Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes
The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with high-dimension variables, treating the whole process as a single subject will degrade the representation accuracy. It may result from the followin...
Saved in:
| Published in | Control engineering practice Vol. 84; pp. 377 - 388 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0967-0661 1873-6939 |
| DOI | 10.1016/j.conengprac.2018.12.009 |
Cover
| Abstract | The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with high-dimension variables, treating the whole process as a single subject will degrade the representation accuracy. It may result from the following reasons: First, fault may disturb a part of variables rather than the whole process where the fault information may be buried by the unaffected variables. Second, fault characteristics may be hybrid, in which linear fault patterns and nonlinear fault patterns coexist. Therefore, an effective process decomposition mechanism is of great demand to well describe the complex fault characteristics of large-scale processes. This paper proposes a fault characteristics decomposition based probabilistic and distributed fault diagnosis method. First, process is decomposed into different subsets by evaluating fault effects from linear and nonlinear aspects. Based on the decomposition result, distributed diagnosis models are developed where different fault modeling strategies are implemented for different subsets to closely describe fault characteristics. For online application, probabilistic fault diagnosis is implemented at two levels. At the lower level, distributed diagnosis models are adopted to reveal the underlying characteristics of new sample in each subset; at the upper level, the final affiliation can be revealed by integrating the results from each subset in a probabilistic way. The effectiveness of the proposed algorithm is tested by both the numerical example and industrial processes.
•The whole process is decomposed into different subsets with affected variables distinguished from unaffected variables.•A distributed fault modeling strategy is proposed to extract the underlying characteristics from different subsets.•Fault diagnosis results are calculated in a probabilistic way to tell more information.•The efficacy of the proposed method is verified by numerical examples and industrial applications. |
|---|---|
| AbstractList | The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with high-dimension variables, treating the whole process as a single subject will degrade the representation accuracy. It may result from the following reasons: First, fault may disturb a part of variables rather than the whole process where the fault information may be buried by the unaffected variables. Second, fault characteristics may be hybrid, in which linear fault patterns and nonlinear fault patterns coexist. Therefore, an effective process decomposition mechanism is of great demand to well describe the complex fault characteristics of large-scale processes. This paper proposes a fault characteristics decomposition based probabilistic and distributed fault diagnosis method. First, process is decomposed into different subsets by evaluating fault effects from linear and nonlinear aspects. Based on the decomposition result, distributed diagnosis models are developed where different fault modeling strategies are implemented for different subsets to closely describe fault characteristics. For online application, probabilistic fault diagnosis is implemented at two levels. At the lower level, distributed diagnosis models are adopted to reveal the underlying characteristics of new sample in each subset; at the upper level, the final affiliation can be revealed by integrating the results from each subset in a probabilistic way. The effectiveness of the proposed algorithm is tested by both the numerical example and industrial processes.
•The whole process is decomposed into different subsets with affected variables distinguished from unaffected variables.•A distributed fault modeling strategy is proposed to extract the underlying characteristics from different subsets.•Fault diagnosis results are calculated in a probabilistic way to tell more information.•The efficacy of the proposed method is verified by numerical examples and industrial applications. |
| Author | Li, Wenqing Zhao, Chunhui |
| Author_xml | – sequence: 1 givenname: Wenqing surname: Li fullname: Li, Wenqing organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China – sequence: 2 givenname: Chunhui surname: Zhao fullname: Zhao, Chunhui email: chhzhao@zju.edu.cn organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China |
| BookMark | eNqNkMtKBDEQRYMoOD7-IT_QbdLRTGcjqKgjCG50HSqVypihp3tIMoIrf91uHwhudHWhuPdAnQO22w89McalqKWQ-mRV43jol5sEWDdCtrVsaiHMDpvJdq4qbZTZZTNh9LwSWst9dpDzSoxTY-SMvS1eXYqeB9h2heMzjJhCKeYSMXNPOKw3Q44lDj13kMnzTRocuNh9VLgfI0W3LfTN8BGW_TjJPAyJd5CWVGWEjnjs_XZqQzdBkHKmfMT2AnSZjr_ykD3dXD9eLar7h9u7q4v7CpXWpQpOniGoNkgnvAqnpCiAmUtomzYECughyFapBkRQrjHyFFujvTTOYBM0qkPWfnIxDTknCnaT4hrSq5XCTiLtyv6ItJNIKxs7ihyn57-mGAtMRkqC2P0HcPkJoPHBl0jJZozUI_mYCIv1Q_wb8g7Xrp66 |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2022_06_011 crossref_primary_10_1109_TIM_2023_3308224 crossref_primary_10_1016_j_compchemeng_2021_107587 crossref_primary_10_1007_s11063_024_11577_1 crossref_primary_10_1016_j_conengprac_2024_105951 crossref_primary_10_1115_1_4044445 crossref_primary_10_1016_j_measurement_2024_114749 crossref_primary_10_1016_j_conengprac_2021_104778 crossref_primary_10_1002_aic_17826 crossref_primary_10_1109_TSMC_2022_3224747 crossref_primary_10_1016_j_jprocont_2021_03_004 crossref_primary_10_1016_j_jprocont_2020_11_004 crossref_primary_10_3390_pr8010024 crossref_primary_10_1016_j_jprocont_2021_03_007 crossref_primary_10_1109_TASE_2021_3080977 crossref_primary_10_1016_j_jprocont_2023_103088 crossref_primary_10_1016_j_jfranklin_2020_05_037 crossref_primary_10_1007_s10845_021_01752_9 |
| Cites_doi | 10.1002/cem.667 10.1016/j.chemolab.2017.08.004 10.1016/j.chemolab.2013.10.014 10.1016/j.chemolab.2015.05.019 10.1021/acs.iecr.6b03743 10.1109/TASE.2012.2230628 10.1021/acs.iecr.7b00156 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S 10.1016/j.chemolab.2016.01.001 10.1021/acs.iecr.6b03221 10.1016/j.conengprac.2017.09.021 10.1021/ie000141+ 10.1016/j.chemolab.2014.01.009 10.1109/TCST.2016.2576018 10.1109/TIE.2015.2466557 10.1109/TIE.2017.2782232 10.1002/aic.690420810 10.1016/j.jprocont.2008.12.001 10.1109/TIE.2017.2745452 10.1016/j.conengprac.2012.01.005 10.1016/j.conengprac.2017.07.009 10.1016/S0967-0661(00)00060-5 10.1109/TIE.2014.2370936 10.1016/j.applthermaleng.2015.10.104 10.1016/j.eswa.2007.11.043 10.1016/j.arcontrol.2004.12.002 10.1016/j.chemolab.2015.06.008 10.1016/S0031-3203(03)00136-5 10.1016/0169-7439(95)80036-9 10.1016/j.conengprac.2013.06.008 10.1016/j.compchemeng.2017.09.005 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2018.12.009 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| EndPage | 388 |
| ExternalDocumentID | 10_1016_j_conengprac_2018_12_009 S0967066118307135 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c366t-fb15ca38f1b0d3f4e3efa971a828ffefcdaf18332a0f3b2914c896d19b9c2f6c3 |
| IEDL.DBID | .~1 |
| ISSN | 0967-0661 |
| IngestDate | Sat Oct 25 05:12:33 EDT 2025 Thu Apr 24 22:53:52 EDT 2025 Fri Feb 23 02:35:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Probability Large-scale process Distributed fault diagnosis Hybrid fault characteristics decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-fb15ca38f1b0d3f4e3efa971a828ffefcdaf18332a0f3b2914c896d19b9c2f6c3 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_conengprac_2018_12_009 crossref_citationtrail_10_1016_j_conengprac_2018_12_009 elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_12_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhao, Gao (b32) 2016; 24 Zhao, Wang, Gao (b35) 2016; 55 Jiang, Yan, Huang (b12) 2016; 63 Li, Zhao, Gao (b15) 2018; 65 Zhao, Sun (b34) 2013; 21 Chen, Zhao, Liu (b4) 2017; 169 Qi, Fu, Chen (b18) 2016; 94 Song, Tan, Shi (b21) 2016; 151 Wang, Zhao (b23) 2017; 68 Araujo, Giné (b1) 1980 Yu, Zhao (b27) 2018; 65 Zhao, Gao (b30) 2014; 133 Rashidi, Singh, Zhao (b20) 2018; 70 Chiang, Russell, Braatz (b5) 2001 Cawley, Talbot (b3) 2003; 36 Liu, Chai, Qin (b16) 2014; 20 Jackson (b11) 1991 Zhao, Gao (b31) 2015; 146 Dong, McAvoy (b7) 1996; 42 Isermann (b10) 2005; 29 Zhang, Zhao, Wang, Wang (b29) 2017; 56 Yang, Gao (b26) 2000; 8 Li, Cui (b14) 2009; 36 Zhao, Gao (b33) 2017; 25 Giantomassi, Ferracuti, Iarlori, Ippoliti, Longhi (b8) 2015; 62 Sun, Zhang, Zhao, Gao (b22) 2017; 56 Ding (b6) 2008 Kourti, MacGregor (b13) 1995; 28 Yue, Qin (b28) 2001; 40 Qin, Valle, Piovoso (b19) 2001; 15 Zhao, Zhang (b36) 2014; 130 Cao, Lu, Zhang, Gao (b2) 2018; 108 Westerhuis, Kourti, MacGregor (b24) 1998; 12 Liu, Qin, Chai (b17) 2013; 10 He, Wang, Yang, Yang (b9) 2009; 19 Yan, Yao (b25) 2015; 146 Rashidi (10.1016/j.conengprac.2018.12.009_b20) 2018; 70 Isermann (10.1016/j.conengprac.2018.12.009_b10) 2005; 29 Cao (10.1016/j.conengprac.2018.12.009_b2) 2018; 108 Chen (10.1016/j.conengprac.2018.12.009_b4) 2017; 169 Jackson (10.1016/j.conengprac.2018.12.009_b11) 1991 Zhao (10.1016/j.conengprac.2018.12.009_b32) 2016; 24 Qin (10.1016/j.conengprac.2018.12.009_b19) 2001; 15 Ding (10.1016/j.conengprac.2018.12.009_b6) 2008 Yu (10.1016/j.conengprac.2018.12.009_b27) 2018; 65 He (10.1016/j.conengprac.2018.12.009_b9) 2009; 19 Qi (10.1016/j.conengprac.2018.12.009_b18) 2016; 94 Zhao (10.1016/j.conengprac.2018.12.009_b35) 2016; 55 Jiang (10.1016/j.conengprac.2018.12.009_b12) 2016; 63 Zhao (10.1016/j.conengprac.2018.12.009_b36) 2014; 130 Wang (10.1016/j.conengprac.2018.12.009_b23) 2017; 68 Chiang (10.1016/j.conengprac.2018.12.009_b5) 2001 Zhao (10.1016/j.conengprac.2018.12.009_b33) 2017; 25 Araujo (10.1016/j.conengprac.2018.12.009_b1) 1980 Dong (10.1016/j.conengprac.2018.12.009_b7) 1996; 42 Yang (10.1016/j.conengprac.2018.12.009_b26) 2000; 8 Kourti (10.1016/j.conengprac.2018.12.009_b13) 1995; 28 Li (10.1016/j.conengprac.2018.12.009_b15) 2018; 65 Zhao (10.1016/j.conengprac.2018.12.009_b34) 2013; 21 Song (10.1016/j.conengprac.2018.12.009_b21) 2016; 151 Giantomassi (10.1016/j.conengprac.2018.12.009_b8) 2015; 62 Westerhuis (10.1016/j.conengprac.2018.12.009_b24) 1998; 12 Cawley (10.1016/j.conengprac.2018.12.009_b3) 2003; 36 Liu (10.1016/j.conengprac.2018.12.009_b16) 2014; 20 Zhao (10.1016/j.conengprac.2018.12.009_b31) 2015; 146 Li (10.1016/j.conengprac.2018.12.009_b14) 2009; 36 Sun (10.1016/j.conengprac.2018.12.009_b22) 2017; 56 Zhang (10.1016/j.conengprac.2018.12.009_b29) 2017; 56 Yue (10.1016/j.conengprac.2018.12.009_b28) 2001; 40 Liu (10.1016/j.conengprac.2018.12.009_b17) 2013; 10 Yan (10.1016/j.conengprac.2018.12.009_b25) 2015; 146 Zhao (10.1016/j.conengprac.2018.12.009_b30) 2014; 133 |
| References_xml | – volume: 108 start-page: 128 year: 2018 end-page: 138 ident: b2 article-title: Online average-based system modeling method for batch process publication-title: Computers & Chemical Engineering – year: 2008 ident: b6 article-title: Model-based fault diagnosis techniques: design schemes, algorithms, and tools – volume: 146 start-page: 136 year: 2015 end-page: 146 ident: b25 article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO) publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 36 start-page: 1423 year: 2009 end-page: 1432 ident: b14 article-title: Improved kernel fisher discriminant analysis for fault diagnosis publication-title: Expert Systems with Applications – volume: 151 start-page: 190 year: 2016 end-page: 200 ident: b21 article-title: Time-space locality preserving coordination for multimode process monitoring publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 28 start-page: 3 year: 1995 end-page: 21 ident: b13 article-title: Process analysis, monitoring and diagnosis, using multivariate projection methods publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 24 start-page: 928 year: 2016 end-page: 939 ident: b32 article-title: Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 56 start-page: 6993 year: 2017 end-page: 7008 ident: b22 article-title: A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information publication-title: Industrial and Engineering Chemistry Research – volume: 68 start-page: 32 year: 2017 end-page: 45 ident: b23 article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes publication-title: Control Engineering Practice – volume: 42 start-page: 2199 year: 1996 end-page: 2208 ident: b7 article-title: Batch tracking via nonlinear principal component analysis publication-title: AIChE Journal – volume: 40 start-page: 4403 year: 2001 end-page: 4414 ident: b28 article-title: Reconstruction-based fault identification using a combined index publication-title: Industrial and Engineering Chemistry Research – year: 2001 ident: b5 article-title: Fisher discriminant analysis, fault detection and diagnosis in industrial systems – volume: 130 start-page: 135 year: 2014 end-page: 150 ident: b36 article-title: Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 63 start-page: 377 year: 2016 end-page: 386 ident: b12 article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference publication-title: IEEE Transactions on Industrial Electronics – volume: 19 start-page: 923 year: 2009 end-page: 931 ident: b9 article-title: Variable-weighted Fisher discriminant analysis for process fault diagnosis publication-title: Journal of Process Control – volume: 8 start-page: 1285 year: 2000 end-page: 1296 ident: b26 article-title: Adaptive control of the filling velocity of thermoplastics injection molding publication-title: Control Engineering Practice – volume: 146 start-page: 396 year: 2015 end-page: 406 ident: b31 article-title: A nested-loop Fisher discriminant analysis algorithm publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 133 start-page: 1 year: 2014 end-page: 16 ident: b30 article-title: Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring publication-title: Chemometrics and Intelligent Laboratory Systems – year: 1980 ident: b1 article-title: The central limit theorem for real and Banach valued random variables – volume: 65 start-page: 2683 year: 2018 end-page: 2692 ident: b15 article-title: Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring publication-title: IEEE Transactions on Industrial Electronics – volume: 12 start-page: 301 year: 1998 end-page: 321 ident: b24 article-title: Analysis of multiblock and hierarchical PCA and PLS models publication-title: Journal of Chemometrics – volume: 65 start-page: 5931 year: 2018 end-page: 5940 ident: b27 article-title: Sparse Exponential Discriminant Analysis and Its Application to Fault Diagnosis publication-title: IEEE Transactions on Industrial Electronics – volume: 20 start-page: 511 year: 2014 end-page: 518 ident: b16 article-title: Fault diagnosis of continuous annealing processes using a reconstruction-based method publication-title: Control Engineering Practice – volume: 10 start-page: 687 year: 2013 end-page: 698 ident: b17 article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA publication-title: IEEE Transactions on Automation Science and Engineering – volume: 15 start-page: 715 year: 2001 end-page: 742 ident: b19 article-title: On unifying multiblock analysis with application to decentralized process monitoring publication-title: Journal of Chemometrics – volume: 55 start-page: 12896 year: 2016 end-page: 12908 ident: b35 article-title: Probabilistic fault diagnosis based on Monte Carlo and NeLFDA for industrial processes publication-title: Industrial and Engineering Chemistry Research – volume: 29 start-page: 71 year: 2005 end-page: 85 ident: b10 article-title: Model-based fault-detection and diagnosis–status and applications publication-title: Annual Reviews in control – volume: 70 start-page: 134 year: 2018 end-page: 147 ident: b20 article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes publication-title: Control Engineering Practice – year: 1991 ident: b11 article-title: A user’s guide to principal components – volume: 56 start-page: 728 year: 2017 end-page: 740 ident: b29 article-title: Pseudo time-slice construction using variable moving window-k nearest neighbor (VMW-kNN) rule for sequential uneven phase division and batch process monitoring publication-title: Industrial and Engineering Chemistry Research – volume: 36 start-page: 2585 year: 2003 end-page: 2592 ident: b3 article-title: Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers publication-title: Pattern Recognition – volume: 169 start-page: 53 year: 2017 end-page: 63 ident: b4 article-title: Distributed plant-wide process monitoring based on PCA with minimal redundancy maximal relevance publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 21 start-page: 1396 year: 2013 end-page: 1409 ident: b34 article-title: Subspace decomposition approach of fault deviations and its application to fault reconstruction publication-title: Control Engineering Practice – volume: 25 start-page: 842 year: 2017 end-page: 854 ident: b33 article-title: Critical-to-Fault-Degradation Variable Analysis and Direction Extraction for Online Fault Prognostic publication-title: IEEE Transactions on Control System Technology – volume: 94 start-page: 472 year: 2016 end-page: 477 ident: b18 article-title: Research on a feature selection method based on median impact value for modeling in thermal power plant publication-title: Applied Thermal Engineering – volume: 62 start-page: 1770 year: 2015 end-page: 1780 ident: b8 article-title: Electric motor fault detection and diagnosis by kernel density estimation and Kullback–Leibler divergence based on stator current measurements publication-title: IEEE Transactions on Industrial Electronics – volume: 15 start-page: 715 year: 2001 ident: 10.1016/j.conengprac.2018.12.009_b19 article-title: On unifying multiblock analysis with application to decentralized process monitoring publication-title: Journal of Chemometrics doi: 10.1002/cem.667 – volume: 169 start-page: 53 year: 2017 ident: 10.1016/j.conengprac.2018.12.009_b4 article-title: Distributed plant-wide process monitoring based on PCA with minimal redundancy maximal relevance publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2017.08.004 – year: 1991 ident: 10.1016/j.conengprac.2018.12.009_b11 – volume: 130 start-page: 135 year: 2014 ident: 10.1016/j.conengprac.2018.12.009_b36 article-title: Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2013.10.014 – volume: 146 start-page: 136 year: 2015 ident: 10.1016/j.conengprac.2018.12.009_b25 article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO) publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2015.05.019 – volume: 56 start-page: 728 year: 2017 ident: 10.1016/j.conengprac.2018.12.009_b29 article-title: Pseudo time-slice construction using variable moving window-k nearest neighbor (VMW-kNN) rule for sequential uneven phase division and batch process monitoring publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.6b03743 – volume: 10 start-page: 687 year: 2013 ident: 10.1016/j.conengprac.2018.12.009_b17 article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2012.2230628 – volume: 56 start-page: 6993 year: 2017 ident: 10.1016/j.conengprac.2018.12.009_b22 article-title: A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.7b00156 – year: 2001 ident: 10.1016/j.conengprac.2018.12.009_b5 – volume: 24 start-page: 928 year: 2016 ident: 10.1016/j.conengprac.2018.12.009_b32 article-title: Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 12 start-page: 301 year: 1998 ident: 10.1016/j.conengprac.2018.12.009_b24 article-title: Analysis of multiblock and hierarchical PCA and PLS models publication-title: Journal of Chemometrics doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S – volume: 151 start-page: 190 year: 2016 ident: 10.1016/j.conengprac.2018.12.009_b21 article-title: Time-space locality preserving coordination for multimode process monitoring publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2016.01.001 – volume: 55 start-page: 12896 year: 2016 ident: 10.1016/j.conengprac.2018.12.009_b35 article-title: Probabilistic fault diagnosis based on Monte Carlo and NeLFDA for industrial processes publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.6b03221 – volume: 70 start-page: 134 year: 2018 ident: 10.1016/j.conengprac.2018.12.009_b20 article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.09.021 – volume: 40 start-page: 4403 year: 2001 ident: 10.1016/j.conengprac.2018.12.009_b28 article-title: Reconstruction-based fault identification using a combined index publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie000141+ – volume: 133 start-page: 1 year: 2014 ident: 10.1016/j.conengprac.2018.12.009_b30 article-title: Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2014.01.009 – volume: 25 start-page: 842 year: 2017 ident: 10.1016/j.conengprac.2018.12.009_b33 article-title: Critical-to-Fault-Degradation Variable Analysis and Direction Extraction for Online Fault Prognostic publication-title: IEEE Transactions on Control System Technology doi: 10.1109/TCST.2016.2576018 – volume: 63 start-page: 377 year: 2016 ident: 10.1016/j.conengprac.2018.12.009_b12 article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2015.2466557 – volume: 65 start-page: 5931 year: 2018 ident: 10.1016/j.conengprac.2018.12.009_b27 article-title: Sparse Exponential Discriminant Analysis and Its Application to Fault Diagnosis publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2017.2782232 – volume: 42 start-page: 2199 year: 1996 ident: 10.1016/j.conengprac.2018.12.009_b7 article-title: Batch tracking via nonlinear principal component analysis publication-title: AIChE Journal doi: 10.1002/aic.690420810 – volume: 19 start-page: 923 year: 2009 ident: 10.1016/j.conengprac.2018.12.009_b9 article-title: Variable-weighted Fisher discriminant analysis for process fault diagnosis publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2008.12.001 – year: 2008 ident: 10.1016/j.conengprac.2018.12.009_b6 – volume: 65 start-page: 2683 year: 2018 ident: 10.1016/j.conengprac.2018.12.009_b15 article-title: Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2017.2745452 – volume: 20 start-page: 511 year: 2014 ident: 10.1016/j.conengprac.2018.12.009_b16 article-title: Fault diagnosis of continuous annealing processes using a reconstruction-based method publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2012.01.005 – volume: 68 start-page: 32 year: 2017 ident: 10.1016/j.conengprac.2018.12.009_b23 article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.07.009 – volume: 8 start-page: 1285 year: 2000 ident: 10.1016/j.conengprac.2018.12.009_b26 article-title: Adaptive control of the filling velocity of thermoplastics injection molding publication-title: Control Engineering Practice doi: 10.1016/S0967-0661(00)00060-5 – volume: 62 start-page: 1770 year: 2015 ident: 10.1016/j.conengprac.2018.12.009_b8 article-title: Electric motor fault detection and diagnosis by kernel density estimation and Kullback–Leibler divergence based on stator current measurements publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2370936 – volume: 94 start-page: 472 year: 2016 ident: 10.1016/j.conengprac.2018.12.009_b18 article-title: Research on a feature selection method based on median impact value for modeling in thermal power plant publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2015.10.104 – volume: 36 start-page: 1423 year: 2009 ident: 10.1016/j.conengprac.2018.12.009_b14 article-title: Improved kernel fisher discriminant analysis for fault diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.11.043 – year: 1980 ident: 10.1016/j.conengprac.2018.12.009_b1 – volume: 29 start-page: 71 year: 2005 ident: 10.1016/j.conengprac.2018.12.009_b10 article-title: Model-based fault-detection and diagnosis–status and applications publication-title: Annual Reviews in control doi: 10.1016/j.arcontrol.2004.12.002 – volume: 146 start-page: 396 year: 2015 ident: 10.1016/j.conengprac.2018.12.009_b31 article-title: A nested-loop Fisher discriminant analysis algorithm publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2015.06.008 – volume: 36 start-page: 2585 year: 2003 ident: 10.1016/j.conengprac.2018.12.009_b3 article-title: Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers publication-title: Pattern Recognition doi: 10.1016/S0031-3203(03)00136-5 – volume: 28 start-page: 3 year: 1995 ident: 10.1016/j.conengprac.2018.12.009_b13 article-title: Process analysis, monitoring and diagnosis, using multivariate projection methods publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(95)80036-9 – volume: 21 start-page: 1396 issue: 10 year: 2013 ident: 10.1016/j.conengprac.2018.12.009_b34 article-title: Subspace decomposition approach of fault deviations and its application to fault reconstruction publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.06.008 – volume: 108 start-page: 128 year: 2018 ident: 10.1016/j.conengprac.2018.12.009_b2 article-title: Online average-based system modeling method for batch process publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2017.09.005 |
| SSID | ssj0016991 |
| Score | 2.362793 |
| Snippet | The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 377 |
| SubjectTerms | Distributed fault diagnosis Hybrid fault characteristics decomposition Large-scale process Probability |
| Title | Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes |
| URI | https://dx.doi.org/10.1016/j.conengprac.2018.12.009 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68xnaz200WT6VYqmIvWugt7FMqpRTbHrzoX3cmj9qCoOAxYSeEmbAzG74HIVfOxnDkaoWIGyEjETMbGa_bUQKrHffQ4QXynR8Hsj8U96P2qEa6FRcGYZXl3l_s6fluXd5pltlszsbj5hMM3wk0TJiQeW40hwx2kaCLwfXHCubBpCpc82Axsu1ZieYpMF5w5PTTF-QjIcgrzX8MIjTxpxa11nZ6-2SvnBdpp3ilA1Lz00Oyu6YieEQ---9Iu6JBLycLajcVmKnziBovoVkUm5aj6CKTK-viEupQOxdtr3z1DFfg78ZzCiMtnSBYPJpDMT0dr5w-6KygGPj5MRn2bp-7_aj0VYgsl3IRBcPaVvM0MNNyPAjPfdAqYRpOXyH4YJ0OkFQe61bgJlZM2FRJx5RRNg7S8hOyNYXMnRJqcL7URmiJOnxMpiq0DGdcuGCUEaxOkiqVmS1Fx9H7YpJV6LLX7LsIGRYhY3EGRagTtoqcFcIbf4i5qaqVbXxEGfSHX6PP_hV9TnbgShXwtAuytXhb-kuYVxamkX-QDbLduXvoD74AJ4TxSg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA61HtSD-MS3OXhd22zSbIMnKUrV6kULvYU8pVJKsfXgRf-6M_uoCoKC191MWGZCZmb55vsIOfEuhZarGRNuhUxEylxig2klGaz2PECGFzjvfHsnu31xPWgNaqRTzcIgrLK8-4s7Pb-tyyeN0puNyXDYuIfiO4OECRUyz4XmFsiiaKUZdmCnb3OcB5OqkM2D1Thuz0o4TwHygp4zjB9xIAlRXu38zyBiE3_KUV_yzuUaWS0LRnpefNM6qYXxBln5QiO4Sd67rzh3RaN5Gc2o-07BTH1A2HiJzaKYtTxFGZmcWheXUI_kuah7Fao9fAHAG04p1LR0hGjxZArRDHQ4l_qgk2LGIEy3SP_y4qHTTUphhcRxKWdJtKzlDG9HZpueRxF4iEZlzED7FWOIzpsIXuWpaUZuU8WEayvpmbLKpVE6vk3qY_DcDqEWC0xjhZFIxMdkW8Wm5YwLH62ygu2SrHKldiXrOIpfjHQFL3vSn0HQGATNUg1B2CVsbjkpmDf-YHNWRUt_O0UaEsSv1nv_sj4mS92H257uXd3d7JNleKMKrNoBqc-eX8IhFC8ze5Qfzg-9EvLf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+fault+characteristics+decomposition+based+probabilistic+distributed+fault+diagnosis+for+large-scale+industrial+processes&rft.jtitle=Control+engineering+practice&rft.au=Li%2C+Wenqing&rft.au=Zhao%2C+Chunhui&rft.date=2019-03-01&rft.issn=0967-0661&rft.volume=84&rft.spage=377&rft.epage=388&rft_id=info:doi/10.1016%2Fj.conengprac.2018.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2018_12_009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |