Effective fuzzy c-means clustering algorithms for data clustering problems
Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of f...
Saved in:
| Published in | Expert systems with applications Vol. 39; no. 7; pp. 6292 - 6300 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2011.11.063 |
Cover
| Abstract | Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers.
In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series. |
|---|---|
| AbstractList | Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers. In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series. Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers. In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series. |
| Author | Chung, P.C. Kannan, S.R. Ramathilagam, S. |
| Author_xml | – sequence: 1 givenname: S.R. surname: Kannan fullname: Kannan, S.R. email: srkannaniitm@mail.com organization: Department of Mathematics, Pondicherry Central University, Pondicherry, India – sequence: 2 givenname: S. surname: Ramathilagam fullname: Ramathilagam, S. organization: Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan, ROC – sequence: 3 givenname: P.C. surname: Chung fullname: Chung, P.C. organization: Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC |
| BookMark | eNqFkU1rAyEQhqWk0CTtH-hpj71squuurtBLCekXgV5yF9cdU8N-pOqmJL--hvRQekhhYECfx8F3JmjU9R0gdEvwjGDC7jcz8F9qlmFCZrEwoxdoTEpOU8YFHaExFgVPc8LzKzTxfoMx4RjzMXpbGAM62B0kZjgc9olOW1CdT3Qz-ADOdutENeve2fDR-sT0LqlVUL-vt66vGmj9Nbo0qvFw89OnaPW0WM1f0uX78-v8cZlqylhIjcBlIQhQouNBTXBVcVxUSmSsIGC0MhkjGS8hp0VZ55TzUmMjBMc8N0rTKbo7PRvnfg7gg2yt19A0qoN-8PL4MSFwnPI_iolgtGBlHtHyhGrXe-_ASG2DCrbvglO2ieiRZnIjj0HLY9AyVgw6qtkfdetsq9z-vPRwkiAmtbPgpNcWOg21dXEfsu7tOf0b6K2ZYg |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2017_11_049 crossref_primary_10_1371_journal_pone_0157694 crossref_primary_10_1016_j_eswa_2017_08_050 crossref_primary_10_1007_s40747_024_01416_0 crossref_primary_10_1016_j_ins_2013_11_004 crossref_primary_10_1080_1206212X_2019_1640345 crossref_primary_10_1007_s00354_023_00229_y crossref_primary_10_4028_www_scientific_net_AMM_678_19 crossref_primary_10_1007_s12525_020_00417_4 crossref_primary_10_1109_TNNLS_2013_2254127 crossref_primary_10_1016_j_eswa_2012_02_167 crossref_primary_10_32604_cmc_2022_021148 crossref_primary_10_1016_j_eswa_2018_09_030 crossref_primary_10_1016_j_eswa_2022_117015 crossref_primary_10_4028_www_scientific_net_AMR_989_994_1775 crossref_primary_10_1007_s10639_018_9820_5 crossref_primary_10_3390_en9050310 crossref_primary_10_1007_s11269_014_0553_y crossref_primary_10_3390_sym14040658 crossref_primary_10_1016_j_neunet_2014_05_001 crossref_primary_10_12973_eurasia_2017_01048a crossref_primary_10_1016_j_eswa_2017_04_045 crossref_primary_10_3390_s22166163 crossref_primary_10_1109_TFUZZ_2013_2280141 crossref_primary_10_21595_jve_2017_17173 crossref_primary_10_4018_ijirr_2013040101 crossref_primary_10_1155_2013_183410 crossref_primary_10_1109_TFUZZ_2016_2612300 crossref_primary_10_1016_j_eswa_2021_115052 crossref_primary_10_1016_j_eswa_2018_10_023 crossref_primary_10_1016_j_asoc_2020_106171 crossref_primary_10_1142_S0218194018500341 crossref_primary_10_3233_JIFS_211340 crossref_primary_10_1016_j_eswa_2015_03_031 crossref_primary_10_1016_j_trc_2014_12_001 crossref_primary_10_1016_j_neucom_2013_01_040 crossref_primary_10_4028_www_scientific_net_AMM_433_435_626 crossref_primary_10_1016_j_isatra_2018_01_022 crossref_primary_10_1007_s12652_020_02649_w crossref_primary_10_29252_jsdp_15_4_3 |
| Cites_doi | 10.1109/CIDM.2007.368937 10.1016/j.csda.2006.02.008 10.1016/S0165-0114(98)00038-4 10.1016/j.eswa.2010.09.107 10.1016/j.is.2009.03.006 10.1080/01969727308546047 10.1109/TSMCB.2004.831165 10.3233/IFS-1994-2306 10.1016/j.patrec.2004.04.007 10.1093/ietisy/e90-d.6.883 10.1007/11526018_15 10.1109/TSMCB.2002.1033179 10.1109/CIMCA.2005.1631511 10.1016/j.is.2007.07.002 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ltd |
| Copyright_xml | – notice: 2011 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2011.11.063 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 6300 |
| ExternalDocumentID | 10_1016_j_eswa_2011_11_063 S0957417411016095 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACLOT ACNTT ACRPL ACVFH ADCNI ADJOM ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c366t-f908591e31cc36d10bb705ba92651efcaf261278e4358d43778c0f997074fac3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Thu Oct 02 11:10:01 EDT 2025 Sat Sep 27 21:32:43 EDT 2025 Wed Oct 01 03:51:35 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Fri Feb 23 02:26:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Kernel distance functions Clustering Entropy FCM Data clustering Regularization functions |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-f908591e31cc36d10bb705ba92651efcaf261278e4358d43778c0f997074fac3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1019635684 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1700990908 proquest_miscellaneous_1019635684 crossref_citationtrail_10_1016_j_eswa_2011_11_063 crossref_primary_10_1016_j_eswa_2011_11_063 elsevier_sciencedirect_doi_10_1016_j_eswa_2011_11_063 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-01 2012-6-00 20120601 |
| PublicationDateYYYYMMDD | 2012-06-01 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bezdek (b0015) 1974; 3 Mizutani1, K., & Miyamoto, S. (2005). Possibilistic Approach to Kernel-Based Fuzzy Means Clustering with Entropy Regularization, In V. Torra et al. (Eds.) Alcock, R. J., & Manolopoulos, Y. (1999). Time-series similarity queries employing a feature-based approach. In (pp. 144–155). IIZUKA, Fukuoka, Japan (pp. 332–332). means classifier for incomplete data sets with outliers and missing values. In Wang, Q., Megalooikonomou, V., & Faloutsos, C. (in press). Time series analysis with multiple resolutions. Information Systems. Yao, Dash, Tan, Liu (b0115) 2000; 113 Hartigan (b0045) 1975 Ghorbani (b0040) 2005; 29 Chiu (b0030) 1994; 2 Belhaouari (b0010) 2009; 49 Hathaway, Bezdek (b0050) 2006; 51 Yuhua, G., & Lawrence O. (2006). Hall Kernel based fuzzy ant clustering with partition validity. In Cheng, Wei (b0020) 2009 Singh, L., & Sayal, M. (2007). Privacy preserving burst detection of distributed time series data using linear transforms. In Pal, Bezdek (b0090) 2002; 32 (pp. 646–653). Wang, Megalooikonomou (b0105) 2008; 33 (Vol. 2, pp. 457–464). (b0075) 2000 . Kannan, S. R. (in press). Robust kernel FCM in segmentation of breast medical images. Expert Systems with Application Khan, Ahmad (b0070) 2004; 25 Yasuda, Furuhash, Okuma (b0120) 2007; E90-D Ghorbani, M. (2002). Model selection for probabilistic clustering using cross-validated likelihood. Thesis, Tarbiat Modarres University, Tehran, Iran. Uma Shankar, B., & Pal, N. R. (1994). FFCM: An effective approach for large data sets. In (pp. 263–267). Chen, Zhang (b0025) 2004; 34 Miyamoto, Suizu, Takata (b0080) 2004; 60 Ichihashi, H. & Honda, K. (2005). Fuzzy Hetland (b0055) 2002 Khan (10.1016/j.eswa.2011.11.063_b0070) 2004; 25 Chen (10.1016/j.eswa.2011.11.063_b0025) 2004; 34 Yao (10.1016/j.eswa.2011.11.063_b0115) 2000; 113 Belhaouari (10.1016/j.eswa.2011.11.063_b0010) 2009; 49 (10.1016/j.eswa.2011.11.063_b0075) 2000 10.1016/j.eswa.2011.11.063_b0100 10.1016/j.eswa.2011.11.063_b0065 10.1016/j.eswa.2011.11.063_b0085 Bezdek (10.1016/j.eswa.2011.11.063_b0015) 1974; 3 10.1016/j.eswa.2011.11.063_b0060 Hathaway (10.1016/j.eswa.2011.11.063_b0050) 2006; 51 Miyamoto (10.1016/j.eswa.2011.11.063_b0080) 2004; 60 Cheng (10.1016/j.eswa.2011.11.063_b0020) 2009 Ghorbani (10.1016/j.eswa.2011.11.063_b0040) 2005; 29 Yasuda (10.1016/j.eswa.2011.11.063_b0120) 2007; E90-D Hetland (10.1016/j.eswa.2011.11.063_b0055) 2002 10.1016/j.eswa.2011.11.063_b0125 10.1016/j.eswa.2011.11.063_b0005 10.1016/j.eswa.2011.11.063_b0035 10.1016/j.eswa.2011.11.063_b0110 Wang (10.1016/j.eswa.2011.11.063_b0105) 2008; 33 Pal (10.1016/j.eswa.2011.11.063_b0090) 2002; 32 10.1016/j.eswa.2011.11.063_b0095 Chiu (10.1016/j.eswa.2011.11.063_b0030) 1994; 2 Hartigan (10.1016/j.eswa.2011.11.063_b0045) 1975 |
| References_xml | – reference: Ichihashi, H. & Honda, K. (2005). Fuzzy – reference: -Means Clustering with Entropy Regularization, In V. Torra et al. (Eds.), – reference: Uma Shankar, B., & Pal, N. R. (1994). FFCM: An effective approach for large data sets. In: – reference: Ghorbani, M. (2002). Model selection for probabilistic clustering using cross-validated likelihood. Thesis, Tarbiat Modarres University, Tehran, Iran. – volume: 33 start-page: 115 year: 2008 end-page: 132 ident: b0105 article-title: A dimensionality reduction technique for efficient time series similarity analysis publication-title: Information Systems – volume: 113 start-page: 381 year: 2000 end-page: 388 ident: b0115 article-title: Entropy-based fuzzy clustering and fuzzy modeling publication-title: Fuzzy Sets and Systems – reference: Yuhua, G., & Lawrence O. (2006). Hall Kernel based fuzzy ant clustering with partition validity. In – reference: (Vol. 2, pp. 457–464). – volume: 51 start-page: 215 year: 2006 end-page: 234 ident: b0050 article-title: Extending fuzzy and probabilistic clustering to very large data sets publication-title: Computational Statistics and Data Analysis – reference: (pp. 263–267). – volume: 2 start-page: 267 year: 1994 end-page: 278 ident: b0030 article-title: Fuzzy model identification based on cluster estimation publication-title: Journal of Intelligent & Fuzzy Systems – year: 1975 ident: b0045 article-title: Clustering Algorithms – reference: (pp. 646–653). – reference: -means classifier for incomplete data sets with outliers and missing values. In – volume: 60 start-page: 217 year: 2004 end-page: 233 ident: b0080 article-title: Methods of fuzzy publication-title: Scientiae Mathematicae Japonicae – reference: Wang, Q., Megalooikonomou, V., & Faloutsos, C. (in press). Time series analysis with multiple resolutions. Information Systems. – reference: Singh, L., & Sayal, M. (2007). Privacy preserving burst detection of distributed time series data using linear transforms. In – volume: 25 start-page: 1293 year: 2004 end-page: 1302 ident: b0070 article-title: Cluster center initialization algorithm for K-means clustering publication-title: Pattern Recognition Letters – reference: Kannan, S. R. (in press). Robust kernel FCM in segmentation of breast medical images. Expert Systems with Application, – volume: E90-D start-page: 883 year: 2007 end-page: 888 ident: b0120 article-title: Statistical Mechanical Analysis of Fuzzy Clustering Based on Fuzzy Entropy publication-title: IEICE – Transactions on Information and Systems – start-page: 1 year: 2009 end-page: 5 ident: b0020 article-title: Data spread-based entropy clustering method using adaptive learning publication-title: Expert Systems with Applications – reference: . – reference: , IIZUKA, Fukuoka, Japan (pp. 332–332). – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: b0025 article-title: Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure publication-title: IEEE TransactionsonSystems, Man, and Cybernetics – Part B: Cybernetics – volume: 29 start-page: 431 year: 2005 end-page: 438 ident: b0040 article-title: Maximum Entropy-Based Fuzzy Clustering by Using publication-title: Turk J Math – volume: 32 start-page: 598 year: 2002 end-page: 611 ident: b0090 article-title: Complexity reduction for large image processing publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics – year: 2000 ident: b0075 publication-title: Softcomputing and Human-Centered Machines – reference: Alcock, R. J., & Manolopoulos, Y. (1999). Time-series similarity queries employing a feature-based approach. In – reference: (pp. 144–155). – volume: 3 start-page: 58 year: 1974 end-page: 72 ident: b0015 article-title: Cluster Validity with Fuzzy Sets publication-title: journal of Cybernet Systems – year: 2002 ident: b0055 article-title: A survey of recent methods for efficient retrieval of similar time sequences publication-title: Data Mining in Time Series Databases – volume: 49 start-page: 1022 year: 2009 end-page: 1026 ident: b0010 article-title: Fast and accuracy control chart pattern recognition using a new cluster-k-nearest neighbor publication-title: Engineering and Technology – reference: Mizutani1, K., & Miyamoto, S. (2005). Possibilistic Approach to Kernel-Based Fuzzy – start-page: 1 year: 2009 ident: 10.1016/j.eswa.2011.11.063_b0020 article-title: Data spread-based entropy clustering method using adaptive learning publication-title: Expert Systems with Applications – ident: 10.1016/j.eswa.2011.11.063_b0095 doi: 10.1109/CIDM.2007.368937 – volume: 51 start-page: 215 year: 2006 ident: 10.1016/j.eswa.2011.11.063_b0050 article-title: Extending fuzzy and probabilistic clustering to very large data sets publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2006.02.008 – ident: 10.1016/j.eswa.2011.11.063_b0005 – year: 2002 ident: 10.1016/j.eswa.2011.11.063_b0055 article-title: A survey of recent methods for efficient retrieval of similar time sequences – volume: 113 start-page: 381 year: 2000 ident: 10.1016/j.eswa.2011.11.063_b0115 article-title: Entropy-based fuzzy clustering and fuzzy modeling publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00038-4 – ident: 10.1016/j.eswa.2011.11.063_b0065 doi: 10.1016/j.eswa.2010.09.107 – volume: 29 start-page: 431 year: 2005 ident: 10.1016/j.eswa.2011.11.063_b0040 article-title: Maximum Entropy-Based Fuzzy Clustering by Using L1-norm Space publication-title: Turk J Math – ident: 10.1016/j.eswa.2011.11.063_b0110 doi: 10.1016/j.is.2009.03.006 – volume: 60 start-page: 217 issue: 2 year: 2004 ident: 10.1016/j.eswa.2011.11.063_b0080 article-title: Methods of fuzzy c-means and possibilistic clustering using a quadratic term publication-title: Scientiae Mathematicae Japonicae – volume: 49 start-page: 1022 year: 2009 ident: 10.1016/j.eswa.2011.11.063_b0010 article-title: Fast and accuracy control chart pattern recognition using a new cluster-k-nearest neighbor publication-title: Engineering and Technology – volume: 3 start-page: 58 issue: 3 year: 1974 ident: 10.1016/j.eswa.2011.11.063_b0015 article-title: Cluster Validity with Fuzzy Sets publication-title: journal of Cybernet Systems doi: 10.1080/01969727308546047 – year: 1975 ident: 10.1016/j.eswa.2011.11.063_b0045 – volume: 34 start-page: 1907 issue: 4 year: 2004 ident: 10.1016/j.eswa.2011.11.063_b0025 article-title: Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure publication-title: IEEE TransactionsonSystems, Man, and Cybernetics – Part B: Cybernetics doi: 10.1109/TSMCB.2004.831165 – volume: 2 start-page: 267 year: 1994 ident: 10.1016/j.eswa.2011.11.063_b0030 article-title: Fuzzy model identification based on cluster estimation publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/IFS-1994-2306 – ident: 10.1016/j.eswa.2011.11.063_b0035 – ident: 10.1016/j.eswa.2011.11.063_b0100 – year: 2000 ident: 10.1016/j.eswa.2011.11.063_b0075 – volume: 25 start-page: 1293 year: 2004 ident: 10.1016/j.eswa.2011.11.063_b0070 article-title: Cluster center initialization algorithm for K-means clustering publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2004.04.007 – volume: E90-D start-page: 883 issue: 6 year: 2007 ident: 10.1016/j.eswa.2011.11.063_b0120 article-title: Statistical Mechanical Analysis of Fuzzy Clustering Based on Fuzzy Entropy publication-title: IEICE – Transactions on Information and Systems doi: 10.1093/ietisy/e90-d.6.883 – ident: 10.1016/j.eswa.2011.11.063_b0085 doi: 10.1007/11526018_15 – volume: 32 start-page: 598 issue: 5 year: 2002 ident: 10.1016/j.eswa.2011.11.063_b0090 article-title: Complexity reduction for large image processing publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics doi: 10.1109/TSMCB.2002.1033179 – ident: 10.1016/j.eswa.2011.11.063_b0060 doi: 10.1109/CIMCA.2005.1631511 – volume: 33 start-page: 115 year: 2008 ident: 10.1016/j.eswa.2011.11.063_b0105 article-title: A dimensionality reduction technique for efficient time series similarity analysis publication-title: Information Systems doi: 10.1016/j.is.2007.07.002 – ident: 10.1016/j.eswa.2011.11.063_b0125 |
| SSID | ssj0017007 |
| Score | 2.2818477 |
| Snippet | Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6292 |
| SubjectTerms | Algorithms Clustering Data clustering Entropy Entropy FCM Fuzzy Fuzzy logic Fuzzy set theory Kernel distance functions Mathematical analysis Mathematical models Regularization functions |
| Title | Effective fuzzy c-means clustering algorithms for data clustering problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2011.11.063 https://www.proquest.com/docview/1019635684 https://www.proquest.com/docview/1700990908 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fp9lBW8Sm3STfRxLsdSKvViht7DZbLTSF30g9uBvdybZiAr2IOSSzS4JX3Znvk1mviHkCiiGlcwazzIZ4QaFeTLSiWetycOiVKDxg_5Dl7efwk4_6ldIs8yFwbBKZ_sLm55ba9dSc2jWpoNB7RHIAbhDOHKVNIWJ5mEosIrBzcdXmAfKz4lCb0942NslzhQxXnb-pgsZT1Ty5Owv5_TLTOe-p7VLth1ppI3iufZIxY73yU5ZkIG69XlAOoUWMRgwmi1Xq3dqvJEFX0TNcImCCOCmqB4-T2aDxctoToGvUowQ_X7ZFZiZH5Je67bXbHuuWIJnGOcLL1MoVRZYFhhoSAM_SYQfJVrVeRTYzOgMxcKEtMCPZBoyIaTxM6UEcIhMG3ZENsaTsT0mlEudaJEaJQBfpZmWnCuThGES8TT11QkJSpBi44TEsZ7FMC4jxl5jBDZGYGGHEQOwJ-T6a8y0kNFY2zsqsY9_TIYY7PzacZfli4phleCvDz22k-UcByhU4pPhmj4C6bIPOJ7-8_5nZAvO6kUk2TnZWMyW9gI4yyKp5pOySjYbd_ft7ic5lOsL |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnrxLb6N4E3qtpvmdRRR1ufFFbyFNE11Zd0VdxfRg7_dmTYVFdyD0FMyoeVrMvOlnXxDyD5QDK-Yd5FniuMGhUWK2yzy3pVpUTqx-EH_6lq0btPzO343QY7rszCYVhl8f-XTS28dWhoBzcZzp9O4AXIA4RCuUiVN80kynfKmxB3Y4cdXngfqz8lKcE9GaB5OzlRJXn7waisdT5TyFOyv6PTLT5fB53SBzAXWSI-qB1skE763RObrigw0LNBlcl6JEYMHo8Xo_f2NuujJQzCirjtCRQSIU9R27_svneHD04ACYaWYIvq9O1SYGayQ9ulJ-7gVhWoJkWNCDKNCo1ZZ4lnioCFP4iyTMc-sbgqe-MLZAtXCpPJAkFSeMimViwutJZCIwjq2SqZ6_Z5fI1Qom1mZOy0BYG2ZVUJol6VpxkWex3qdJDVIxgUlcSxo0TV1ytijQWANAgtbDAPArpODrzHPlY7GWGteY29-zAYDjn7suL36RRlYJvjvw_Z8fzTAARql-FQ6xkYiX44Bx41_3n-XzLTaV5fm8uz6YpPMQk-zSivbIlPDl5HfBgIzzHbKCfoJtorsoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+fuzzy+c-means+clustering+algorithms+for+data+clustering+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Kannan%2C+S.R.&rft.au=Ramathilagam%2C+S.&rft.au=Chung%2C+P.C.&rft.date=2012-06-01&rft.issn=0957-4174&rft.volume=39&rft.issue=7&rft.spage=6292&rft.epage=6300&rft_id=info:doi/10.1016%2Fj.eswa.2011.11.063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2011_11_063 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |