Predation without direction selectivity
Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. T...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 12; p. e2317218121 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2317218121 |
Cover
Abstract | Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. The source of direction selectivity in the SC is contested, and its contributions to predation have not been tested experimentally. Here, we use type-specific cell removal to show that narrow-field (NF) neurons in the mouse SC guide predation. In vivo recordings demonstrate that direction-selective responses of NF cells are independent of recently reported stimulus-edge effects. Monosynaptic retrograde tracing reveals that NF cells receive synaptic input from direction-selective ganglion cells. When we eliminate direction selectivity in the retina of adult mice, direction-selective responses in the SC, including in NF cells, are lost. However, eliminating retinal direction selectivity does not affect the hunting success or strategies of mice, even when direction selectivity is removed after mice have learned to hunt, and despite abolishing the gaze-stabilizing optokinetic reflex. Thus, our results identify the retinal source of direction selectivity in the SC. They show that NF cells in the SC guide predation, an essential spatial orienting task, independent of their direction selectivity, revealing behavioral multiplexing of complex neural feature preferences and highlighting the importance of feature-selective manipulations for neuroethology. |
---|---|
AbstractList | Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. The source of direction selectivity in the SC is contested, and its contributions to predation have not been tested experimentally. Here, we use type-specific cell removal to show that narrow-field (NF) neurons in the mouse SC guide predation. In vivo recordings demonstrate that direction-selective responses of NF cells are independent of recently reported stimulus-edge effects. Monosynaptic retrograde tracing reveals that NF cells receive synaptic input from direction-selective ganglion cells. When we eliminate direction selectivity in the retina of adult mice, direction-selective responses in the SC, including in NF cells, are lost. However, eliminating retinal direction selectivity does not affect the hunting success or strategies of mice, even when direction selectivity is removed after mice have learned to hunt, and despite abolishing the gaze-stabilizing optokinetic reflex. Thus, our results identify the retinal source of direction selectivity in the SC. They show that NF cells in the SC guide predation, an essential spatial orienting task, independent of their direction selectivity, revealing behavioral multiplexing of complex neural feature preferences and highlighting the importance of feature-selective manipulations for neuroethology. Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. The source of direction selectivity in the SC is contested, and its contributions to predation have not been tested experimentally. Here, we use type-specific cell removal to show that narrow-field (NF) neurons in the mouse SC guide predation. In vivo recordings demonstrate that direction-selective responses of NF cells are independent of recently reported stimulus-edge effects. Monosynaptic retrograde tracing reveals that NF cells receive synaptic input from direction-selective ganglion cells. When we eliminate direction selectivity in the retina of adult mice, direction-selective responses in the SC, including in NF cells, are lost. However, eliminating retinal direction selectivity does not affect the hunting success or strategies of mice, even when direction selectivity is removed after mice have learned to hunt, and despite abolishing the gaze-stabilizing optokinetic reflex. Thus, our results identify the retinal source of direction selectivity in the SC. They show that NF cells in the SC guide predation, an essential spatial orienting task, independent of their direction selectivity, revealing behavioral multiplexing of complex neural feature preferences and highlighting the importance of feature-selective manipulations for neuroethology.Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. The source of direction selectivity in the SC is contested, and its contributions to predation have not been tested experimentally. Here, we use type-specific cell removal to show that narrow-field (NF) neurons in the mouse SC guide predation. In vivo recordings demonstrate that direction-selective responses of NF cells are independent of recently reported stimulus-edge effects. Monosynaptic retrograde tracing reveals that NF cells receive synaptic input from direction-selective ganglion cells. When we eliminate direction selectivity in the retina of adult mice, direction-selective responses in the SC, including in NF cells, are lost. However, eliminating retinal direction selectivity does not affect the hunting success or strategies of mice, even when direction selectivity is removed after mice have learned to hunt, and despite abolishing the gaze-stabilizing optokinetic reflex. Thus, our results identify the retinal source of direction selectivity in the SC. They show that NF cells in the SC guide predation, an essential spatial orienting task, independent of their direction selectivity, revealing behavioral multiplexing of complex neural feature preferences and highlighting the importance of feature-selective manipulations for neuroethology. |
Author | Shen, Ning Kerschensteiner, Daniel Song, Xiayingfang Fitzpatrick, Michael J. Soto, Florentina Krizan, Jenna |
Author_xml | – sequence: 1 givenname: Jenna surname: Krizan fullname: Krizan, Jenna organization: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, Graduate program in Neuroscience, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 2 givenname: Xiayingfang surname: Song fullname: Song, Xiayingfang organization: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, Graduate program in Biomedical Engineering, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 – sequence: 3 givenname: Michael J. orcidid: 0000-0001-7663-2635 surname: Fitzpatrick fullname: Fitzpatrick, Michael J. organization: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, Graduate program in Neuroscience, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 4 givenname: Ning orcidid: 0000-0003-0628-3497 surname: Shen fullname: Shen, Ning organization: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 5 givenname: Florentina orcidid: 0000-0003-4106-8119 surname: Soto fullname: Soto, Florentina organization: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110 – sequence: 6 givenname: Daniel orcidid: 0000-0002-6794-9056 surname: Kerschensteiner fullname: Kerschensteiner, Daniel organization: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38483997$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtLAzEQh4NU7EPP3qTgQS_b5rWb5CjFFxT0oOeQ3Z1gyna3Jlml_727bUUoeJph-H7DzDdGg7qpAaFLgmcECzbf1CbMKCOCEkkoOUEjghVJMq7wAI0wpiKRnPIhGoewwhirVOIzNGSSS6aUGKGbVw-lia6pp98ufjRtnJbOQ7GbBKj67svF7Tk6taYKcHGoE_T-cP-2eEqWL4_Pi7tlUrAsi4mVkhtuqFKK8UyVwqSQp2VpMTaWMFOwMgchRcoYBws0LSC1Oc0tVyCVwWyCbvd7N775bCFEvXahgKoyNTRt0LT7gCqBGe_Q6yN01bS-7q7rKMEy1V3UU1cHqs3XUOqNd2vjt_pXQQeke6DwTQgerC5c3BmJ3rhKE6x71bpXrf9Ud7n5Ue539X-JH7pzf98 |
CitedBy_id | crossref_primary_10_1038_s41467_024_49206_z crossref_primary_10_1073_pnas_2317218121 crossref_primary_10_1038_s41583_024_00856_4 |
Cites_doi | 10.1016/j.celrep.2016.03.067 10.1523/JNEUROSCI.3689-16.2017 10.1016/j.neuron.2015.11.032 10.1093/oso/9780195074017.001.0001 10.1016/j.cub.2018.07.001 10.1038/nmeth762 10.1098/rspb.2020.1189 10.1016/j.celrep.2021.110225 10.1016/j.cell.2013.04.017 10.1038/s41467-023-40444-1 10.1016/j.neuron.2013.10.016 10.1016/j.neuron.2012.09.021 10.1523/JNEUROSCI.0907-11.2011 10.1038/nn.4498 10.1002/cne.901580404 10.1016/B978-0-12-823672-7.00016-8 10.1523/JNEUROSCI.2768-14.2014 10.1523/JNEUROSCI.1854-19.2019 10.1126/science.abd0830 10.1038/nature12354 10.1016/j.neuron.2010.01.018 10.1523/JNEUROSCI.1155-20.2020 10.1038/s41467-022-32775-2 10.1017/S0952523800010105 10.1073/pnas.1912310116 10.1038/362541a0 10.1016/j.cell.2018.04.041 10.1016/j.neuron.2021.03.010 10.1038/nmeth.2019 10.3389/fncel.2022.857071 10.1523/JNEUROSCI.1742-16.2016 10.1523/JNEUROSCI.0372-20.2020 10.1523/JNEUROSCI.0564-11.2011 10.1016/j.neuron.2009.04.014 10.1016/j.cmet.2011.01.010 10.1152/jn.00957.2012 10.1038/s41593-018-0209-y 10.1016/j.jneumeth.2006.11.017 10.1016/S0896-6273(01)00316-6 10.1016/j.cub.2015.01.042 10.1038/nn.4566 10.1371/journal.pone.0002055 10.1126/sciadv.abc9920 10.1002/9781118527061 10.1146/annurev.ne.07.030184.000305 10.1038/s41593-022-01068-8 10.7554/eLife.58596 10.1016/j.cub.2016.09.009 10.1073/pnas.2317218121 10.1523/JNEUROSCI.5187-12.2013 10.1523/JNEUROSCI.0409-15.2015 10.1016/j.neuron.2021.01.013 10.7554/eLife.50697 10.1016/j.cub.2019.10.017 10.1016/j.cub.2018.07.047 10.1016/j.neuron.2009.09.021 10.1016/j.neuron.2023.03.036 10.1038/s41596-019-0176-0 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 19, 2024 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 19, 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1073/pnas.2317218121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | 38483997 10_1073_pnas_2317218121 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY034001 – fundername: NEI NIH HHS grantid: R01 EY027411 – fundername: NEI NIH HHS grantid: R01 EY026978 – fundername: NEI NIH HHS grantid: P30 EY002687 – fundername: NEI NIH HHS grantid: T32 EY013360 – fundername: NIGMS NIH HHS grantid: T32 GM007200 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AFOSN CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c366t-f884a4a29993469d7a5eb5ddf00af13ac3dbe7875334efe25ce5fb2bf49e89a03 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Fri Sep 05 05:42:07 EDT 2025 Mon Jun 30 08:19:03 EDT 2025 Thu Apr 03 07:03:45 EDT 2025 Wed Oct 01 03:16:54 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | narrow-field cells ganglion cells retina superior colliculus direction-selective |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-f884a4a29993469d7a5eb5ddf00af13ac3dbe7875334efe25ce5fb2bf49e89a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6794-9056 0000-0001-7663-2635 0000-0003-4106-8119 0000-0003-0628-3497 |
OpenAccessLink | https://digitalcommons.wustl.edu/oa_4/3543 |
PMID | 38483997 |
PQID | 2973693664 |
PQPubID | 42026 |
ParticipantIDs | proquest_miscellaneous_2958297034 proquest_journals_2973693664 pubmed_primary_38483997 crossref_citationtrail_10_1073_pnas_2317218121 crossref_primary_10_1073_pnas_2317218121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-19 2024-Mar-19 20240319 |
PublicationDateYYYYMMDD | 2024-03-19 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2024 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 Paxinos G. (e_1_3_4_50_2) 2019 e_1_3_4_17_2 e_1_3_4_60_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 Ewert J. P. (e_1_3_4_2_2) 1997; 20 e_1_3_4_52_2 Pachitariu M. (e_1_3_4_53_2) 2023 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_26_2 doi: 10.1016/j.celrep.2016.03.067 – ident: e_1_3_4_20_2 doi: 10.1523/JNEUROSCI.3689-16.2017 – ident: e_1_3_4_36_2 doi: 10.1016/j.neuron.2015.11.032 – ident: e_1_3_4_39_2 doi: 10.1093/oso/9780195074017.001.0001 – ident: e_1_3_4_45_2 doi: 10.1016/j.cub.2018.07.001 – ident: e_1_3_4_49_2 doi: 10.1038/nmeth762 – ident: e_1_3_4_3_2 doi: 10.1098/rspb.2020.1189 – year: 2023 ident: e_1_3_4_53_2 article-title: Solving the spike sorting problem with Kilosort publication-title: bioRxiv [Preprint] – ident: e_1_3_4_43_2 doi: 10.1016/j.celrep.2021.110225 – volume: 20 start-page: 332 year: 1997 ident: e_1_3_4_2_2 article-title: Neural correlates of key stimulus and releasing mechanism: A case study and two concepts publication-title: Trends Neurosci. – ident: e_1_3_4_22_2 doi: 10.1016/j.cell.2013.04.017 – ident: e_1_3_4_16_2 doi: 10.1038/s41467-023-40444-1 – ident: e_1_3_4_47_2 doi: 10.1016/j.neuron.2013.10.016 – ident: e_1_3_4_31_2 doi: 10.1016/j.neuron.2012.09.021 – ident: e_1_3_4_27_2 doi: 10.1523/JNEUROSCI.0907-11.2011 – ident: e_1_3_4_17_2 doi: 10.1038/nn.4498 – ident: e_1_3_4_38_2 doi: 10.1002/cne.901580404 – ident: e_1_3_4_41_2 doi: 10.1016/B978-0-12-823672-7.00016-8 – ident: e_1_3_4_14_2 doi: 10.1523/JNEUROSCI.2768-14.2014 – ident: e_1_3_4_19_2 doi: 10.1523/JNEUROSCI.1854-19.2019 – ident: e_1_3_4_18_2 doi: 10.1126/science.abd0830 – ident: e_1_3_4_23_2 doi: 10.1038/nature12354 – ident: e_1_3_4_12_2 doi: 10.1016/j.neuron.2010.01.018 – ident: e_1_3_4_21_2 doi: 10.1523/JNEUROSCI.1155-20.2020 – ident: e_1_3_4_40_2 doi: 10.1038/s41467-022-32775-2 – ident: e_1_3_4_5_2 doi: 10.1017/S0952523800010105 – ident: e_1_3_4_4_2 doi: 10.1073/pnas.1912310116 – ident: e_1_3_4_13_2 doi: 10.1038/362541a0 – ident: e_1_3_4_32_2 doi: 10.1016/j.cell.2018.04.041 – ident: e_1_3_4_34_2 doi: 10.1016/j.neuron.2021.03.010 – ident: e_1_3_4_51_2 doi: 10.1038/nmeth.2019 – ident: e_1_3_4_9_2 doi: 10.3389/fncel.2022.857071 – ident: e_1_3_4_54_2 doi: 10.1523/JNEUROSCI.1742-16.2016 – ident: e_1_3_4_8_2 doi: 10.1523/JNEUROSCI.0372-20.2020 – ident: e_1_3_4_30_2 doi: 10.1523/JNEUROSCI.0564-11.2011 – ident: e_1_3_4_29_2 doi: 10.1016/j.neuron.2009.04.014 – ident: e_1_3_4_48_2 doi: 10.1016/j.cmet.2011.01.010 – ident: e_1_3_4_56_2 doi: 10.1152/jn.00957.2012 – ident: e_1_3_4_57_2 doi: 10.1038/s41593-018-0209-y – ident: e_1_3_4_55_2 doi: 10.1016/j.jneumeth.2006.11.017 – ident: e_1_3_4_35_2 doi: 10.1016/S0896-6273(01)00316-6 – ident: e_1_3_4_6_2 doi: 10.1016/j.cub.2015.01.042 – ident: e_1_3_4_28_2 doi: 10.1038/nn.4566 – ident: e_1_3_4_59_2 doi: 10.1371/journal.pone.0002055 – ident: e_1_3_4_60_2 doi: 10.1126/sciadv.abc9920 – ident: e_1_3_4_1_2 doi: 10.1002/9781118527061 – ident: e_1_3_4_37_2 doi: 10.1146/annurev.ne.07.030184.000305 – ident: e_1_3_4_44_2 doi: 10.1038/s41593-022-01068-8 – ident: e_1_3_4_10_2 doi: 10.7554/eLife.58596 – ident: e_1_3_4_33_2 doi: 10.1016/j.cub.2016.09.009 – ident: e_1_3_4_61_2 doi: 10.1073/pnas.2317218121 – ident: e_1_3_4_52_2 doi: 10.1523/JNEUROSCI.5187-12.2013 – ident: e_1_3_4_25_2 doi: 10.1523/JNEUROSCI.0409-15.2015 – ident: e_1_3_4_11_2 doi: 10.1016/j.neuron.2021.01.013 – ident: e_1_3_4_24_2 doi: 10.7554/eLife.50697 – volume-title: Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates year: 2019 ident: e_1_3_4_50_2 – ident: e_1_3_4_7_2 doi: 10.1016/j.cub.2019.10.017 – ident: e_1_3_4_46_2 doi: 10.1016/j.cub.2018.07.047 – ident: e_1_3_4_42_2 doi: 10.1016/j.neuron.2009.09.021 – ident: e_1_3_4_15_2 doi: 10.1016/j.neuron.2023.03.036 – ident: e_1_3_4_58_2 doi: 10.1038/s41596-019-0176-0 |
SSID | ssj0009580 |
Score | 2.4723003 |
Snippet | Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e2317218121 |
SubjectTerms | Animals Edge effect Mice Motion detection Multiplexing Neuroethology Neurons Neurons - physiology Opto-kinetics Optokinetic response Predation Predatory Behavior Retina Retinal ganglion cells Selectivity Superior Colliculi - physiology Superior colliculus Visual Pathways - physiology |
Title | Predation without direction selectivity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38483997 https://www.proquest.com/docview/2973693664 https://www.proquest.com/docview/2958297034 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCKM_SgoKEoKjyNontOD5WqKVCJazErrS3yE4cqQKl22562Rv_nJnYeYDaCrhEK8cbOzOTedgz_gh5a5UBOyQYtcxWlFdxRDVTgoqiiJgpTGIMBopfsuR0wT8vxXIy-TmuLmnMtNjcWFfyP1yFNuArVsn-A2f7h0ID_Ab-whU4DNe_4vHsyjpIpHY5FTOMnYXClnULcNNCQ4wd0FlvsNZdekDWrQceDdUl_pNfH9CDWTZgFYNK2LgVU8yK6TX6N5_XuzzXWDVVaW8OUS7Om82qhQH4PsrSH21G-eqQrDOhfgUi5piCNdJzd81yrHpjMIfcFUxPrdO24KzQhDu80F4du4rpTu7ikXaNbtT5oKQQqLjW6yk4q7L1WaLBvHVb-tnX_GRxdpbPj5fzd6tLisBjuEHvUVjukfuxTBIEwfi0jEbnNqeuisnPvjsdSrLDP0b83bG5JVppvZb5I_LQhxvBkZOdbTKx9WOy3dEt2Penjn94Qt73whR4YQp6YQpGwvSULE6O5x9PqUfRoAVLkoZWaco11-B2KMYTVUotrBFlWYWhriKmC1YaKzFsZdxWNhaFFZWJTcWVTZUO2TOyVV_U9gUJMAdQgdcjjdLcCqZ0qYsylaqMpU1DvkOmHQnywh8xj0gnP_I21UGyHGmWDzTbIfv9H1budJXbu-51NM39Jwi3Fc4IXhOGftPfBgWJu166thfX2Edg-XjIoM9zx4t-LJZyCBCUfHn3w3fJg0Hu98hWc3VtX4Ev2pjXrbT8Au-bi5k |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predation+without+direction+selectivity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Krizan%2C+Jenna&rft.au=Song%2C+Xiayingfang&rft.au=Fitzpatrick%2C+Michael+J&rft.au=Shen%2C+Ning&rft.date=2024-03-19&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=121&rft.issue=12&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2317218121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |