Deep learning based fall detection using smartwatches for healthcare applications

•Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features allows achieving higher performance.•Bi-directional long short-term memory neural network allows effective recognition of human activities. We...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 71; p. 103242
Main Authors Şengül, Gökhan, Karakaya, Murat, Misra, Sanjay, Abayomi-Alli, Olusola O., Damaševičius, Robertas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2021.103242

Cover

Abstract •Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features allows achieving higher performance.•Bi-directional long short-term memory neural network allows effective recognition of human activities. We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activity-out cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved.
AbstractList •Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features allows achieving higher performance.•Bi-directional long short-term memory neural network allows effective recognition of human activities. We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activity-out cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved.
ArticleNumber 103242
Author Misra, Sanjay
Damaševičius, Robertas
Şengül, Gökhan
Abayomi-Alli, Olusola O.
Karakaya, Murat
Author_xml – sequence: 1
  givenname: Gökhan
  surname: Şengül
  fullname: Şengül, Gökhan
  organization: Department of Computer Engineering, Atilim University, Ankara, Turkey
– sequence: 2
  givenname: Murat
  orcidid: 0000-0002-9542-6965
  surname: Karakaya
  fullname: Karakaya, Murat
  organization: Department of Computer Engineering, Atilim University, Ankara, Turkey
– sequence: 3
  givenname: Sanjay
  surname: Misra
  fullname: Misra, Sanjay
  organization: Department of Computer Science and Communication, Ostfold University College, Halden, Norway
– sequence: 4
  givenname: Olusola O.
  surname: Abayomi-Alli
  fullname: Abayomi-Alli, Olusola O.
  organization: Department of Software Engineering, Kaunas University of Technology, Kaunas, Lithuania
– sequence: 5
  givenname: Robertas
  surname: Damaševičius
  fullname: Damaševičius, Robertas
  email: ummihadiza@gmail.com, hadiza_16000717@utp.edu
  organization: Department of Software Engineering, Kaunas University of Technology, Kaunas, Lithuania
BookMark eNp9kM1KxDAQgIOs4O7qC3jKC7QmaZp0wYusv7Aggp5DmkxsSm1LEhXf3tbVi4c9zTAz3zDzrdCiH3pA6JySnBIqLtq8jqPJGWF0KhSMsyO0pJKLrKKkWvzlZMNP0CrGlhBeScqX6OkaYMQd6ND7_hXXOoLFTncdtpDAJD_0-D3OrfimQ_rUyTQQsRsCbkB3qTE6ANbj2Hmj5-l4io4nPsLZb1yjl9ub5-19tnu8e9he7TJTCJEyqI00zG6Y485SSV3pGKslUCM2hXVWMk5LEJJp7ZirS1vKwlpeCsKLWkhbrFG132vCEGMAp4xPPyekoH2nKFGzGtWqWY2a1ai9mgll_9Ax-Om9r8PQ5R6C6akPD0FF46E3YH2YRCk7-EP4N89fgQc
CitedBy_id crossref_primary_10_3390_s22072547
crossref_primary_10_1007_s11042_023_16476_6
crossref_primary_10_1016_j_future_2023_02_005
crossref_primary_10_3390_healthcare10061084
crossref_primary_10_4108_eetinis_v9i4_2571
crossref_primary_10_2196_56750
crossref_primary_10_1016_j_measurement_2022_112104
crossref_primary_10_1007_s11036_024_02370_4
crossref_primary_10_1016_j_bspc_2024_106506
crossref_primary_10_1016_j_future_2024_05_025
crossref_primary_10_3390_math12091312
crossref_primary_10_1007_s13042_022_01730_4
crossref_primary_10_1142_S0129065724500266
crossref_primary_10_3390_app12168048
crossref_primary_10_3390_s23146283
crossref_primary_10_20965_jaciii_2024_p0974
crossref_primary_10_3390_app13084961
crossref_primary_10_1155_2022_6988001
crossref_primary_10_1155_2022_9626170
crossref_primary_10_1109_JIOT_2024_3410393
crossref_primary_10_3389_fbioe_2023_1257676
crossref_primary_10_3390_s22249891
crossref_primary_10_1016_j_compeleceng_2022_108518
crossref_primary_10_1053_j_akdh_2023_11_001
crossref_primary_10_3390_info14070355
crossref_primary_10_1038_s41598_024_71545_6
crossref_primary_10_1155_2022_9258620
crossref_primary_10_3390_electronics11121893
crossref_primary_10_1155_2023_3132863
crossref_primary_10_1016_j_measurement_2024_114186
crossref_primary_10_1007_s12530_024_09601_9
crossref_primary_10_1038_s41598_023_44213_4
Cites_doi 10.3233/AIS-190529
10.1109/JBHI.2019.2906499
10.1016/j.measurement.2019.03.079
10.1109/JBHI.2018.2808281
10.1109/ACCESS.2019.2906693
10.1177/0020294018813692
10.1109/78.650093
10.1016/j.imavis.2020.104090
10.1016/S1672-0229(08)60011-X
10.1007/s13369-018-3496-4
10.1088/1742-6596/1380/1/012060
10.1109/ACCESS.2019.2922708
10.1007/s10462-019-09724-5
10.1109/JIOT.2019.2920283
10.1016/j.patrec.2018.02.010
10.1007/s11042-020-09004-3
10.1007/s12652-020-01899-y
10.1109/MIM.2017.8121952
10.3390/s19143213
10.1109/ACCESS.2020.3037715
10.1109/ACCESS.2019.2922104
10.1016/j.ijmedinf.2019.104068
10.1177/1847979017750669
10.1177/1550147720907830
10.1016/j.ijepes.2019.02.022
10.3390/e23081065
10.1109/JSEN.2019.2898891
10.1016/j.inffus.2018.06.002
10.1109/ACCESS.2020.2991891
10.3390/en11112866
10.1016/j.physd.2019.132306
10.3390/s19173688
10.1007/s12652-017-0606-1
10.3390/s19173808
10.1080/21642583.2020.1723142
10.3390/sym12040649
10.1145/3377882
10.1007/s10916-016-0497-2
10.1109/JSEN.2018.2871203
10.3390/s19030458
10.3390/diagnostics11081395
10.1007/s10708-014-9601-7
10.1016/j.aci.2018.08.003
10.3390/s20071856
10.1016/j.aml.2012.04.016
10.1109/ACCESS.2020.3010715
10.1371/journal.pone.0180318
10.32604/cmc.2021.017800
10.3390/s19030521
10.1007/s11042-021-11105-6
10.1016/j.inffus.2020.04.004
10.1016/j.procs.2018.04.110
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.103242
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_103242
S1746809421008399
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-ebc7c2d92f4fd171f5f22b7e1c693dfd72415e672aaf2fb5d573dd456043b67d3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:11:12 EDT 2025
Wed Oct 01 02:17:52 EDT 2025
Fri Feb 23 02:42:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Activity recognition
Digital health
Fall detection
Smartwatch
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-ebc7c2d92f4fd171f5f22b7e1c693dfd72415e672aaf2fb5d573dd456043b67d3
ORCID 0000-0002-9542-6965
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_103242
crossref_primary_10_1016_j_bspc_2021_103242
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015.
Aguileta, Brena, Mayora, Molino-Minero-re, Trejo (b0015) 2019; 19
Tharwat (b0260) 2021; 17
Harrou, Zerrouki, Sun, Houacine (b0130) 2017; 20
Martinez, De Leon (b0190) 2020; 24
Demrozi, Pravadelli, Bihorac, Rashidi (b0095) 2020; 8
Lu, Wu, Feng, Song (b0185) 2019; 23
Wang, Chen, Hao, Peng, Hu (b0295) 2019; 119
Baldominos, Cervantes, Saez, Isasi (b0040) 2019; 19
Weiss, Timko, Gallagher, Yoneda, Schreiber (b0305) 2016
Dang, Truong, Dang (b0090) 2016; 7
Guo, Zhou, Sun, Ping, Zhao, Li (b0120) 2016; 40
Lentzas, Vrakas (b0175) 2020; 53
Şengül, Ozcelik, Misra, Damaševičius, Maskeliūnas (b0240) 2021
Kitchin, Lauriault (b0165) 2014; 80
Bragança, Colonna, Lima, Souto (b0070) 2020; 20
Z. Hussain M. Sheng W.E. Zhang Different Approaches for Human Activity Recognition: A Survey. arXiv preprint arXiv:1906.05074 2019.
Sarcevic, Kincses, Pletl (b0230) 2019; 10
Hagui, Mahjoub, ElAyeb (b0125) 2019; 16
Jeong, Kim (b0150) 2019; 19
Zhou, Wang (b0320) 2007; 5
Gjoreski, Janko, Slapničar, Mlakar, Reščič, Bizjak, Drobnič, Marinko, Mlakar, Luštrek, Gams (b0115) 2020; 62
Balli, Sağbaş, Peker (b0050) 2019; 52
Bianchi, Bassoli, Lombardo, Fornacciari, Mordonini, De Munari (b0060) 2019; 6
Fu, Damer, Kirchbuchner, Kuijper (b0100) 2020; 8
H. Yao M. Yang T. Chen Y. Wei Y.u. Zhang Depth-based human activity recognition via multi-level fused features and fast broad learning system International Journal of Distributed Sensor Networks 16 2 2020 155014772090783 10.1177/1550147720907830.
Nweke, Teh, Mujtaba, Al-garadi (b0205) 2019; 46
Tian, Zhang, Wang, Geng, Wang (b0265) 2020; 8
Asif, U., Von Cavallar, S., Tang, J., Harrer, S. (2020). SSHFD: Single Shot Human Fall Detection with Occluded Joints Resilience. 24th European Conference on Artificial Intelligence, ECAI 2020, 29 August-8 September 2020, Santiago de Compostela, Spain. Frontiers in Artificial Intelligence and Applications 325, IOS Press 2020, pp. 2656-2663.
Hussain, Hussain, Ehatisham-ul-Haq, Azam (b0140) 2019; 19
Lima, Souto, El-Khatib, Jalali, Gama (b0180) 2019; 19
Aziz, Klenk, Schwickert, Chiari, Becker, Park, Mori, Robinovitch, Jan (b0035) 2017; 12
Noori, Riegler, Uddin, Torresen (b0195) 2020; 16
Casilari, Álvarez-Marco, García-Lagos (b0075) 2020; 12
Voicu, Dobre, Bajenaru, Ciobanu (b0290) 2019; 19
Chelli, Patzold (b0080) 2019; 7
Zhu, Xiao, Li, Yang, Tan, Zhou, Lin, Wen (b0325) 2019; 7
Ballabio, Todeschini, Consonni (b0045) 2019
Stisen, Blunck, Bhattacharya, Prentow, Kjærgaard, Dey, Sonne, Jensen (b0250) 2015
Y. Lee H. Yeh K.-H. Kim O. Choi A real-time fall detection system based on the acceleration sensor of smartphone International Journal of Engineering Business Management 10 2018 184797901775066 10.1177/1847979017750669.
Yacchirema, de Puga, Palau, Esteve (b0310) 2018; 130
S. Abbate M. Avvenuti P. Corsini J. Light A. Vecchio Y.K. Tan Wireless Sensor Networks: Application-Centric Design 2010 InTech 10.5772/13802.
Gholamiangonabadi, Kiselov, Grolinger (b0110) 2020; 8
Aphairaj, D., Kitsonti, M., Thanapornsawan, T. (2019). Fall detection system with 3-axis accelerometer. In Journal of Physics: Conference Series (Vol. 1380, No. 1, p. 012060).
Ren, Peng (b0225) 2019; 7
Beddiar, Nini, Sabokrou, Hadid (b0055) 2020; 79
Bica (b0065) 2012; 25
Gharghan, Mohammed, Al-Naji, Abu-AlShaeer, Jawad, Jawad, Chahl (b0105) 2018; 11
Powers (b0215) 2011; 2
Wang, Wang, Wang, Wang (b0300) 2019; 109
Sherstinsky (b0245) 2020; 404
Demšar (bib326) 2006; 7
Chen, Li, Zhang, Tian, Chen (b0085) 2019; 140
Patel, Shah (b0210) 2019; 11
Van Thanh, Tran, Nguyen, Duc Anh, Nhu Dinh, El-Rabaie, Sandrasegaran (b0285) 2019; 44
Thakur, Biswas (b0255) 2020; 11
Afza, Khan, Sharif, Kadry, Manogaran, Saba, Ashraf, Damaševičius (b0010) 2021; 106
Kiran, Attique Khan, Younus Javed, Alhaisoni, Tariq, Nam, Damaševičius, Sharif (b0160) 2021; 69
Uddin, Hassan (b0275) 2019; 19
Alabi, Elmusrati, Sawazaki‐Calone, Kowalski, Haglund, Coletta, Mäkitie, Salo, Almangush, Leivo (b0020) 2020; 136
Noury, Fleury, Rumeau, Bourke, Laighin, Rialle, Lundy (b0200) 2007
Schuster, Paliwal (b0235) 1997; 45
van der Maaten, Hinton (b0280) 2008; 9
Helmi, Al-qaness, Dahou, Damaševičius, Krilavičius, Elaziz (b0135) 2021; 23
Priya, Rani, Subathra, Mohammed, Damaševičius, Ubendran (b0220) 2021; 11
Noori (10.1016/j.bspc.2021.103242_b0195) 2020; 16
Bianchi (10.1016/j.bspc.2021.103242_b0060) 2019; 6
Chen (10.1016/j.bspc.2021.103242_b0085) 2019; 140
Weiss (10.1016/j.bspc.2021.103242_b0305) 2016
10.1016/j.bspc.2021.103242_b0315
10.1016/j.bspc.2021.103242_b0030
Priya (10.1016/j.bspc.2021.103242_b0220) 2021; 11
Gholamiangonabadi (10.1016/j.bspc.2021.103242_b0110) 2020; 8
Guo (10.1016/j.bspc.2021.103242_b0120) 2016; 40
10.1016/j.bspc.2021.103242_b0155
Noury (10.1016/j.bspc.2021.103242_b0200) 2007
Powers (10.1016/j.bspc.2021.103242_b0215) 2011; 2
Tian (10.1016/j.bspc.2021.103242_b0265) 2020; 8
Hussain (10.1016/j.bspc.2021.103242_b0140) 2019; 19
Şengül (10.1016/j.bspc.2021.103242_b0240) 2021
Aguileta (10.1016/j.bspc.2021.103242_b0015) 2019; 19
Casilari (10.1016/j.bspc.2021.103242_b0075) 2020; 12
Demšar (10.1016/j.bspc.2021.103242_bib326) 2006; 7
Afza (10.1016/j.bspc.2021.103242_b0010) 2021; 106
Kitchin (10.1016/j.bspc.2021.103242_b0165) 2014; 80
Kiran (10.1016/j.bspc.2021.103242_b0160) 2021; 69
Van Thanh (10.1016/j.bspc.2021.103242_b0285) 2019; 44
Schuster (10.1016/j.bspc.2021.103242_b0235) 1997; 45
van der Maaten (10.1016/j.bspc.2021.103242_b0280) 2008; 9
Harrou (10.1016/j.bspc.2021.103242_b0130) 2017; 20
10.1016/j.bspc.2021.103242_b0005
Demrozi (10.1016/j.bspc.2021.103242_b0095) 2020; 8
Jeong (10.1016/j.bspc.2021.103242_b0150) 2019; 19
Stisen (10.1016/j.bspc.2021.103242_b0250) 2015
Uddin (10.1016/j.bspc.2021.103242_b0275) 2019; 19
Wang (10.1016/j.bspc.2021.103242_b0295) 2019; 119
Ballabio (10.1016/j.bspc.2021.103242_b0045) 2019
Nweke (10.1016/j.bspc.2021.103242_b0205) 2019; 46
Aziz (10.1016/j.bspc.2021.103242_b0035) 2017; 12
Dang (10.1016/j.bspc.2021.103242_b0090) 2016; 7
Bica (10.1016/j.bspc.2021.103242_b0065) 2012; 25
Sherstinsky (10.1016/j.bspc.2021.103242_b0245) 2020; 404
Thakur (10.1016/j.bspc.2021.103242_b0255) 2020; 11
Sarcevic (10.1016/j.bspc.2021.103242_b0230) 2019; 10
10.1016/j.bspc.2021.103242_b0170
Tharwat (10.1016/j.bspc.2021.103242_b0260) 2021; 17
Zhou (10.1016/j.bspc.2021.103242_b0320) 2007; 5
Ren (10.1016/j.bspc.2021.103242_b0225) 2019; 7
Chelli (10.1016/j.bspc.2021.103242_b0080) 2019; 7
Lu (10.1016/j.bspc.2021.103242_b0185) 2019; 23
Bragança (10.1016/j.bspc.2021.103242_b0070) 2020; 20
Martinez (10.1016/j.bspc.2021.103242_b0190) 2020; 24
Wang (10.1016/j.bspc.2021.103242_b0300) 2019; 109
Helmi (10.1016/j.bspc.2021.103242_b0135) 2021; 23
10.1016/j.bspc.2021.103242_b0025
Balli (10.1016/j.bspc.2021.103242_b0050) 2019; 52
10.1016/j.bspc.2021.103242_b0145
Zhu (10.1016/j.bspc.2021.103242_b0325) 2019; 7
Fu (10.1016/j.bspc.2021.103242_b0100) 2020; 8
Voicu (10.1016/j.bspc.2021.103242_b0290) 2019; 19
Alabi (10.1016/j.bspc.2021.103242_b0020) 2020; 136
Lima (10.1016/j.bspc.2021.103242_b0180) 2019; 19
Lentzas (10.1016/j.bspc.2021.103242_b0175) 2020; 53
Gjoreski (10.1016/j.bspc.2021.103242_b0115) 2020; 62
Yacchirema (10.1016/j.bspc.2021.103242_b0310) 2018; 130
Beddiar (10.1016/j.bspc.2021.103242_b0055) 2020; 79
Hagui (10.1016/j.bspc.2021.103242_b0125) 2019; 16
Gharghan (10.1016/j.bspc.2021.103242_b0105) 2018; 11
Baldominos (10.1016/j.bspc.2021.103242_b0040) 2019; 19
Patel (10.1016/j.bspc.2021.103242_b0210) 2019; 11
References_xml – start-page: 426
  year: 2016
  end-page: 429
  ident: b0305
  publication-title: Smartwatch-based activity recognition: A machine learning approach
– volume: 19
  start-page: 458
  year: 2019
  ident: b0290
  article-title: Human physical activity recognition using smartphone sensors
  publication-title: Sensors
– volume: 80
  start-page: 463
  year: 2014
  end-page: 475
  ident: b0165
  article-title: Small data in the era of big data
  publication-title: GeoJournal
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0280
  article-title: Visualizing Data Using t-SNE
  publication-title: Journal of Machine Learning Research.
– volume: 8
  start-page: 83
  year: 2020
  end-page: 96
  ident: b0265
  article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection
  publication-title: Systems Science Control Engineering
– volume: 12
  start-page: e0180318
  year: 2017
  ident: b0035
  article-title: Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets
  publication-title: PLoS one
– volume: 7
  start-page: 38670
  year: 2019
  end-page: 38687
  ident: b0080
  article-title: A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition
  publication-title: IEEE Access
– volume: 136
  start-page: 104068
  year: 2020
  ident: b0020
  article-title: Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer
  publication-title: International Journal of Medical Informatics
– volume: 11
  start-page: 1395
  year: 2021
  ident: b0220
  article-title: Local pattern transformation based feature extraction for recognition of parkinson’s disease based on gait signals
  publication-title: Diagnostics
– volume: 25
  start-page: 2047
  year: 2012
  end-page: 2051
  ident: b0065
  article-title: Fitting data using optimal Hermite type cubic interpolating splines
  publication-title: Applied Mathematics Letters
– volume: 140
  start-page: 215
  year: 2019
  end-page: 226
  ident: b0085
  article-title: Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch
  publication-title: Measurement: Journal of the International Measurement Confederation
– volume: 16
  start-page: 1
  year: 2020
  end-page: 19
  ident: b0195
  article-title: Human Activity Recognition from Multiple Sensors Data Using Multi-fusion Representations and CNNs
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
– volume: 404
  start-page: 132306
  year: 2020
  ident: b0245
  article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network
  publication-title: Physica D: Nonlinear Phenomena
– reference: Y. Lee H. Yeh K.-H. Kim O. Choi A real-time fall detection system based on the acceleration sensor of smartphone International Journal of Engineering Business Management 10 2018 184797901775066 10.1177/1847979017750669.
– reference: H. Yao M. Yang T. Chen Y. Wei Y.u. Zhang Depth-based human activity recognition via multi-level fused features and fast broad learning system International Journal of Distributed Sensor Networks 16 2 2020 155014772090783 10.1177/1550147720907830.
– volume: 79
  start-page: 30509
  year: 2020
  end-page: 30555
  ident: b0055
  article-title: Vision-based human activity recognition: a survey
  publication-title: Multimed Tools Appl
– volume: 130
  start-page: 603
  year: 2018
  end-page: 610
  ident: b0310
  article-title: Fall detection system for elderly people using IoT and big data
  publication-title: Procedia computer science
– volume: 19
  start-page: 521
  year: 2019
  ident: b0040
  article-title: A comparison of machine learning and deep learning techniques for activity recognition using mobile devices
  publication-title: Sensors
– volume: 5
  start-page: 242
  year: 2007
  end-page: 249
  ident: b0320
  article-title: A modified T-test feature selection method and its application on the HapMap genotype data
  publication-title: Genomics, proteomics bioinformatics
– volume: 19
  start-page: 3688
  year: 2019
  ident: b0150
  article-title: An energy-efficient method for human activity recognition with segment-level change detection and deep learning
  publication-title: Sensors
– volume: 19
  start-page: 3213
  year: 2019
  ident: b0180
  article-title: Human activity recognition using inertial sensors in a smartphone: An overview
  publication-title: Sensors
– volume: 24
  start-page: 144
  year: 2020
  end-page: 150
  ident: b0190
  article-title: Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 129
  year: 2019
  end-page: 155
  ident: b0045
  publication-title: Recent Advances in High-Level Fusion Methods to Classify Multiple Analytical Chemical Data
– volume: 19
  start-page: 3808
  year: 2019
  ident: b0015
  article-title: Multi-sensor fusion for activity recognition—a survey
  publication-title: Sensors
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib326
  article-title: Statistical comparisons of classifiers over multiple data sets.
  publication-title: J. Mach. Learn. Res.
– volume: 53
  start-page: 1975
  year: 2020
  end-page: 2021
  ident: b0175
  article-title: Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review
  publication-title: Artificial Intelligence Review
– volume: 52
  start-page: 37
  year: 2019
  end-page: 45
  ident: b0050
  article-title: Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm
  publication-title: Measurement and Control
– volume: 6
  start-page: 8553
  year: 2019
  end-page: 8562
  ident: b0060
  article-title: IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment
  publication-title: IEEE Internet of Things Journal
– start-page: 127
  year: 2015
  end-page: 140
  ident: b0250
  publication-title: Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition
– volume: 62
  start-page: 47
  year: 2020
  end-page: 62
  ident: b0115
  article-title: Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors
  publication-title: Information Fusion
– volume: 7
  start-page: 77702
  year: 2019
  end-page: 77722
  ident: b0225
  article-title: Research of fall detection and fall prevention technologies: A systematic review
  publication-title: IEEE Access
– reference: Aphairaj, D., Kitsonti, M., Thanapornsawan, T. (2019). Fall detection system with 3-axis accelerometer. In Journal of Physics: Conference Series (Vol. 1380, No. 1, p. 012060).
– volume: 11
  start-page: 5433
  year: 2020
  end-page: 5444
  ident: b0255
  article-title: Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– start-page: 1663
  year: 2007
  end-page: 1666
  ident: b0200
  publication-title: Fall detection-principles and methods
– volume: 11
  start-page: 301
  year: 2019
  end-page: 322
  ident: b0210
  article-title: Sensor-based activity recognition in the context of ambient assisted living systems: A review
  publication-title: Journal of Ambient Intelligence and Smart Environments
– volume: 20
  start-page: 1856
  year: 2020
  ident: b0070
  article-title: A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory
  publication-title: Sensors
– volume: 12
  start-page: 649
  year: 2020
  ident: b0075
  article-title: A Study of the use of gyroscope measurements in wearable fall detection systems
  publication-title: Symmetry
– volume: 11
  start-page: 2866
  year: 2018
  ident: b0105
  article-title: Accurate fall detection and localization for elderly people based on neural network and energy-efficient wireless sensor network
  publication-title: Energies
– volume: 23
  start-page: 1065
  year: 2021
  ident: b0135
  article-title: A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors
  publication-title: Entropy
– volume: 69
  start-page: 4061
  year: 2021
  end-page: 4075
  ident: b0160
  article-title: Multi-Layered Deep Learning Features Fusion for Human Action Recognition
  publication-title: Computers, Materials & Continua
– volume: 46
  start-page: 147
  year: 2019
  end-page: 170
  ident: b0205
  article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions
  publication-title: Information Fusion
– volume: 7
  year: 2016
  ident: b0090
  article-title: Automatic fall detection using smartphone acceleration sensor
  publication-title: International Journal of Advanced Computer Science and Applications
– reference: Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015.
– volume: 40
  start-page: 140
  year: 2016
  ident: b0120
  article-title: Smartphone-Based Patients’ activity recognition by using a self-learning scheme for medical monitoring
  publication-title: Journal of medical systems
– volume: 16
  start-page: 775
  year: 2019
  end-page: 783
  ident: b0125
  article-title: A new Framework for Elderly Fall Detection Using Coupled Hidden Markov Models
  publication-title: The International Arab Journal Of Information Technology
– volume: 19
  start-page: 4528
  year: 2019
  end-page: 4536
  ident: b0140
  article-title: Activity-Aware Fall Detection and Recognition Based on Wearable Sensors
  publication-title: IEEE Sensors Journal
– volume: 106
  start-page: 104090
  year: 2021
  ident: b0010
  article-title: A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection
  publication-title: Image and Vision Computing
– year: 2021
  ident: b0240
  article-title: Fusion of smartphone sensor data for classification of daily user activities
  publication-title: Multimedia Tools and Applications
– reference: Z. Hussain M. Sheng W.E. Zhang Different Approaches for Human Activity Recognition: A Survey. arXiv preprint arXiv:1906.05074 2019.
– volume: 7
  start-page: 75490
  year: 2019
  end-page: 75499
  ident: b0325
  article-title: Efficient Human Activity Recognition Solving the Confusing Activities Via Deep Ensemble Learning
  publication-title: IEEE Access
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: b0215
  article-title: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness Correlation
  publication-title: Journal of Machine Learning Technologies
– volume: 8
  start-page: 83791
  year: 2020
  end-page: 83820
  ident: b0100
  article-title: Sensing technology for human activity recognition: A comprehensive survey
  publication-title: IEEE Access
– volume: 23
  start-page: 314
  year: 2019
  end-page: 323
  ident: b0185
  article-title: Deep learning for fall detection: Three-dimensional CNN Combined with LSTM on video kinematic data
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 17
  start-page: 168
  year: 2021
  end-page: 192
  ident: b0260
  article-title: Classification assessment methods
  publication-title: Applied Computing and Informatics
– reference: Asif, U., Von Cavallar, S., Tang, J., Harrer, S. (2020). SSHFD: Single Shot Human Fall Detection with Occluded Joints Resilience. 24th European Conference on Artificial Intelligence, ECAI 2020, 29 August-8 September 2020, Santiago de Compostela, Spain. Frontiers in Artificial Intelligence and Applications 325, IOS Press 2020, pp. 2656-2663.
– volume: 8
  start-page: 210816
  year: 2020
  end-page: 210836
  ident: b0095
  article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey
  publication-title: IEEE access : practical innovations, open solutions
– volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: b0295
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognition Letters
– volume: 19
  start-page: 8413
  year: 2019
  end-page: 8419
  ident: b0275
  article-title: Activity Recognition for Cognitive Assistance Using Body Sensors Data and Deep Convolutional Neural Network
  publication-title: IEEE Sensors Journal
– volume: 44
  start-page: 3329
  year: 2019
  end-page: 3342
  ident: b0285
  article-title: Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers
  publication-title: Arabian Journal for Science and Engineering
– reference: S. Abbate M. Avvenuti P. Corsini J. Light A. Vecchio Y.K. Tan Wireless Sensor Networks: Application-Centric Design 2010 InTech 10.5772/13802.
– volume: 20
  start-page: 49
  year: 2017
  end-page: 55
  ident: b0130
  article-title: Vision-based fall detection system for improving safety of elderly people
  publication-title: IEEE Instrumentation Measurement Magazine
– volume: 109
  start-page: 470
  year: 2019
  end-page: 479
  ident: b0300
  article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
  publication-title: International Journal of Electrical Power Energy Systems
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: b0235
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
– volume: 8
  start-page: 133982
  year: 2020
  end-page: 133994
  ident: b0110
  article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection
  publication-title: IEEE Access
– volume: 10
  start-page: 89
  year: 2019
  end-page: 106
  ident: b0230
  article-title: Online human movement classification using wrist-worn wireless sensors
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 11
  start-page: 301
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0210
  article-title: Sensor-based activity recognition in the context of ambient assisted living systems: A review
  publication-title: Journal of Ambient Intelligence and Smart Environments
  doi: 10.3233/AIS-190529
– volume: 24
  start-page: 144
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0190
  article-title: Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2906499
– volume: 140
  start-page: 215
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0085
  article-title: Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2019.03.079
– volume: 16
  start-page: 775
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0125
  article-title: A new Framework for Elderly Fall Detection Using Coupled Hidden Markov Models
  publication-title: The International Arab Journal Of Information Technology
– volume: 2
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.bspc.2021.103242_b0215
  article-title: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness Correlation
  publication-title: Journal of Machine Learning Technologies
– volume: 23
  start-page: 314
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0185
  article-title: Deep learning for fall detection: Three-dimensional CNN Combined with LSTM on video kinematic data
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2018.2808281
– volume: 7
  start-page: 38670
  issue: 8672567
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0080
  article-title: A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906693
– start-page: 426
  year: 2016
  ident: 10.1016/j.bspc.2021.103242_b0305
– volume: 52
  start-page: 37
  issue: 1–2
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0050
  article-title: Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm
  publication-title: Measurement and Control
  doi: 10.1177/0020294018813692
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.bspc.2021.103242_b0235
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650093
– volume: 106
  start-page: 104090
  year: 2021
  ident: 10.1016/j.bspc.2021.103242_b0010
  article-title: A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2020.104090
– volume: 7
  issue: 12
  year: 2016
  ident: 10.1016/j.bspc.2021.103242_b0090
  article-title: Automatic fall detection using smartphone acceleration sensor
  publication-title: International Journal of Advanced Computer Science and Applications
– volume: 5
  start-page: 242
  issue: 3-4
  year: 2007
  ident: 10.1016/j.bspc.2021.103242_b0320
  article-title: A modified T-test feature selection method and its application on the HapMap genotype data
  publication-title: Genomics, proteomics bioinformatics
  doi: 10.1016/S1672-0229(08)60011-X
– volume: 44
  start-page: 3329
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0285
  article-title: Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-018-3496-4
– ident: 10.1016/j.bspc.2021.103242_b0025
  doi: 10.1088/1742-6596/1380/1/012060
– volume: 7
  start-page: 77702
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0225
  article-title: Research of fall detection and fall prevention technologies: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922708
– volume: 53
  start-page: 1975
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0175
  article-title: Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-019-09724-5
– volume: 6
  start-page: 8553
  issue: 5
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0060
  article-title: IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2019.2920283
– volume: 119
  start-page: 3
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0295
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.02.010
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.bspc.2021.103242_bib326
  article-title: Statistical comparisons of classifiers over multiple data sets.
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.bspc.2021.103242_b0145
– volume: 79
  start-page: 30509
  issue: 41-42
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0055
  article-title: Vision-based human activity recognition: a survey
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09004-3
– volume: 11
  start-page: 5433
  issue: 11
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0255
  article-title: Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-01899-y
– volume: 20
  start-page: 49
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2021.103242_b0130
  article-title: Vision-based fall detection system for improving safety of elderly people
  publication-title: IEEE Instrumentation Measurement Magazine
  doi: 10.1109/MIM.2017.8121952
– volume: 19
  start-page: 3213
  issue: 14
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0180
  article-title: Human activity recognition using inertial sensors in a smartphone: An overview
  publication-title: Sensors
  doi: 10.3390/s19143213
– volume: 8
  start-page: 210816
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0095
  article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey
  publication-title: IEEE access : practical innovations, open solutions
  doi: 10.1109/ACCESS.2020.3037715
– ident: 10.1016/j.bspc.2021.103242_b0155
– volume: 7
  start-page: 75490
  issue: 8734079
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0325
  article-title: Efficient Human Activity Recognition Solving the Confusing Activities Via Deep Ensemble Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922104
– volume: 136
  start-page: 104068
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0020
  article-title: Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/j.ijmedinf.2019.104068
– ident: 10.1016/j.bspc.2021.103242_b0170
  doi: 10.1177/1847979017750669
– ident: 10.1016/j.bspc.2021.103242_b0315
  doi: 10.1177/1550147720907830
– volume: 109
  start-page: 470
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0300
  article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
  publication-title: International Journal of Electrical Power Energy Systems
  doi: 10.1016/j.ijepes.2019.02.022
– start-page: 129
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0045
– volume: 23
  start-page: 1065
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2021.103242_b0135
  article-title: A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors
  publication-title: Entropy
  doi: 10.3390/e23081065
– volume: 19
  start-page: 4528
  issue: 12
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0140
  article-title: Activity-Aware Fall Detection and Recognition Based on Wearable Sensors
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2898891
– volume: 46
  start-page: 147
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0205
  article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.06.002
– volume: 8
  start-page: 83791
  issue: 9083980
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0100
  article-title: Sensing technology for human activity recognition: A comprehensive survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991891
– volume: 11
  start-page: 2866
  issue: 11
  year: 2018
  ident: 10.1016/j.bspc.2021.103242_b0105
  article-title: Accurate fall detection and localization for elderly people based on neural network and energy-efficient wireless sensor network
  publication-title: Energies
  doi: 10.3390/en11112866
– volume: 404
  start-page: 132306
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0245
  article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2019.132306
– volume: 19
  start-page: 3688
  issue: 17
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0150
  article-title: An energy-efficient method for human activity recognition with segment-level change detection and deep learning
  publication-title: Sensors
  doi: 10.3390/s19173688
– volume: 10
  start-page: 89
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0230
  article-title: Online human movement classification using wrist-worn wireless sensors
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-017-0606-1
– volume: 19
  start-page: 3808
  issue: 17
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0015
  article-title: Multi-sensor fusion for activity recognition—a survey
  publication-title: Sensors
  doi: 10.3390/s19173808
– volume: 8
  start-page: 83
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0265
  article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection
  publication-title: Systems Science Control Engineering
  doi: 10.1080/21642583.2020.1723142
– volume: 12
  start-page: 649
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0075
  article-title: A Study of the use of gyroscope measurements in wearable fall detection systems
  publication-title: Symmetry
  doi: 10.3390/sym12040649
– volume: 16
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0195
  article-title: Human Activity Recognition from Multiple Sensors Data Using Multi-fusion Representations and CNNs
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
  doi: 10.1145/3377882
– volume: 40
  start-page: 140
  issue: 6
  year: 2016
  ident: 10.1016/j.bspc.2021.103242_b0120
  article-title: Smartphone-Based Patients’ activity recognition by using a self-learning scheme for medical monitoring
  publication-title: Journal of medical systems
  doi: 10.1007/s10916-016-0497-2
– volume: 19
  start-page: 8413
  issue: 19
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0275
  article-title: Activity Recognition for Cognitive Assistance Using Body Sensors Data and Deep Convolutional Neural Network
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2018.2871203
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.bspc.2021.103242_b0280
  article-title: Visualizing Data Using t-SNE
  publication-title: Journal of Machine Learning Research.
– volume: 19
  start-page: 458
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0290
  article-title: Human physical activity recognition using smartphone sensors
  publication-title: Sensors
  doi: 10.3390/s19030458
– volume: 11
  start-page: 1395
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2021.103242_b0220
  article-title: Local pattern transformation based feature extraction for recognition of parkinson’s disease based on gait signals
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11081395
– ident: 10.1016/j.bspc.2021.103242_b0005
– ident: 10.1016/j.bspc.2021.103242_b0030
– volume: 80
  start-page: 463
  issue: 4
  year: 2014
  ident: 10.1016/j.bspc.2021.103242_b0165
  article-title: Small data in the era of big data
  publication-title: GeoJournal
  doi: 10.1007/s10708-014-9601-7
– volume: 17
  start-page: 168
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2021.103242_b0260
  article-title: Classification assessment methods
  publication-title: Applied Computing and Informatics
  doi: 10.1016/j.aci.2018.08.003
– volume: 20
  start-page: 1856
  issue: 7
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0070
  article-title: A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory
  publication-title: Sensors
  doi: 10.3390/s20071856
– volume: 25
  start-page: 2047
  issue: 12
  year: 2012
  ident: 10.1016/j.bspc.2021.103242_b0065
  article-title: Fitting data using optimal Hermite type cubic interpolating splines
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2012.04.016
– volume: 8
  start-page: 133982
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0110
  article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010715
– start-page: 127
  year: 2015
  ident: 10.1016/j.bspc.2021.103242_b0250
– start-page: 1663
  year: 2007
  ident: 10.1016/j.bspc.2021.103242_b0200
– volume: 12
  start-page: e0180318
  issue: 7
  year: 2017
  ident: 10.1016/j.bspc.2021.103242_b0035
  article-title: Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets
  publication-title: PLoS one
  doi: 10.1371/journal.pone.0180318
– volume: 69
  start-page: 4061
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2021.103242_b0160
  article-title: Multi-Layered Deep Learning Features Fusion for Human Action Recognition
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.017800
– volume: 19
  start-page: 521
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2021.103242_b0040
  article-title: A comparison of machine learning and deep learning techniques for activity recognition using mobile devices
  publication-title: Sensors
  doi: 10.3390/s19030521
– year: 2021
  ident: 10.1016/j.bspc.2021.103242_b0240
  article-title: Fusion of smartphone sensor data for classification of daily user activities
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-021-11105-6
– volume: 62
  start-page: 47
  year: 2020
  ident: 10.1016/j.bspc.2021.103242_b0115
  article-title: Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.04.004
– volume: 130
  start-page: 603
  year: 2018
  ident: 10.1016/j.bspc.2021.103242_b0310
  article-title: Fall detection system for elderly people using IoT and big data
  publication-title: Procedia computer science
  doi: 10.1016/j.procs.2018.04.110
SSID ssj0048714
Score 2.5053873
Snippet •Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103242
SubjectTerms Activity recognition
Digital health
Fall detection
Smartwatch
Title Deep learning based fall detection using smartwatches for healthcare applications
URI https://dx.doi.org/10.1016/j.bspc.2021.103242
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4k7olzUd7HNMxFQaig91K0yRzMutwFW_-7ea16ZggO3jpoeRB-2vy3kvze7-H0GWUuiUWKe32JsRdVDcMVMxZAN1EqI1JZFRJkB2J4ZjdT_ikgfp1LQzQKr3vr3x66a39nY5Hs7OYzTpPLpcWkdudUNCncXEWKtiZAFrf9feK5uHy8VLfGwYHMNoXzlQcL7VcgIwhJVB7Thn9OzitBZzBHtr1mSLuVQ-zjxomP0A7a_qBh-jxxpgF9o0fphgiksY2nc-xNkXJscoxENunePnmXuorhU-0xC5PxS8r3hdeP8M-QuPB7XN_GPgeCUEWClEERmUyozqmlllNJLHcUqqkIZmIQ221hAhthKRpaqlVXHMZau2ypi4LlZA6PEbN_D03JwhzZQmscG20gQ7psemmnAlmeMgslVkLkRqcJPMC4tDHYp7UTLHXBABNANCkArSFrlY2i0o-Y-NoXmOe_JoEifPvG-xO_2l3hrYpVDOUf1TOUbP4-DQXLscoVLucRG201bt7GI5-AEUZ0FY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5BOKgH48-IP3vwZhZY127sSFACgiRGSLgt69oqBnGRGf99-7aOYGI4eNlh6Uu2b-17r-v3vgdw04rNEmsJafYmrrmIpueIkDMHu4lQHbotJXKC7MjvTdjDlE8r0ClrYZBWaX1_4dNzb23vNCyajXQ2azybXNpvmd0JRX0aE2e3oMa48clVqLX7g96odMgmJc8lvnG8gwa2dqageYllikqG1MXyc8ro3_FpLeZ092HPJoukXTzPAVTU4hB21yQEj-DpTqmU2N4PLwSDkiQ6ns-JVFlOs1oQ5La_kOW7ea_vGL_SkphUlbyuqF9k_Rj7GCbd-3Gn59g2CU7i-X7mKJEECZUh1UxLN3A115SKQLmJH3pSywCDtPIDGseaasElDzwpTeLUZJ7wA-mdQHXxsVCnQLjQLi5yqaTCJumhasac-Uxxj2kaJHVwS3CixGqIYyuLeVSSxd4iBDRCQKMC0DrcrmzSQkFj42heYh79mgeRcfEb7M7-aXcN273x4zAa9keDc9ihWNyQ_2C5gGr2-aUuTcqRiSs7pX4Aa2rTAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+fall+detection+using+smartwatches+for+healthcare+applications&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=%C5%9Eeng%C3%BCl%2C+G%C3%B6khan&rft.au=Karakaya%2C+Murat&rft.au=Misra%2C+Sanjay&rft.au=Abayomi-Alli%2C+Olusola+O.&rft.date=2022-01-01&rft.issn=1746-8094&rft.volume=71&rft.spage=103242&rft_id=info:doi/10.1016%2Fj.bspc.2021.103242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon