Automated ischemic stroke lesion detection on non-contrast brain CT: a large-scale clinical feasibility test AI stroke lesion detection on NCCT

Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 19; p. 1643479
Main Authors Heo, JoonNyung, Ryu, Wi-Sun, Chung, Jong-Won, Kim, Chi Kyung, Kim, Joon-Tae, Lee, Myungjae, Kim, Dongmin, Sunwoo, Leonard, Ospel, Johanna M., Singh, Nishita, Bae, Hee-Joon, Kim, Beom Joon
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2025
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2025.1643479

Cover

Abstract Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy. In this retrospective, multicenter cohort study (May 2011-April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes. A total of 458 subjects were evaluated for external validation (mean age, 64 years ± 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9-79.9%) and 79.1% specificity (95% CI, 77.1-81.3%). In the feasibility cohort (  = 603; mean age, 69 years ± 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes (  = 0.60,  < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453],  < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453],  < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626;  = 0.003). The automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients.
AbstractList Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy.BackgroundNon-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy.In this retrospective, multicenter cohort study (May 2011-April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes.MethodsIn this retrospective, multicenter cohort study (May 2011-April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes.A total of 458 subjects were evaluated for external validation (mean age, 64 years ± 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9-79.9%) and 79.1% specificity (95% CI, 77.1-81.3%). In the feasibility cohort (n = 603; mean age, 69 years ± 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes (ρ = 0.60, p < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453], p < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453], p < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626; p = 0.003).ResultsA total of 458 subjects were evaluated for external validation (mean age, 64 years ± 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9-79.9%) and 79.1% specificity (95% CI, 77.1-81.3%). In the feasibility cohort (n = 603; mean age, 69 years ± 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes (ρ = 0.60, p < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453], p < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453], p < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626; p = 0.003).The automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients.ConclusionThe automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients.
Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy. In this retrospective, multicenter cohort study (May 2011-April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes. A total of 458 subjects were evaluated for external validation (mean age, 64 years ± 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9-79.9%) and 79.1% specificity (95% CI, 77.1-81.3%). In the feasibility cohort (  = 603; mean age, 69 years ± 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes (  = 0.60,  < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453],  < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453],  < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626;  = 0.003). The automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients.
BackgroundNon-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy.MethodsIn this retrospective, multicenter cohort study (May 2011–April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes.ResultsA total of 458 subjects were evaluated for external validation (mean age, 64 years ± 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9–79.9%) and 79.1% specificity (95% CI, 77.1–81.3%). In the feasibility cohort (n = 603; mean age, 69 years ± 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes (ρ = 0.60, p < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453], p < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453], p < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626; p = 0.003).ConclusionThe automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients.
Author Ospel, Johanna M.
Sunwoo, Leonard
Bae, Hee-Joon
Heo, JoonNyung
Kim, Joon-Tae
Lee, Myungjae
Chung, Jong-Won
Singh, Nishita
Kim, Dongmin
Kim, Beom Joon
Ryu, Wi-Sun
Kim, Chi Kyung
Author_xml – sequence: 1
  givenname: JoonNyung
  surname: Heo
  fullname: Heo, JoonNyung
– sequence: 2
  givenname: Wi-Sun
  surname: Ryu
  fullname: Ryu, Wi-Sun
– sequence: 3
  givenname: Jong-Won
  surname: Chung
  fullname: Chung, Jong-Won
– sequence: 4
  givenname: Chi Kyung
  surname: Kim
  fullname: Kim, Chi Kyung
– sequence: 5
  givenname: Joon-Tae
  surname: Kim
  fullname: Kim, Joon-Tae
– sequence: 6
  givenname: Myungjae
  surname: Lee
  fullname: Lee, Myungjae
– sequence: 7
  givenname: Dongmin
  surname: Kim
  fullname: Kim, Dongmin
– sequence: 8
  givenname: Leonard
  surname: Sunwoo
  fullname: Sunwoo, Leonard
– sequence: 9
  givenname: Johanna M.
  surname: Ospel
  fullname: Ospel, Johanna M.
– sequence: 10
  givenname: Nishita
  surname: Singh
  fullname: Singh, Nishita
– sequence: 11
  givenname: Hee-Joon
  surname: Bae
  fullname: Bae, Hee-Joon
– sequence: 12
  givenname: Beom Joon
  surname: Kim
  fullname: Kim, Beom Joon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40933194$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URG-8AAvkJZsMviWO2Y0iaEeq2s0gdWedOMfFJYmL7Vn0KXhlMp2hYoVkyb-sz78v3zk5meOMhHzgbCVlaz77Ocx5JZioV7xRUmnzhpzxphGVquX9yT_5lJzn_MhYI1ol3pFTxYyU3Kgz8nu9K3GCggMN2f3AKTiaS4o_kY6YQ5zpgAVd2adlLDeoXJxLglxonyDMtNt-oUBHSA9YZQcjUjeGOSyJeoQc-jCG8kwLLjvWm_-V33bd9pK89TBmfH-cL8j3b1-33XV1c3e16dY3lZNNUyovJJpGmb42uu2ZHgRrmNLgVc1ci94pDopLaDkYwZUeWi2ZEtrUspa6R3lBNofeIcKjfUphgvRsIwT7shDTg4VUghvRKgYCe1FzP9RKNwB9P2hfMzAI3BhYuj4dup5S_LVb3mmn5S9xHGHGuMtWCmVapRUXC_rxiO76CYfXg_8KWQBxAFyKOSf0rwhndm_dvli3e-v2aF3-ASMqoRc
Cites_doi 10.1016/S0140-6736(98)08020-9
10.5469/neuroint.2021.00465
10.1002/ana.27169
10.1111/ene.12849
10.1007/s00330-024-10618-6
10.3346/jkms.2024.39.e278
10.1161/STROKEAHA.123.044058
10.5853/jos.2015.17.1.38
10.1212/CPJ.0000000000200317
10.3174/ajnr.A8113
10.5853/jos.2023.02145
10.1177/15910199221145487
10.1007/s00062-020-00988-x
10.3389/fnins.2024.1398889
10.1016/j.jstrokecerebrovasdis.2012.08.014
10.1136/bmjopen-2016-012799
10.1212/WNL.0000000000213439
10.5853/jos.2024.04119
10.1212/WNL.0000000000002860
10.1212/WNL.54.8.1557
10.5853/jos.2016.01424
ContentType Journal Article
Copyright Copyright © 2025 Heo, Ryu, Chung, Kim, Kim, Lee, Kim, Sunwoo, Ospel, Singh, Bae and Kim.
Copyright_xml – notice: Copyright © 2025 Heo, Ryu, Chung, Kim, Kim, Lee, Kim, Sunwoo, Ospel, Singh, Bae and Kim.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3389/fnins.2025.1643479
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_40a2eb251fd5476aabbd7f50a9ea199a
40933194
10_3389_fnins_2025_1643479
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
C1A
M48
NPM
7X8
ID FETCH-LOGICAL-c366t-f23e9649b5978b07d206047af450c8efc41a413a81a92147d8730427953537be3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Mon Sep 01 19:40:19 EDT 2025
Fri Sep 12 17:04:32 EDT 2025
Wed Sep 17 01:55:59 EDT 2025
Wed Oct 01 05:40:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brain CT
stroke - diagnosis
artificial intelligence
ischemic stroke
non-contrast CT
Language English
License Copyright © 2025 Heo, Ryu, Chung, Kim, Kim, Lee, Kim, Sunwoo, Ospel, Singh, Bae and Kim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-f23e9649b5978b07d206047af450c8efc41a413a81a92147d8730427953537be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/40a2eb251fd5476aabbd7f50a9ea199a
PMID 40933194
PQID 3249847412
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_40a2eb251fd5476aabbd7f50a9ea199a
proquest_miscellaneous_3249847412
pubmed_primary_40933194
crossref_primary_10_3389_fnins_2025_1643479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Demeestere (ref5) 2025; 104
Gao (ref7) 2017; 19
van Horn (ref21) 2021; 31
Kim (ref12) 2015; 17
Kurz (ref15) 2016; 23
Chen (ref1) 2025; 27
Kim (ref10) 2024; 18
Kim (ref14) 2024; 97
Chen (ref2) 2025; 31
Cohen (ref4) 2016; 6
Lansberg (ref16) 2000; 54
Kim (ref13) 2022; 17
Heo (ref9) 2024; 34
Farzin (ref6) 2016; 87
Singh (ref20) 2024; 14
Ryu (ref19) 2023; 25
Hacke (ref8) 1998; 352
Ospel (ref18) 2024; 45
Christensen (ref3) 2023; 54
Kim (ref11) 2024; 39
Mitomi (ref17) 2014; 23
References_xml – volume: 352
  start-page: 1245
  year: 1998
  ident: ref8
  article-title: Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian acute stroke study investigators
  publication-title: Lancet
  doi: 10.1016/S0140-6736(98)08020-9
– volume: 17
  start-page: 2
  year: 2022
  ident: ref13
  article-title: Imaging in acute anterior circulation ischemic stroke: current and future
  publication-title: Neurointervention
  doi: 10.5469/neuroint.2021.00465
– volume: 97
  start-page: 919
  year: 2024
  ident: ref14
  article-title: Optimal cerebral blood flow thresholds for ischemic core estimation using computed tomography perfusion and diffusion-weighted imaging
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.27169
– volume: 23
  start-page: 8
  year: 2016
  ident: ref15
  article-title: Radiological imaging in acute ischaemic stroke
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.12849
– volume: 34
  start-page: 6005
  year: 2024
  ident: ref9
  article-title: Radiomics using non-contrast CT to predict hemorrhagic transformation risk in stroke patients undergoing revascularization
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-024-10618-6
– volume: 39
  start-page: e278
  year: 2024
  ident: ref11
  article-title: Contemporary statistics of acute ischemic stroke and transient ischemic attack in 2021: insights from the CRCS-K-NIH registry
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2024.39.e278
– volume: 54
  start-page: 3090
  year: 2023
  ident: ref3
  article-title: Semiautomated detection of early infarct signs on noncontrast CT improves interrater agreement
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.123.044058
– volume: 17
  start-page: 38
  year: 2015
  ident: ref12
  article-title: Case characteristics, hyperacute treatment, and outcome information from the clinical research center for stroke-fifth division registry in South Korea
  publication-title: J. Stroke
  doi: 10.5853/jos.2015.17.1.38
– volume: 14
  start-page: e200317
  year: 2024
  ident: ref20
  article-title: Worldwide survey on approach to thrombolysis in acute ischemic stroke with large vessel occlusion
  publication-title: Neurol. Clin. Pract.
  doi: 10.1212/CPJ.0000000000200317
– volume: 45
  start-page: 291
  year: 2024
  ident: ref18
  article-title: Prevalence of “ghost infarct core” after endovascular thrombectomy
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A8113
– volume: 25
  start-page: 425
  year: 2023
  ident: ref19
  article-title: Acute infarct segmentation on diffusion-weighted imaging using deep learning algorithm and RAPID MRI
  publication-title: J. Stroke
  doi: 10.5853/jos.2023.02145
– volume: 31
  start-page: 32
  year: 2025
  ident: ref2
  article-title: Automated estimation of ischemic core volume on noncontrast-enhanced CT via machine learning
  publication-title: Interv. Neuroradiol.
  doi: 10.1177/15910199221145487
– volume: 31
  start-page: 1093
  year: 2021
  ident: ref21
  article-title: ASPECTS interobserver agreement of 100 investigators from the TENSION study
  publication-title: Clin. Neuroradiol.
  doi: 10.1007/s00062-020-00988-x
– volume: 18
  start-page: 1398889
  year: 2024
  ident: ref10
  article-title: Comparison of two automated CT perfusion software packages in patients with ischemic stroke presenting within 24 h of onset
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2024.1398889
– volume: 23
  start-page: 37
  year: 2014
  ident: ref17
  article-title: Comparison of CT and DWI findings in ischemic stroke patients within 3 hours of onset
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2012.08.014
– volume: 6
  start-page: e012799
  year: 2016
  ident: ref4
  article-title: STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2016-012799
– volume: 104
  start-page: e213439
  year: 2025
  ident: ref5
  article-title: Underestimation of follow-up infarct volume by acute CT perfusion imaging
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000213439
– volume: 27
  start-page: 85
  year: 2025
  ident: ref1
  article-title: Predictive modeling of symptomatic intracranial hemorrhage following endovascular Thrombectomy: insights from the nationwide TREAT-AIS registry
  publication-title: J. Stroke
  doi: 10.5853/jos.2024.04119
– volume: 87
  start-page: 249
  year: 2016
  ident: ref6
  article-title: Early CT changes in patients admitted for thrombectomy: Intrarater and interrater agreement
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002860
– volume: 54
  start-page: 1557
  year: 2000
  ident: ref16
  article-title: Comparison of diffusion-weighted MRI and CT in acute stroke
  publication-title: Neurology
  doi: 10.1212/WNL.54.8.1557
– volume: 19
  start-page: 340
  year: 2017
  ident: ref7
  article-title: Visibility of CT early ischemic change is significantly associated with time from stroke onset to baseline scan beyond the first 3 hours of stroke onset
  publication-title: J. Stroke
  doi: 10.5853/jos.2016.01424
SSID ssj0062842
Score 2.3846536
Snippet Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation...
BackgroundNon-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1643479
SubjectTerms artificial intelligence
brain CT
ischemic stroke
non-contrast CT
stroke - diagnosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1yqQildCpWREBcUmjj-iHtbVlQFiZ62Um_WOJ5IVdu06mYP_RX9y8w42QoOwAUpyiGKEsdv4nlvPB4L8aHUrlUp1UWj6KQdmALQ2CIR1Sh1pVOKPKP748yenuvvF-bil62-OCdsLA88dtyRLkGR-jNVl4x2FiDG5DpTgkeovM_UiNzYRkyNY7ClQVeNS2RIgvmjrr_suTa3Mp9JHvDiyd_cUK7W_2eKmV3NyY7YnjiinI9teyGeYf9S7M570sc3D_KjzFmbORy-Kx7na7pKhDHJSxKqnOouV8P97RXKa-RImEw45HSrXtJBYr_I2emwGmTk7SHkYnksQV5zRnixIsRQblZLyg5hyp59kERJBzn_9reHny0Wy1fi_OTrcnFaTJssFG1t7VB0qkZvtY-kLJpYuqS4nI6DTpuybbBrdQXk6KCpwPOeRqlxHAFx3tSmdhHrPbFFbcd9IesEFh2NGZVC0okYdfTRt9h2HurWNjPxadPn4W6spRFIgzBCISMUGKEwITQTXxiWpzu5Dna-QNYRJusI_7KOmXi_ATXQf8OTIdDj7XoViEh68sy6UjPxekT76VWawzyV12_-RxMOxHP-rDFs81ZsDfdrfEdEZoiH2WZ_AtvU8o4
  priority: 102
  providerName: Directory of Open Access Journals
Title Automated ischemic stroke lesion detection on non-contrast brain CT: a large-scale clinical feasibility test AI stroke lesion detection on NCCT
URI https://www.ncbi.nlm.nih.gov/pubmed/40933194
https://www.proquest.com/docview/3249847412
https://doaj.org/article/40a2eb251fd5476aabbd7f50a9ea199a
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddC6MvpVv3kXULGoy9DHf-kCVrMEYa2nWDhjESyJuRrPMoTZ0udmD5K_Yv7062A4NlYPRgG1nWnXS_-9AdY29CoYrYuSTIYmyEMmlgIJWBQ6gRikg4Z8mjez2RVzPxdZ7O91hf7qibwPqfqh3Vk5qtFme_fm4-4YL_SBonytv3ZXVTUebtOD1D8E9HIx-wA5RMMXH5tdh6FSRuxd77KemkEEL19hDNjj4O2UNB6n6kxV8yy6f2341HvVy6PGZHHaDko5YDHrE9qB6zk1GFyvTdhr_lPsTT285P2O_RGu8iunT8Bn-d4uJ53ayWt8AXQGYz7qDxsVkVx6taVoEPZTd1wy3VkuDj6Qdu-ILCx4MayQu8P1rJSzBdqO2GI35t-OjL_zqfjMfTJ2x2eTEdXwVdRYagSKRsgjJOQEuhLaohmQ2Viyn3jjKlSMMig7IQkUGpaLLIaCqA5DJF5hKl0yRNlIXkKdvHscNzxhNnJCjcYKIYUKkEK6y2uoCi1CYpZDZg7_o5z-_bxBs5KixErNwTKydi5R2xBuycyLJ9k5Jm-xvL1Y-8W4O5CE0MFgFd6VKhpDHWOlWmodFgIq3NgL3uiZrjIiPPialgua5zRJ0axTiy1IA9a6m9_VTPJC92PjllhzTW1nDzku03qzW8QijT2CE7OL-YfPs-9KYAbD_Po6Hn2T-8s_JF
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+ischemic+stroke+lesion+detection+on+non-contrast+brain+CT%3A+a+large-scale+clinical+feasibility+test+AI+stroke+lesion+detection+on+NCCT&rft.jtitle=Frontiers+in+neuroscience&rft.au=Heo%2C+JoonNyung&rft.au=Ryu%2C+Wi-Sun&rft.au=Chung%2C+Jong-Won&rft.au=Kim%2C+Chi+Kyung&rft.date=2025&rft.issn=1662-4548&rft.volume=19&rft.spage=1643479&rft_id=info:doi/10.3389%2Ffnins.2025.1643479&rft_id=info%3Apmid%2F40933194&rft.externalDocID=40933194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon