzpsIXuWpaUZuU8WEayvpmbLKpVE6vk3qY_DcDqEWC0xjhZFIxMdkW8Wm5YwLH62ygu2SrHKldiXrOIpfjHQFL3vSn0HQGATNUg1B2CVsbjkpmDf-YHNWRUt_O0UaEsSv1nv_sj4mS92H257uXd3d7JNleKMKrNoBqc-eX8IhFC8ze5Qfzg-9EvLf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+fault+characteristics+decomposition+based+probabilistic+distributed+fault+diagnosis+for+large-scale+industrial+processes&rft.jtitle=Control+engineering+practice&rft.au=Li%2C+Wenqing&rft.au=Zhao%2C+Chunhui&rft.date=2019-03-01&rft.issn=0967-0661&rft.volume=84&rft.spage=377&rft.epage=388&rft_id=info:doi/10.1016%2Fj.conengprac.2018.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2018_12_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon