Effective fuzzy c-means clustering algorithms for data clustering problems

Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of f...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 39; no. 7; pp. 6292 - 6300
Main Authors Kannan, S.R., Ramathilagam, S., Chung, P.C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2012
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2011.11.063

Cover

Abstract Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers. In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series.
AbstractList Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers. In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series.
Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers. In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series.
Author Chung, P.C.
Kannan, S.R.
Ramathilagam, S.
Author_xml – sequence: 1
  givenname: S.R.
  surname: Kannan
  fullname: Kannan, S.R.
  email: srkannaniitm@mail.com
  organization: Department of Mathematics, Pondicherry Central University, Pondicherry, India
– sequence: 2
  givenname: S.
  surname: Ramathilagam
  fullname: Ramathilagam, S.
  organization: Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan, ROC
– sequence: 3
  givenname: P.C.
  surname: Chung
  fullname: Chung, P.C.
  organization: Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
BookMark eNqFkU1rAyEQhqWk0CTtH-hpj71squuurtBLCekXgV5yF9cdU8N-pOqmJL--hvRQekhhYECfx8F3JmjU9R0gdEvwjGDC7jcz8F9qlmFCZrEwoxdoTEpOU8YFHaExFgVPc8LzKzTxfoMx4RjzMXpbGAM62B0kZjgc9olOW1CdT3Qz-ADOdutENeve2fDR-sT0LqlVUL-vt66vGmj9Nbo0qvFw89OnaPW0WM1f0uX78-v8cZlqylhIjcBlIQhQouNBTXBVcVxUSmSsIGC0MhkjGS8hp0VZ55TzUmMjBMc8N0rTKbo7PRvnfg7gg2yt19A0qoN-8PL4MSFwnPI_iolgtGBlHtHyhGrXe-_ASG2DCrbvglO2ieiRZnIjj0HLY9AyVgw6qtkfdetsq9z-vPRwkiAmtbPgpNcWOg21dXEfsu7tOf0b6K2ZYg
CitedBy_id crossref_primary_10_1016_j_jclepro_2017_11_049
crossref_primary_10_1371_journal_pone_0157694
crossref_primary_10_1016_j_eswa_2017_08_050
crossref_primary_10_1007_s40747_024_01416_0
crossref_primary_10_1016_j_ins_2013_11_004
crossref_primary_10_1080_1206212X_2019_1640345
crossref_primary_10_1007_s00354_023_00229_y
crossref_primary_10_4028_www_scientific_net_AMM_678_19
crossref_primary_10_1007_s12525_020_00417_4
crossref_primary_10_1109_TNNLS_2013_2254127
crossref_primary_10_1016_j_eswa_2012_02_167
crossref_primary_10_32604_cmc_2022_021148
crossref_primary_10_1016_j_eswa_2018_09_030
crossref_primary_10_1016_j_eswa_2022_117015
crossref_primary_10_4028_www_scientific_net_AMR_989_994_1775
crossref_primary_10_1007_s10639_018_9820_5
crossref_primary_10_3390_en9050310
crossref_primary_10_1007_s11269_014_0553_y
crossref_primary_10_3390_sym14040658
crossref_primary_10_1016_j_neunet_2014_05_001
crossref_primary_10_12973_eurasia_2017_01048a
crossref_primary_10_1016_j_eswa_2017_04_045
crossref_primary_10_3390_s22166163
crossref_primary_10_1109_TFUZZ_2013_2280141
crossref_primary_10_21595_jve_2017_17173
crossref_primary_10_4018_ijirr_2013040101
crossref_primary_10_1155_2013_183410
crossref_primary_10_1109_TFUZZ_2016_2612300
crossref_primary_10_1016_j_eswa_2021_115052
crossref_primary_10_1016_j_eswa_2018_10_023
crossref_primary_10_1016_j_asoc_2020_106171
crossref_primary_10_1142_S0218194018500341
crossref_primary_10_3233_JIFS_211340
crossref_primary_10_1016_j_eswa_2015_03_031
crossref_primary_10_1016_j_trc_2014_12_001
crossref_primary_10_1016_j_neucom_2013_01_040
crossref_primary_10_4028_www_scientific_net_AMM_433_435_626
crossref_primary_10_1016_j_isatra_2018_01_022
crossref_primary_10_1007_s12652_020_02649_w
crossref_primary_10_29252_jsdp_15_4_3
Cites_doi 10.1109/CIDM.2007.368937
10.1016/j.csda.2006.02.008
10.1016/S0165-0114(98)00038-4
10.1016/j.eswa.2010.09.107
10.1016/j.is.2009.03.006
10.1080/01969727308546047
10.1109/TSMCB.2004.831165
10.3233/IFS-1994-2306
10.1016/j.patrec.2004.04.007
10.1093/ietisy/e90-d.6.883
10.1007/11526018_15
10.1109/TSMCB.2002.1033179
10.1109/CIMCA.2005.1631511
10.1016/j.is.2007.07.002
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2011.11.063
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 6300
ExternalDocumentID 10_1016_j_eswa_2011_11_063
S0957417411016095
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACLOT
ACNTT
ACRPL
ACVFH
ADCNI
ADJOM
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c366t-f908591e31cc36d10bb705ba92651efcaf261278e4358d43778c0f997074fac3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Oct 02 11:10:01 EDT 2025
Sat Sep 27 21:32:43 EDT 2025
Wed Oct 01 03:51:35 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Kernel distance functions
Clustering
Entropy FCM
Data clustering
Regularization functions
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-f908591e31cc36d10bb705ba92651efcaf261278e4358d43778c0f997074fac3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1019635684
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1700990908
proquest_miscellaneous_1019635684
crossref_citationtrail_10_1016_j_eswa_2011_11_063
crossref_primary_10_1016_j_eswa_2011_11_063
elsevier_sciencedirect_doi_10_1016_j_eswa_2011_11_063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
2012-6-00
20120601
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bezdek (b0015) 1974; 3
Mizutani1, K., & Miyamoto, S. (2005). Possibilistic Approach to Kernel-Based Fuzzy
Means Clustering with Entropy Regularization, In V. Torra et al. (Eds.)
Alcock, R. J., & Manolopoulos, Y. (1999). Time-series similarity queries employing a feature-based approach. In
(pp. 144–155).
IIZUKA, Fukuoka, Japan (pp. 332–332).
means classifier for incomplete data sets with outliers and missing values. In
Wang, Q., Megalooikonomou, V., & Faloutsos, C. (in press). Time series analysis with multiple resolutions. Information Systems.
Yao, Dash, Tan, Liu (b0115) 2000; 113
Hartigan (b0045) 1975
Ghorbani (b0040) 2005; 29
Chiu (b0030) 1994; 2
Belhaouari (b0010) 2009; 49
Hathaway, Bezdek (b0050) 2006; 51
Yuhua, G., & Lawrence O. (2006). Hall Kernel based fuzzy ant clustering with partition validity. In
Cheng, Wei (b0020) 2009
Singh, L., & Sayal, M. (2007). Privacy preserving burst detection of distributed time series data using linear transforms. In
Pal, Bezdek (b0090) 2002; 32
(pp. 646–653).
Wang, Megalooikonomou (b0105) 2008; 33
(Vol. 2, pp. 457–464).
(b0075) 2000
.
Kannan, S. R. (in press). Robust kernel FCM in segmentation of breast medical images. Expert Systems with Application
Khan, Ahmad (b0070) 2004; 25
Yasuda, Furuhash, Okuma (b0120) 2007; E90-D
Ghorbani, M. (2002). Model selection for probabilistic clustering using cross-validated likelihood. Thesis, Tarbiat Modarres University, Tehran, Iran.
Uma Shankar, B., & Pal, N. R. (1994). FFCM: An effective approach for large data sets. In
(pp. 263–267).
Chen, Zhang (b0025) 2004; 34
Miyamoto, Suizu, Takata (b0080) 2004; 60
Ichihashi, H. & Honda, K. (2005). Fuzzy
Hetland (b0055) 2002
Khan (10.1016/j.eswa.2011.11.063_b0070) 2004; 25
Chen (10.1016/j.eswa.2011.11.063_b0025) 2004; 34
Yao (10.1016/j.eswa.2011.11.063_b0115) 2000; 113
Belhaouari (10.1016/j.eswa.2011.11.063_b0010) 2009; 49
(10.1016/j.eswa.2011.11.063_b0075) 2000
10.1016/j.eswa.2011.11.063_b0100
10.1016/j.eswa.2011.11.063_b0065
10.1016/j.eswa.2011.11.063_b0085
Bezdek (10.1016/j.eswa.2011.11.063_b0015) 1974; 3
10.1016/j.eswa.2011.11.063_b0060
Hathaway (10.1016/j.eswa.2011.11.063_b0050) 2006; 51
Miyamoto (10.1016/j.eswa.2011.11.063_b0080) 2004; 60
Cheng (10.1016/j.eswa.2011.11.063_b0020) 2009
Ghorbani (10.1016/j.eswa.2011.11.063_b0040) 2005; 29
Yasuda (10.1016/j.eswa.2011.11.063_b0120) 2007; E90-D
Hetland (10.1016/j.eswa.2011.11.063_b0055) 2002
10.1016/j.eswa.2011.11.063_b0125
10.1016/j.eswa.2011.11.063_b0005
10.1016/j.eswa.2011.11.063_b0035
10.1016/j.eswa.2011.11.063_b0110
Wang (10.1016/j.eswa.2011.11.063_b0105) 2008; 33
Pal (10.1016/j.eswa.2011.11.063_b0090) 2002; 32
10.1016/j.eswa.2011.11.063_b0095
Chiu (10.1016/j.eswa.2011.11.063_b0030) 1994; 2
Hartigan (10.1016/j.eswa.2011.11.063_b0045) 1975
References_xml – reference: Ichihashi, H. & Honda, K. (2005). Fuzzy
– reference: -Means Clustering with Entropy Regularization, In V. Torra et al. (Eds.),
– reference: Uma Shankar, B., & Pal, N. R. (1994). FFCM: An effective approach for large data sets. In:
– reference: Ghorbani, M. (2002). Model selection for probabilistic clustering using cross-validated likelihood. Thesis, Tarbiat Modarres University, Tehran, Iran.
– volume: 33
  start-page: 115
  year: 2008
  end-page: 132
  ident: b0105
  article-title: A dimensionality reduction technique for efficient time series similarity analysis
  publication-title: Information Systems
– volume: 113
  start-page: 381
  year: 2000
  end-page: 388
  ident: b0115
  article-title: Entropy-based fuzzy clustering and fuzzy modeling
  publication-title: Fuzzy Sets and Systems
– reference: Yuhua, G., & Lawrence O. (2006). Hall Kernel based fuzzy ant clustering with partition validity. In
– reference: (Vol. 2, pp. 457–464).
– volume: 51
  start-page: 215
  year: 2006
  end-page: 234
  ident: b0050
  article-title: Extending fuzzy and probabilistic clustering to very large data sets
  publication-title: Computational Statistics and Data Analysis
– reference: (pp. 263–267).
– volume: 2
  start-page: 267
  year: 1994
  end-page: 278
  ident: b0030
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: Journal of Intelligent & Fuzzy Systems
– year: 1975
  ident: b0045
  article-title: Clustering Algorithms
– reference: (pp. 646–653).
– reference: -means classifier for incomplete data sets with outliers and missing values. In
– volume: 60
  start-page: 217
  year: 2004
  end-page: 233
  ident: b0080
  article-title: Methods of fuzzy
  publication-title: Scientiae Mathematicae Japonicae
– reference: Wang, Q., Megalooikonomou, V., & Faloutsos, C. (in press). Time series analysis with multiple resolutions. Information Systems.
– reference: Singh, L., & Sayal, M. (2007). Privacy preserving burst detection of distributed time series data using linear transforms. In
– volume: 25
  start-page: 1293
  year: 2004
  end-page: 1302
  ident: b0070
  article-title: Cluster center initialization algorithm for K-means clustering
  publication-title: Pattern Recognition Letters
– reference: Kannan, S. R. (in press). Robust kernel FCM in segmentation of breast medical images. Expert Systems with Application,
– volume: E90-D
  start-page: 883
  year: 2007
  end-page: 888
  ident: b0120
  article-title: Statistical Mechanical Analysis of Fuzzy Clustering Based on Fuzzy Entropy
  publication-title: IEICE – Transactions on Information and Systems
– start-page: 1
  year: 2009
  end-page: 5
  ident: b0020
  article-title: Data spread-based entropy clustering method using adaptive learning
  publication-title: Expert Systems with Applications
– reference: .
– reference: , IIZUKA, Fukuoka, Japan (pp. 332–332).
– volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  ident: b0025
  article-title: Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure
  publication-title: IEEE TransactionsonSystems, Man, and Cybernetics – Part B: Cybernetics
– volume: 29
  start-page: 431
  year: 2005
  end-page: 438
  ident: b0040
  article-title: Maximum Entropy-Based Fuzzy Clustering by Using
  publication-title: Turk J Math
– volume: 32
  start-page: 598
  year: 2002
  end-page: 611
  ident: b0090
  article-title: Complexity reduction for large image processing
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics
– year: 2000
  ident: b0075
  publication-title: Softcomputing and Human-Centered Machines
– reference: Alcock, R. J., & Manolopoulos, Y. (1999). Time-series similarity queries employing a feature-based approach. In
– reference: (pp. 144–155).
– volume: 3
  start-page: 58
  year: 1974
  end-page: 72
  ident: b0015
  article-title: Cluster Validity with Fuzzy Sets
  publication-title: journal of Cybernet Systems
– year: 2002
  ident: b0055
  article-title: A survey of recent methods for efficient retrieval of similar time sequences
  publication-title: Data Mining in Time Series Databases
– volume: 49
  start-page: 1022
  year: 2009
  end-page: 1026
  ident: b0010
  article-title: Fast and accuracy control chart pattern recognition using a new cluster-k-nearest neighbor
  publication-title: Engineering and Technology
– reference: Mizutani1, K., & Miyamoto, S. (2005). Possibilistic Approach to Kernel-Based Fuzzy
– start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2011.11.063_b0020
  article-title: Data spread-based entropy clustering method using adaptive learning
  publication-title: Expert Systems with Applications
– ident: 10.1016/j.eswa.2011.11.063_b0095
  doi: 10.1109/CIDM.2007.368937
– volume: 51
  start-page: 215
  year: 2006
  ident: 10.1016/j.eswa.2011.11.063_b0050
  article-title: Extending fuzzy and probabilistic clustering to very large data sets
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2006.02.008
– ident: 10.1016/j.eswa.2011.11.063_b0005
– year: 2002
  ident: 10.1016/j.eswa.2011.11.063_b0055
  article-title: A survey of recent methods for efficient retrieval of similar time sequences
– volume: 113
  start-page: 381
  year: 2000
  ident: 10.1016/j.eswa.2011.11.063_b0115
  article-title: Entropy-based fuzzy clustering and fuzzy modeling
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00038-4
– ident: 10.1016/j.eswa.2011.11.063_b0065
  doi: 10.1016/j.eswa.2010.09.107
– volume: 29
  start-page: 431
  year: 2005
  ident: 10.1016/j.eswa.2011.11.063_b0040
  article-title: Maximum Entropy-Based Fuzzy Clustering by Using L1-norm Space
  publication-title: Turk J Math
– ident: 10.1016/j.eswa.2011.11.063_b0110
  doi: 10.1016/j.is.2009.03.006
– volume: 60
  start-page: 217
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2011.11.063_b0080
  article-title: Methods of fuzzy c-means and possibilistic clustering using a quadratic term
  publication-title: Scientiae Mathematicae Japonicae
– volume: 49
  start-page: 1022
  year: 2009
  ident: 10.1016/j.eswa.2011.11.063_b0010
  article-title: Fast and accuracy control chart pattern recognition using a new cluster-k-nearest neighbor
  publication-title: Engineering and Technology
– volume: 3
  start-page: 58
  issue: 3
  year: 1974
  ident: 10.1016/j.eswa.2011.11.063_b0015
  article-title: Cluster Validity with Fuzzy Sets
  publication-title: journal of Cybernet Systems
  doi: 10.1080/01969727308546047
– year: 1975
  ident: 10.1016/j.eswa.2011.11.063_b0045
– volume: 34
  start-page: 1907
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2011.11.063_b0025
  article-title: Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure
  publication-title: IEEE TransactionsonSystems, Man, and Cybernetics – Part B: Cybernetics
  doi: 10.1109/TSMCB.2004.831165
– volume: 2
  start-page: 267
  year: 1994
  ident: 10.1016/j.eswa.2011.11.063_b0030
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/IFS-1994-2306
– ident: 10.1016/j.eswa.2011.11.063_b0035
– ident: 10.1016/j.eswa.2011.11.063_b0100
– year: 2000
  ident: 10.1016/j.eswa.2011.11.063_b0075
– volume: 25
  start-page: 1293
  year: 2004
  ident: 10.1016/j.eswa.2011.11.063_b0070
  article-title: Cluster center initialization algorithm for K-means clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2004.04.007
– volume: E90-D
  start-page: 883
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2011.11.063_b0120
  article-title: Statistical Mechanical Analysis of Fuzzy Clustering Based on Fuzzy Entropy
  publication-title: IEICE – Transactions on Information and Systems
  doi: 10.1093/ietisy/e90-d.6.883
– ident: 10.1016/j.eswa.2011.11.063_b0085
  doi: 10.1007/11526018_15
– volume: 32
  start-page: 598
  issue: 5
  year: 2002
  ident: 10.1016/j.eswa.2011.11.063_b0090
  article-title: Complexity reduction for large image processing
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics
  doi: 10.1109/TSMCB.2002.1033179
– ident: 10.1016/j.eswa.2011.11.063_b0060
  doi: 10.1109/CIMCA.2005.1631511
– volume: 33
  start-page: 115
  year: 2008
  ident: 10.1016/j.eswa.2011.11.063_b0105
  article-title: A dimensionality reduction technique for efficient time series similarity analysis
  publication-title: Information Systems
  doi: 10.1016/j.is.2007.07.002
– ident: 10.1016/j.eswa.2011.11.063_b0125
SSID ssj0017007
Score 2.2818477
Snippet Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6292
SubjectTerms Algorithms
Clustering
Data clustering
Entropy
Entropy FCM
Fuzzy
Fuzzy logic
Fuzzy set theory
Kernel distance functions
Mathematical analysis
Mathematical models
Regularization functions
Title Effective fuzzy c-means clustering algorithms for data clustering problems
URI https://dx.doi.org/10.1016/j.eswa.2011.11.063
https://www.proquest.com/docview/1019635684
https://www.proquest.com/docview/1700990908
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fp9lBW8Sm3STfRxLsdSKvViht7DZbLTSF30g9uBvdybZiAr2IOSSzS4JX3Znvk1mviHkCiiGlcwazzIZ4QaFeTLSiWetycOiVKDxg_5Dl7efwk4_6ldIs8yFwbBKZ_sLm55ba9dSc2jWpoNB7RHIAbhDOHKVNIWJ5mEosIrBzcdXmAfKz4lCb0942NslzhQxXnb-pgsZT1Ty5Owv5_TLTOe-p7VLth1ppI3iufZIxY73yU5ZkIG69XlAOoUWMRgwmi1Xq3dqvJEFX0TNcImCCOCmqB4-T2aDxctoToGvUowQ_X7ZFZiZH5Je67bXbHuuWIJnGOcLL1MoVRZYFhhoSAM_SYQfJVrVeRTYzOgMxcKEtMCPZBoyIaTxM6UEcIhMG3ZENsaTsT0mlEudaJEaJQBfpZmWnCuThGES8TT11QkJSpBi44TEsZ7FMC4jxl5jBDZGYGGHEQOwJ-T6a8y0kNFY2zsqsY9_TIYY7PzacZfli4phleCvDz22k-UcByhU4pPhmj4C6bIPOJ7-8_5nZAvO6kUk2TnZWMyW9gI4yyKp5pOySjYbd_ft7ic5lOsL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnrxLb6N4E3qtpvmdRRR1ufFFbyFNE11Zd0VdxfRg7_dmTYVFdyD0FMyoeVrMvOlnXxDyD5QDK-Yd5FniuMGhUWK2yzy3pVpUTqx-EH_6lq0btPzO343QY7rszCYVhl8f-XTS28dWhoBzcZzp9O4AXIA4RCuUiVN80kynfKmxB3Y4cdXngfqz8lKcE9GaB5OzlRJXn7waisdT5TyFOyv6PTLT5fB53SBzAXWSI-qB1skE763RObrigw0LNBlcl6JEYMHo8Xo_f2NuujJQzCirjtCRQSIU9R27_svneHD04ACYaWYIvq9O1SYGayQ9ulJ-7gVhWoJkWNCDKNCo1ZZ4lnioCFP4iyTMc-sbgqe-MLZAtXCpPJAkFSeMimViwutJZCIwjq2SqZ6_Z5fI1Qom1mZOy0BYG2ZVUJol6VpxkWex3qdJDVIxgUlcSxo0TV1ytijQWANAgtbDAPArpODrzHPlY7GWGteY29-zAYDjn7suL36RRlYJvjvw_Z8fzTAARql-FQ6xkYiX44Bx41_3n-XzLTaV5fm8uz6YpPMQk-zSivbIlPDl5HfBgIzzHbKCfoJtorsoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+fuzzy+c-means+clustering+algorithms+for+data+clustering+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Kannan%2C+S.R.&rft.au=Ramathilagam%2C+S.&rft.au=Chung%2C+P.C.&rft.date=2012-06-01&rft.issn=0957-4174&rft.volume=39&rft.issue=7&rft.spage=6292&rft.epage=6300&rft_id=info:doi/10.1016%2Fj.eswa.2011.11.063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2011_11_063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon