Deep learning based fall detection using smartwatches for healthcare applications
•Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features allows achieving higher performance.•Bi-directional long short-term memory neural network allows effective recognition of human activities. We...
Saved in:
Published in | Biomedical signal processing and control Vol. 71; p. 103242 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2021.103242 |
Cover
Abstract | •Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features allows achieving higher performance.•Bi-directional long short-term memory neural network allows effective recognition of human activities.
We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activity-out cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved. |
---|---|
AbstractList | •Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features allows achieving higher performance.•Bi-directional long short-term memory neural network allows effective recognition of human activities.
We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activity-out cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved. |
ArticleNumber | 103242 |
Author | Misra, Sanjay Damaševičius, Robertas Şengül, Gökhan Abayomi-Alli, Olusola O. Karakaya, Murat |
Author_xml | – sequence: 1 givenname: Gökhan surname: Şengül fullname: Şengül, Gökhan organization: Department of Computer Engineering, Atilim University, Ankara, Turkey – sequence: 2 givenname: Murat orcidid: 0000-0002-9542-6965 surname: Karakaya fullname: Karakaya, Murat organization: Department of Computer Engineering, Atilim University, Ankara, Turkey – sequence: 3 givenname: Sanjay surname: Misra fullname: Misra, Sanjay organization: Department of Computer Science and Communication, Ostfold University College, Halden, Norway – sequence: 4 givenname: Olusola O. surname: Abayomi-Alli fullname: Abayomi-Alli, Olusola O. organization: Department of Software Engineering, Kaunas University of Technology, Kaunas, Lithuania – sequence: 5 givenname: Robertas surname: Damaševičius fullname: Damaševičius, Robertas email: ummihadiza@gmail.com, hadiza_16000717@utp.edu organization: Department of Software Engineering, Kaunas University of Technology, Kaunas, Lithuania |
BookMark | eNp9kM1KxDAQgIOs4O7qC3jKC7QmaZp0wYusv7Aggp5DmkxsSm1LEhXf3tbVi4c9zTAz3zDzrdCiH3pA6JySnBIqLtq8jqPJGWF0KhSMsyO0pJKLrKKkWvzlZMNP0CrGlhBeScqX6OkaYMQd6ND7_hXXOoLFTncdtpDAJD_0-D3OrfimQ_rUyTQQsRsCbkB3qTE6ANbj2Hmj5-l4io4nPsLZb1yjl9ub5-19tnu8e9he7TJTCJEyqI00zG6Y485SSV3pGKslUCM2hXVWMk5LEJJp7ZirS1vKwlpeCsKLWkhbrFG132vCEGMAp4xPPyekoH2nKFGzGtWqWY2a1ai9mgll_9Ax-Om9r8PQ5R6C6akPD0FF46E3YH2YRCk7-EP4N89fgQc |
CitedBy_id | crossref_primary_10_3390_s22072547 crossref_primary_10_1007_s11042_023_16476_6 crossref_primary_10_1016_j_future_2023_02_005 crossref_primary_10_3390_healthcare10061084 crossref_primary_10_4108_eetinis_v9i4_2571 crossref_primary_10_2196_56750 crossref_primary_10_1016_j_measurement_2022_112104 crossref_primary_10_1007_s11036_024_02370_4 crossref_primary_10_1016_j_bspc_2024_106506 crossref_primary_10_1016_j_future_2024_05_025 crossref_primary_10_3390_math12091312 crossref_primary_10_1007_s13042_022_01730_4 crossref_primary_10_1142_S0129065724500266 crossref_primary_10_3390_app12168048 crossref_primary_10_3390_s23146283 crossref_primary_10_20965_jaciii_2024_p0974 crossref_primary_10_3390_app13084961 crossref_primary_10_1155_2022_6988001 crossref_primary_10_1155_2022_9626170 crossref_primary_10_1109_JIOT_2024_3410393 crossref_primary_10_3389_fbioe_2023_1257676 crossref_primary_10_3390_s22249891 crossref_primary_10_1016_j_compeleceng_2022_108518 crossref_primary_10_1053_j_akdh_2023_11_001 crossref_primary_10_3390_info14070355 crossref_primary_10_1038_s41598_024_71545_6 crossref_primary_10_1155_2022_9258620 crossref_primary_10_3390_electronics11121893 crossref_primary_10_1155_2023_3132863 crossref_primary_10_1016_j_measurement_2024_114186 crossref_primary_10_1007_s12530_024_09601_9 crossref_primary_10_1038_s41598_023_44213_4 |
Cites_doi | 10.3233/AIS-190529 10.1109/JBHI.2019.2906499 10.1016/j.measurement.2019.03.079 10.1109/JBHI.2018.2808281 10.1109/ACCESS.2019.2906693 10.1177/0020294018813692 10.1109/78.650093 10.1016/j.imavis.2020.104090 10.1016/S1672-0229(08)60011-X 10.1007/s13369-018-3496-4 10.1088/1742-6596/1380/1/012060 10.1109/ACCESS.2019.2922708 10.1007/s10462-019-09724-5 10.1109/JIOT.2019.2920283 10.1016/j.patrec.2018.02.010 10.1007/s11042-020-09004-3 10.1007/s12652-020-01899-y 10.1109/MIM.2017.8121952 10.3390/s19143213 10.1109/ACCESS.2020.3037715 10.1109/ACCESS.2019.2922104 10.1016/j.ijmedinf.2019.104068 10.1177/1847979017750669 10.1177/1550147720907830 10.1016/j.ijepes.2019.02.022 10.3390/e23081065 10.1109/JSEN.2019.2898891 10.1016/j.inffus.2018.06.002 10.1109/ACCESS.2020.2991891 10.3390/en11112866 10.1016/j.physd.2019.132306 10.3390/s19173688 10.1007/s12652-017-0606-1 10.3390/s19173808 10.1080/21642583.2020.1723142 10.3390/sym12040649 10.1145/3377882 10.1007/s10916-016-0497-2 10.1109/JSEN.2018.2871203 10.3390/s19030458 10.3390/diagnostics11081395 10.1007/s10708-014-9601-7 10.1016/j.aci.2018.08.003 10.3390/s20071856 10.1016/j.aml.2012.04.016 10.1109/ACCESS.2020.3010715 10.1371/journal.pone.0180318 10.32604/cmc.2021.017800 10.3390/s19030521 10.1007/s11042-021-11105-6 10.1016/j.inffus.2020.04.004 10.1016/j.procs.2018.04.110 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2021.103242 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2021_103242 S1746809421008399 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c366t-ebc7c2d92f4fd171f5f22b7e1c693dfd72415e672aaf2fb5d573dd456043b67d3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:11:12 EDT 2025 Wed Oct 01 02:17:52 EDT 2025 Fri Feb 23 02:42:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Activity recognition Digital health Fall detection Smartwatch |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-ebc7c2d92f4fd171f5f22b7e1c693dfd72415e672aaf2fb5d573dd456043b67d3 |
ORCID | 0000-0002-9542-6965 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_103242 crossref_primary_10_1016_j_bspc_2021_103242 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015. Aguileta, Brena, Mayora, Molino-Minero-re, Trejo (b0015) 2019; 19 Tharwat (b0260) 2021; 17 Harrou, Zerrouki, Sun, Houacine (b0130) 2017; 20 Martinez, De Leon (b0190) 2020; 24 Demrozi, Pravadelli, Bihorac, Rashidi (b0095) 2020; 8 Lu, Wu, Feng, Song (b0185) 2019; 23 Wang, Chen, Hao, Peng, Hu (b0295) 2019; 119 Baldominos, Cervantes, Saez, Isasi (b0040) 2019; 19 Weiss, Timko, Gallagher, Yoneda, Schreiber (b0305) 2016 Dang, Truong, Dang (b0090) 2016; 7 Guo, Zhou, Sun, Ping, Zhao, Li (b0120) 2016; 40 Lentzas, Vrakas (b0175) 2020; 53 Şengül, Ozcelik, Misra, Damaševičius, Maskeliūnas (b0240) 2021 Kitchin, Lauriault (b0165) 2014; 80 Bragança, Colonna, Lima, Souto (b0070) 2020; 20 Z. Hussain M. Sheng W.E. Zhang Different Approaches for Human Activity Recognition: A Survey. arXiv preprint arXiv:1906.05074 2019. Sarcevic, Kincses, Pletl (b0230) 2019; 10 Hagui, Mahjoub, ElAyeb (b0125) 2019; 16 Jeong, Kim (b0150) 2019; 19 Zhou, Wang (b0320) 2007; 5 Gjoreski, Janko, Slapničar, Mlakar, Reščič, Bizjak, Drobnič, Marinko, Mlakar, Luštrek, Gams (b0115) 2020; 62 Balli, Sağbaş, Peker (b0050) 2019; 52 Bianchi, Bassoli, Lombardo, Fornacciari, Mordonini, De Munari (b0060) 2019; 6 Fu, Damer, Kirchbuchner, Kuijper (b0100) 2020; 8 H. Yao M. Yang T. Chen Y. Wei Y.u. Zhang Depth-based human activity recognition via multi-level fused features and fast broad learning system International Journal of Distributed Sensor Networks 16 2 2020 155014772090783 10.1177/1550147720907830. Nweke, Teh, Mujtaba, Al-garadi (b0205) 2019; 46 Tian, Zhang, Wang, Geng, Wang (b0265) 2020; 8 Asif, U., Von Cavallar, S., Tang, J., Harrer, S. (2020). SSHFD: Single Shot Human Fall Detection with Occluded Joints Resilience. 24th European Conference on Artificial Intelligence, ECAI 2020, 29 August-8 September 2020, Santiago de Compostela, Spain. Frontiers in Artificial Intelligence and Applications 325, IOS Press 2020, pp. 2656-2663. Hussain, Hussain, Ehatisham-ul-Haq, Azam (b0140) 2019; 19 Lima, Souto, El-Khatib, Jalali, Gama (b0180) 2019; 19 Aziz, Klenk, Schwickert, Chiari, Becker, Park, Mori, Robinovitch, Jan (b0035) 2017; 12 Noori, Riegler, Uddin, Torresen (b0195) 2020; 16 Casilari, Álvarez-Marco, García-Lagos (b0075) 2020; 12 Voicu, Dobre, Bajenaru, Ciobanu (b0290) 2019; 19 Chelli, Patzold (b0080) 2019; 7 Zhu, Xiao, Li, Yang, Tan, Zhou, Lin, Wen (b0325) 2019; 7 Ballabio, Todeschini, Consonni (b0045) 2019 Stisen, Blunck, Bhattacharya, Prentow, Kjærgaard, Dey, Sonne, Jensen (b0250) 2015 Y. Lee H. Yeh K.-H. Kim O. Choi A real-time fall detection system based on the acceleration sensor of smartphone International Journal of Engineering Business Management 10 2018 184797901775066 10.1177/1847979017750669. Yacchirema, de Puga, Palau, Esteve (b0310) 2018; 130 S. Abbate M. Avvenuti P. Corsini J. Light A. Vecchio Y.K. Tan Wireless Sensor Networks: Application-Centric Design 2010 InTech 10.5772/13802. Gholamiangonabadi, Kiselov, Grolinger (b0110) 2020; 8 Aphairaj, D., Kitsonti, M., Thanapornsawan, T. (2019). Fall detection system with 3-axis accelerometer. In Journal of Physics: Conference Series (Vol. 1380, No. 1, p. 012060). Ren, Peng (b0225) 2019; 7 Beddiar, Nini, Sabokrou, Hadid (b0055) 2020; 79 Bica (b0065) 2012; 25 Gharghan, Mohammed, Al-Naji, Abu-AlShaeer, Jawad, Jawad, Chahl (b0105) 2018; 11 Powers (b0215) 2011; 2 Wang, Wang, Wang, Wang (b0300) 2019; 109 Sherstinsky (b0245) 2020; 404 Demšar (bib326) 2006; 7 Chen, Li, Zhang, Tian, Chen (b0085) 2019; 140 Patel, Shah (b0210) 2019; 11 Van Thanh, Tran, Nguyen, Duc Anh, Nhu Dinh, El-Rabaie, Sandrasegaran (b0285) 2019; 44 Thakur, Biswas (b0255) 2020; 11 Afza, Khan, Sharif, Kadry, Manogaran, Saba, Ashraf, Damaševičius (b0010) 2021; 106 Kiran, Attique Khan, Younus Javed, Alhaisoni, Tariq, Nam, Damaševičius, Sharif (b0160) 2021; 69 Uddin, Hassan (b0275) 2019; 19 Alabi, Elmusrati, Sawazaki‐Calone, Kowalski, Haglund, Coletta, Mäkitie, Salo, Almangush, Leivo (b0020) 2020; 136 Noury, Fleury, Rumeau, Bourke, Laighin, Rialle, Lundy (b0200) 2007 Schuster, Paliwal (b0235) 1997; 45 van der Maaten, Hinton (b0280) 2008; 9 Helmi, Al-qaness, Dahou, Damaševičius, Krilavičius, Elaziz (b0135) 2021; 23 Priya, Rani, Subathra, Mohammed, Damaševičius, Ubendran (b0220) 2021; 11 Noori (10.1016/j.bspc.2021.103242_b0195) 2020; 16 Bianchi (10.1016/j.bspc.2021.103242_b0060) 2019; 6 Chen (10.1016/j.bspc.2021.103242_b0085) 2019; 140 Weiss (10.1016/j.bspc.2021.103242_b0305) 2016 10.1016/j.bspc.2021.103242_b0315 10.1016/j.bspc.2021.103242_b0030 Priya (10.1016/j.bspc.2021.103242_b0220) 2021; 11 Gholamiangonabadi (10.1016/j.bspc.2021.103242_b0110) 2020; 8 Guo (10.1016/j.bspc.2021.103242_b0120) 2016; 40 10.1016/j.bspc.2021.103242_b0155 Noury (10.1016/j.bspc.2021.103242_b0200) 2007 Powers (10.1016/j.bspc.2021.103242_b0215) 2011; 2 Tian (10.1016/j.bspc.2021.103242_b0265) 2020; 8 Hussain (10.1016/j.bspc.2021.103242_b0140) 2019; 19 Şengül (10.1016/j.bspc.2021.103242_b0240) 2021 Aguileta (10.1016/j.bspc.2021.103242_b0015) 2019; 19 Casilari (10.1016/j.bspc.2021.103242_b0075) 2020; 12 Demšar (10.1016/j.bspc.2021.103242_bib326) 2006; 7 Afza (10.1016/j.bspc.2021.103242_b0010) 2021; 106 Kitchin (10.1016/j.bspc.2021.103242_b0165) 2014; 80 Kiran (10.1016/j.bspc.2021.103242_b0160) 2021; 69 Van Thanh (10.1016/j.bspc.2021.103242_b0285) 2019; 44 Schuster (10.1016/j.bspc.2021.103242_b0235) 1997; 45 van der Maaten (10.1016/j.bspc.2021.103242_b0280) 2008; 9 Harrou (10.1016/j.bspc.2021.103242_b0130) 2017; 20 10.1016/j.bspc.2021.103242_b0005 Demrozi (10.1016/j.bspc.2021.103242_b0095) 2020; 8 Jeong (10.1016/j.bspc.2021.103242_b0150) 2019; 19 Stisen (10.1016/j.bspc.2021.103242_b0250) 2015 Uddin (10.1016/j.bspc.2021.103242_b0275) 2019; 19 Wang (10.1016/j.bspc.2021.103242_b0295) 2019; 119 Ballabio (10.1016/j.bspc.2021.103242_b0045) 2019 Nweke (10.1016/j.bspc.2021.103242_b0205) 2019; 46 Aziz (10.1016/j.bspc.2021.103242_b0035) 2017; 12 Dang (10.1016/j.bspc.2021.103242_b0090) 2016; 7 Bica (10.1016/j.bspc.2021.103242_b0065) 2012; 25 Sherstinsky (10.1016/j.bspc.2021.103242_b0245) 2020; 404 Thakur (10.1016/j.bspc.2021.103242_b0255) 2020; 11 Sarcevic (10.1016/j.bspc.2021.103242_b0230) 2019; 10 10.1016/j.bspc.2021.103242_b0170 Tharwat (10.1016/j.bspc.2021.103242_b0260) 2021; 17 Zhou (10.1016/j.bspc.2021.103242_b0320) 2007; 5 Ren (10.1016/j.bspc.2021.103242_b0225) 2019; 7 Chelli (10.1016/j.bspc.2021.103242_b0080) 2019; 7 Lu (10.1016/j.bspc.2021.103242_b0185) 2019; 23 Bragança (10.1016/j.bspc.2021.103242_b0070) 2020; 20 Martinez (10.1016/j.bspc.2021.103242_b0190) 2020; 24 Wang (10.1016/j.bspc.2021.103242_b0300) 2019; 109 Helmi (10.1016/j.bspc.2021.103242_b0135) 2021; 23 10.1016/j.bspc.2021.103242_b0025 Balli (10.1016/j.bspc.2021.103242_b0050) 2019; 52 10.1016/j.bspc.2021.103242_b0145 Zhu (10.1016/j.bspc.2021.103242_b0325) 2019; 7 Fu (10.1016/j.bspc.2021.103242_b0100) 2020; 8 Voicu (10.1016/j.bspc.2021.103242_b0290) 2019; 19 Alabi (10.1016/j.bspc.2021.103242_b0020) 2020; 136 Lima (10.1016/j.bspc.2021.103242_b0180) 2019; 19 Lentzas (10.1016/j.bspc.2021.103242_b0175) 2020; 53 Gjoreski (10.1016/j.bspc.2021.103242_b0115) 2020; 62 Yacchirema (10.1016/j.bspc.2021.103242_b0310) 2018; 130 Beddiar (10.1016/j.bspc.2021.103242_b0055) 2020; 79 Hagui (10.1016/j.bspc.2021.103242_b0125) 2019; 16 Gharghan (10.1016/j.bspc.2021.103242_b0105) 2018; 11 Baldominos (10.1016/j.bspc.2021.103242_b0040) 2019; 19 Patel (10.1016/j.bspc.2021.103242_b0210) 2019; 11 |
References_xml | – start-page: 426 year: 2016 end-page: 429 ident: b0305 publication-title: Smartwatch-based activity recognition: A machine learning approach – volume: 19 start-page: 458 year: 2019 ident: b0290 article-title: Human physical activity recognition using smartphone sensors publication-title: Sensors – volume: 80 start-page: 463 year: 2014 end-page: 475 ident: b0165 article-title: Small data in the era of big data publication-title: GeoJournal – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0280 article-title: Visualizing Data Using t-SNE publication-title: Journal of Machine Learning Research. – volume: 8 start-page: 83 year: 2020 end-page: 96 ident: b0265 article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection publication-title: Systems Science Control Engineering – volume: 12 start-page: e0180318 year: 2017 ident: b0035 article-title: Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets publication-title: PLoS one – volume: 7 start-page: 38670 year: 2019 end-page: 38687 ident: b0080 article-title: A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition publication-title: IEEE Access – volume: 136 start-page: 104068 year: 2020 ident: b0020 article-title: Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer publication-title: International Journal of Medical Informatics – volume: 11 start-page: 1395 year: 2021 ident: b0220 article-title: Local pattern transformation based feature extraction for recognition of parkinson’s disease based on gait signals publication-title: Diagnostics – volume: 25 start-page: 2047 year: 2012 end-page: 2051 ident: b0065 article-title: Fitting data using optimal Hermite type cubic interpolating splines publication-title: Applied Mathematics Letters – volume: 140 start-page: 215 year: 2019 end-page: 226 ident: b0085 article-title: Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch publication-title: Measurement: Journal of the International Measurement Confederation – volume: 16 start-page: 1 year: 2020 end-page: 19 ident: b0195 article-title: Human Activity Recognition from Multiple Sensors Data Using Multi-fusion Representations and CNNs publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications – volume: 404 start-page: 132306 year: 2020 ident: b0245 article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network publication-title: Physica D: Nonlinear Phenomena – reference: Y. Lee H. Yeh K.-H. Kim O. Choi A real-time fall detection system based on the acceleration sensor of smartphone International Journal of Engineering Business Management 10 2018 184797901775066 10.1177/1847979017750669. – reference: H. Yao M. Yang T. Chen Y. Wei Y.u. Zhang Depth-based human activity recognition via multi-level fused features and fast broad learning system International Journal of Distributed Sensor Networks 16 2 2020 155014772090783 10.1177/1550147720907830. – volume: 79 start-page: 30509 year: 2020 end-page: 30555 ident: b0055 article-title: Vision-based human activity recognition: a survey publication-title: Multimed Tools Appl – volume: 130 start-page: 603 year: 2018 end-page: 610 ident: b0310 article-title: Fall detection system for elderly people using IoT and big data publication-title: Procedia computer science – volume: 19 start-page: 521 year: 2019 ident: b0040 article-title: A comparison of machine learning and deep learning techniques for activity recognition using mobile devices publication-title: Sensors – volume: 5 start-page: 242 year: 2007 end-page: 249 ident: b0320 article-title: A modified T-test feature selection method and its application on the HapMap genotype data publication-title: Genomics, proteomics bioinformatics – volume: 19 start-page: 3688 year: 2019 ident: b0150 article-title: An energy-efficient method for human activity recognition with segment-level change detection and deep learning publication-title: Sensors – volume: 19 start-page: 3213 year: 2019 ident: b0180 article-title: Human activity recognition using inertial sensors in a smartphone: An overview publication-title: Sensors – volume: 24 start-page: 144 year: 2020 end-page: 150 ident: b0190 article-title: Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 129 year: 2019 end-page: 155 ident: b0045 publication-title: Recent Advances in High-Level Fusion Methods to Classify Multiple Analytical Chemical Data – volume: 19 start-page: 3808 year: 2019 ident: b0015 article-title: Multi-sensor fusion for activity recognition—a survey publication-title: Sensors – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib326 article-title: Statistical comparisons of classifiers over multiple data sets. publication-title: J. Mach. Learn. Res. – volume: 53 start-page: 1975 year: 2020 end-page: 2021 ident: b0175 article-title: Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review publication-title: Artificial Intelligence Review – volume: 52 start-page: 37 year: 2019 end-page: 45 ident: b0050 article-title: Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm publication-title: Measurement and Control – volume: 6 start-page: 8553 year: 2019 end-page: 8562 ident: b0060 article-title: IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment publication-title: IEEE Internet of Things Journal – start-page: 127 year: 2015 end-page: 140 ident: b0250 publication-title: Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition – volume: 62 start-page: 47 year: 2020 end-page: 62 ident: b0115 article-title: Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors publication-title: Information Fusion – volume: 7 start-page: 77702 year: 2019 end-page: 77722 ident: b0225 article-title: Research of fall detection and fall prevention technologies: A systematic review publication-title: IEEE Access – reference: Aphairaj, D., Kitsonti, M., Thanapornsawan, T. (2019). Fall detection system with 3-axis accelerometer. In Journal of Physics: Conference Series (Vol. 1380, No. 1, p. 012060). – volume: 11 start-page: 5433 year: 2020 end-page: 5444 ident: b0255 article-title: Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey publication-title: Journal of Ambient Intelligence and Humanized Computing – start-page: 1663 year: 2007 end-page: 1666 ident: b0200 publication-title: Fall detection-principles and methods – volume: 11 start-page: 301 year: 2019 end-page: 322 ident: b0210 article-title: Sensor-based activity recognition in the context of ambient assisted living systems: A review publication-title: Journal of Ambient Intelligence and Smart Environments – volume: 20 start-page: 1856 year: 2020 ident: b0070 article-title: A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory publication-title: Sensors – volume: 12 start-page: 649 year: 2020 ident: b0075 article-title: A Study of the use of gyroscope measurements in wearable fall detection systems publication-title: Symmetry – volume: 11 start-page: 2866 year: 2018 ident: b0105 article-title: Accurate fall detection and localization for elderly people based on neural network and energy-efficient wireless sensor network publication-title: Energies – volume: 23 start-page: 1065 year: 2021 ident: b0135 article-title: A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors publication-title: Entropy – volume: 69 start-page: 4061 year: 2021 end-page: 4075 ident: b0160 article-title: Multi-Layered Deep Learning Features Fusion for Human Action Recognition publication-title: Computers, Materials & Continua – volume: 46 start-page: 147 year: 2019 end-page: 170 ident: b0205 article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions publication-title: Information Fusion – volume: 7 year: 2016 ident: b0090 article-title: Automatic fall detection using smartphone acceleration sensor publication-title: International Journal of Advanced Computer Science and Applications – reference: Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015. – volume: 40 start-page: 140 year: 2016 ident: b0120 article-title: Smartphone-Based Patients’ activity recognition by using a self-learning scheme for medical monitoring publication-title: Journal of medical systems – volume: 16 start-page: 775 year: 2019 end-page: 783 ident: b0125 article-title: A new Framework for Elderly Fall Detection Using Coupled Hidden Markov Models publication-title: The International Arab Journal Of Information Technology – volume: 19 start-page: 4528 year: 2019 end-page: 4536 ident: b0140 article-title: Activity-Aware Fall Detection and Recognition Based on Wearable Sensors publication-title: IEEE Sensors Journal – volume: 106 start-page: 104090 year: 2021 ident: b0010 article-title: A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection publication-title: Image and Vision Computing – year: 2021 ident: b0240 article-title: Fusion of smartphone sensor data for classification of daily user activities publication-title: Multimedia Tools and Applications – reference: Z. Hussain M. Sheng W.E. Zhang Different Approaches for Human Activity Recognition: A Survey. arXiv preprint arXiv:1906.05074 2019. – volume: 7 start-page: 75490 year: 2019 end-page: 75499 ident: b0325 article-title: Efficient Human Activity Recognition Solving the Confusing Activities Via Deep Ensemble Learning publication-title: IEEE Access – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: b0215 article-title: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness Correlation publication-title: Journal of Machine Learning Technologies – volume: 8 start-page: 83791 year: 2020 end-page: 83820 ident: b0100 article-title: Sensing technology for human activity recognition: A comprehensive survey publication-title: IEEE Access – volume: 23 start-page: 314 year: 2019 end-page: 323 ident: b0185 article-title: Deep learning for fall detection: Three-dimensional CNN Combined with LSTM on video kinematic data publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 17 start-page: 168 year: 2021 end-page: 192 ident: b0260 article-title: Classification assessment methods publication-title: Applied Computing and Informatics – reference: Asif, U., Von Cavallar, S., Tang, J., Harrer, S. (2020). SSHFD: Single Shot Human Fall Detection with Occluded Joints Resilience. 24th European Conference on Artificial Intelligence, ECAI 2020, 29 August-8 September 2020, Santiago de Compostela, Spain. Frontiers in Artificial Intelligence and Applications 325, IOS Press 2020, pp. 2656-2663. – volume: 8 start-page: 210816 year: 2020 end-page: 210836 ident: b0095 article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey publication-title: IEEE access : practical innovations, open solutions – volume: 119 start-page: 3 year: 2019 end-page: 11 ident: b0295 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognition Letters – volume: 19 start-page: 8413 year: 2019 end-page: 8419 ident: b0275 article-title: Activity Recognition for Cognitive Assistance Using Body Sensors Data and Deep Convolutional Neural Network publication-title: IEEE Sensors Journal – volume: 44 start-page: 3329 year: 2019 end-page: 3342 ident: b0285 article-title: Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers publication-title: Arabian Journal for Science and Engineering – reference: S. Abbate M. Avvenuti P. Corsini J. Light A. Vecchio Y.K. Tan Wireless Sensor Networks: Application-Centric Design 2010 InTech 10.5772/13802. – volume: 20 start-page: 49 year: 2017 end-page: 55 ident: b0130 article-title: Vision-based fall detection system for improving safety of elderly people publication-title: IEEE Instrumentation Measurement Magazine – volume: 109 start-page: 470 year: 2019 end-page: 479 ident: b0300 article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting publication-title: International Journal of Electrical Power Energy Systems – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: b0235 article-title: Bidirectional recurrent neural networks publication-title: IEEE Transactions on Signal Processing – volume: 8 start-page: 133982 year: 2020 end-page: 133994 ident: b0110 article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection publication-title: IEEE Access – volume: 10 start-page: 89 year: 2019 end-page: 106 ident: b0230 article-title: Online human movement classification using wrist-worn wireless sensors publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 11 start-page: 301 issue: 4 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0210 article-title: Sensor-based activity recognition in the context of ambient assisted living systems: A review publication-title: Journal of Ambient Intelligence and Smart Environments doi: 10.3233/AIS-190529 – volume: 24 start-page: 144 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0190 article-title: Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2019.2906499 – volume: 140 start-page: 215 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0085 article-title: Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2019.03.079 – volume: 16 start-page: 775 issue: 4 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0125 article-title: A new Framework for Elderly Fall Detection Using Coupled Hidden Markov Models publication-title: The International Arab Journal Of Information Technology – volume: 2 start-page: 37 issue: 1 year: 2011 ident: 10.1016/j.bspc.2021.103242_b0215 article-title: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness Correlation publication-title: Journal of Machine Learning Technologies – volume: 23 start-page: 314 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0185 article-title: Deep learning for fall detection: Three-dimensional CNN Combined with LSTM on video kinematic data publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2018.2808281 – volume: 7 start-page: 38670 issue: 8672567 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0080 article-title: A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906693 – start-page: 426 year: 2016 ident: 10.1016/j.bspc.2021.103242_b0305 – volume: 52 start-page: 37 issue: 1–2 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0050 article-title: Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm publication-title: Measurement and Control doi: 10.1177/0020294018813692 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 10.1016/j.bspc.2021.103242_b0235 article-title: Bidirectional recurrent neural networks publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650093 – volume: 106 start-page: 104090 year: 2021 ident: 10.1016/j.bspc.2021.103242_b0010 article-title: A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2020.104090 – volume: 7 issue: 12 year: 2016 ident: 10.1016/j.bspc.2021.103242_b0090 article-title: Automatic fall detection using smartphone acceleration sensor publication-title: International Journal of Advanced Computer Science and Applications – volume: 5 start-page: 242 issue: 3-4 year: 2007 ident: 10.1016/j.bspc.2021.103242_b0320 article-title: A modified T-test feature selection method and its application on the HapMap genotype data publication-title: Genomics, proteomics bioinformatics doi: 10.1016/S1672-0229(08)60011-X – volume: 44 start-page: 3329 issue: 4 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0285 article-title: Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-018-3496-4 – ident: 10.1016/j.bspc.2021.103242_b0025 doi: 10.1088/1742-6596/1380/1/012060 – volume: 7 start-page: 77702 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0225 article-title: Research of fall detection and fall prevention technologies: A systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922708 – volume: 53 start-page: 1975 issue: 3 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0175 article-title: Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review publication-title: Artificial Intelligence Review doi: 10.1007/s10462-019-09724-5 – volume: 6 start-page: 8553 issue: 5 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0060 article-title: IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2019.2920283 – volume: 119 start-page: 3 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0295 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.02.010 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.bspc.2021.103242_bib326 article-title: Statistical comparisons of classifiers over multiple data sets. publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.bspc.2021.103242_b0145 – volume: 79 start-page: 30509 issue: 41-42 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0055 article-title: Vision-based human activity recognition: a survey publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09004-3 – volume: 11 start-page: 5433 issue: 11 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0255 article-title: Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-01899-y – volume: 20 start-page: 49 issue: 6 year: 2017 ident: 10.1016/j.bspc.2021.103242_b0130 article-title: Vision-based fall detection system for improving safety of elderly people publication-title: IEEE Instrumentation Measurement Magazine doi: 10.1109/MIM.2017.8121952 – volume: 19 start-page: 3213 issue: 14 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0180 article-title: Human activity recognition using inertial sensors in a smartphone: An overview publication-title: Sensors doi: 10.3390/s19143213 – volume: 8 start-page: 210816 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0095 article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey publication-title: IEEE access : practical innovations, open solutions doi: 10.1109/ACCESS.2020.3037715 – ident: 10.1016/j.bspc.2021.103242_b0155 – volume: 7 start-page: 75490 issue: 8734079 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0325 article-title: Efficient Human Activity Recognition Solving the Confusing Activities Via Deep Ensemble Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922104 – volume: 136 start-page: 104068 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0020 article-title: Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer publication-title: International Journal of Medical Informatics doi: 10.1016/j.ijmedinf.2019.104068 – ident: 10.1016/j.bspc.2021.103242_b0170 doi: 10.1177/1847979017750669 – ident: 10.1016/j.bspc.2021.103242_b0315 doi: 10.1177/1550147720907830 – volume: 109 start-page: 470 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0300 article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting publication-title: International Journal of Electrical Power Energy Systems doi: 10.1016/j.ijepes.2019.02.022 – start-page: 129 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0045 – volume: 23 start-page: 1065 issue: 8 year: 2021 ident: 10.1016/j.bspc.2021.103242_b0135 article-title: A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors publication-title: Entropy doi: 10.3390/e23081065 – volume: 19 start-page: 4528 issue: 12 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0140 article-title: Activity-Aware Fall Detection and Recognition Based on Wearable Sensors publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2898891 – volume: 46 start-page: 147 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0205 article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions publication-title: Information Fusion doi: 10.1016/j.inffus.2018.06.002 – volume: 8 start-page: 83791 issue: 9083980 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0100 article-title: Sensing technology for human activity recognition: A comprehensive survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991891 – volume: 11 start-page: 2866 issue: 11 year: 2018 ident: 10.1016/j.bspc.2021.103242_b0105 article-title: Accurate fall detection and localization for elderly people based on neural network and energy-efficient wireless sensor network publication-title: Energies doi: 10.3390/en11112866 – volume: 404 start-page: 132306 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0245 article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/j.physd.2019.132306 – volume: 19 start-page: 3688 issue: 17 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0150 article-title: An energy-efficient method for human activity recognition with segment-level change detection and deep learning publication-title: Sensors doi: 10.3390/s19173688 – volume: 10 start-page: 89 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0230 article-title: Online human movement classification using wrist-worn wireless sensors publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-017-0606-1 – volume: 19 start-page: 3808 issue: 17 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0015 article-title: Multi-sensor fusion for activity recognition—a survey publication-title: Sensors doi: 10.3390/s19173808 – volume: 8 start-page: 83 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0265 article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection publication-title: Systems Science Control Engineering doi: 10.1080/21642583.2020.1723142 – volume: 12 start-page: 649 issue: 4 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0075 article-title: A Study of the use of gyroscope measurements in wearable fall detection systems publication-title: Symmetry doi: 10.3390/sym12040649 – volume: 16 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0195 article-title: Human Activity Recognition from Multiple Sensors Data Using Multi-fusion Representations and CNNs publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications doi: 10.1145/3377882 – volume: 40 start-page: 140 issue: 6 year: 2016 ident: 10.1016/j.bspc.2021.103242_b0120 article-title: Smartphone-Based Patients’ activity recognition by using a self-learning scheme for medical monitoring publication-title: Journal of medical systems doi: 10.1007/s10916-016-0497-2 – volume: 19 start-page: 8413 issue: 19 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0275 article-title: Activity Recognition for Cognitive Assistance Using Body Sensors Data and Deep Convolutional Neural Network publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2018.2871203 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.bspc.2021.103242_b0280 article-title: Visualizing Data Using t-SNE publication-title: Journal of Machine Learning Research. – volume: 19 start-page: 458 issue: 3 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0290 article-title: Human physical activity recognition using smartphone sensors publication-title: Sensors doi: 10.3390/s19030458 – volume: 11 start-page: 1395 issue: 8 year: 2021 ident: 10.1016/j.bspc.2021.103242_b0220 article-title: Local pattern transformation based feature extraction for recognition of parkinson’s disease based on gait signals publication-title: Diagnostics doi: 10.3390/diagnostics11081395 – ident: 10.1016/j.bspc.2021.103242_b0005 – ident: 10.1016/j.bspc.2021.103242_b0030 – volume: 80 start-page: 463 issue: 4 year: 2014 ident: 10.1016/j.bspc.2021.103242_b0165 article-title: Small data in the era of big data publication-title: GeoJournal doi: 10.1007/s10708-014-9601-7 – volume: 17 start-page: 168 issue: 1 year: 2021 ident: 10.1016/j.bspc.2021.103242_b0260 article-title: Classification assessment methods publication-title: Applied Computing and Informatics doi: 10.1016/j.aci.2018.08.003 – volume: 20 start-page: 1856 issue: 7 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0070 article-title: A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory publication-title: Sensors doi: 10.3390/s20071856 – volume: 25 start-page: 2047 issue: 12 year: 2012 ident: 10.1016/j.bspc.2021.103242_b0065 article-title: Fitting data using optimal Hermite type cubic interpolating splines publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2012.04.016 – volume: 8 start-page: 133982 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0110 article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010715 – start-page: 127 year: 2015 ident: 10.1016/j.bspc.2021.103242_b0250 – start-page: 1663 year: 2007 ident: 10.1016/j.bspc.2021.103242_b0200 – volume: 12 start-page: e0180318 issue: 7 year: 2017 ident: 10.1016/j.bspc.2021.103242_b0035 article-title: Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets publication-title: PLoS one doi: 10.1371/journal.pone.0180318 – volume: 69 start-page: 4061 issue: 3 year: 2021 ident: 10.1016/j.bspc.2021.103242_b0160 article-title: Multi-Layered Deep Learning Features Fusion for Human Action Recognition publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.017800 – volume: 19 start-page: 521 issue: 3 year: 2019 ident: 10.1016/j.bspc.2021.103242_b0040 article-title: A comparison of machine learning and deep learning techniques for activity recognition using mobile devices publication-title: Sensors doi: 10.3390/s19030521 – year: 2021 ident: 10.1016/j.bspc.2021.103242_b0240 article-title: Fusion of smartphone sensor data for classification of daily user activities publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-021-11105-6 – volume: 62 start-page: 47 year: 2020 ident: 10.1016/j.bspc.2021.103242_b0115 article-title: Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors publication-title: Information Fusion doi: 10.1016/j.inffus.2020.04.004 – volume: 130 start-page: 603 year: 2018 ident: 10.1016/j.bspc.2021.103242_b0310 article-title: Fall detection system for elderly people using IoT and big data publication-title: Procedia computer science doi: 10.1016/j.procs.2018.04.110 |
SSID | ssj0048714 |
Score | 2.5053873 |
Snippet | •Bica cubic Hermite interpolation based data augmentation method allows to handle imbalanced data problem.•A fusion accelerometer and gyroscope data features... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103242 |
SubjectTerms | Activity recognition Digital health Fall detection Smartwatch |
Title | Deep learning based fall detection using smartwatches for healthcare applications |
URI | https://dx.doi.org/10.1016/j.bspc.2021.103242 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4k7olzUd7HNMxFQaig91K0yRzMutwFW_-7ea16ZggO3jpoeRB-2vy3kvze7-H0GWUuiUWKe32JsRdVDcMVMxZAN1EqI1JZFRJkB2J4ZjdT_ikgfp1LQzQKr3vr3x66a39nY5Hs7OYzTpPLpcWkdudUNCncXEWKtiZAFrf9feK5uHy8VLfGwYHMNoXzlQcL7VcgIwhJVB7Thn9OzitBZzBHtr1mSLuVQ-zjxomP0A7a_qBh-jxxpgF9o0fphgiksY2nc-xNkXJscoxENunePnmXuorhU-0xC5PxS8r3hdeP8M-QuPB7XN_GPgeCUEWClEERmUyozqmlllNJLHcUqqkIZmIQ221hAhthKRpaqlVXHMZau2ypi4LlZA6PEbN_D03JwhzZQmscG20gQ7psemmnAlmeMgslVkLkRqcJPMC4tDHYp7UTLHXBABNANCkArSFrlY2i0o-Y-NoXmOe_JoEifPvG-xO_2l3hrYpVDOUf1TOUbP4-DQXLscoVLucRG201bt7GI5-AEUZ0FY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5BOKgH48-IP3vwZhZY127sSFACgiRGSLgt69oqBnGRGf99-7aOYGI4eNlh6Uu2b-17r-v3vgdw04rNEmsJafYmrrmIpueIkDMHu4lQHbotJXKC7MjvTdjDlE8r0ClrYZBWaX1_4dNzb23vNCyajXQ2azybXNpvmd0JRX0aE2e3oMa48clVqLX7g96odMgmJc8lvnG8gwa2dqageYllikqG1MXyc8ro3_FpLeZ092HPJoukXTzPAVTU4hB21yQEj-DpTqmU2N4PLwSDkiQ6ns-JVFlOs1oQ5La_kOW7ea_vGL_SkphUlbyuqF9k_Rj7GCbd-3Gn59g2CU7i-X7mKJEECZUh1UxLN3A115SKQLmJH3pSywCDtPIDGseaasElDzwpTeLUZJ7wA-mdQHXxsVCnQLjQLi5yqaTCJumhasac-Uxxj2kaJHVwS3CixGqIYyuLeVSSxd4iBDRCQKMC0DrcrmzSQkFj42heYh79mgeRcfEb7M7-aXcN273x4zAa9keDc9ihWNyQ_2C5gGr2-aUuTcqRiSs7pX4Aa2rTAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+fall+detection+using+smartwatches+for+healthcare+applications&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=%C5%9Eeng%C3%BCl%2C+G%C3%B6khan&rft.au=Karakaya%2C+Murat&rft.au=Misra%2C+Sanjay&rft.au=Abayomi-Alli%2C+Olusola+O.&rft.date=2022-01-01&rft.issn=1746-8094&rft.volume=71&rft.spage=103242&rft_id=info:doi/10.1016%2Fj.bspc.2021.103242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |