Visual analysis of user-driven association rule mining

Association rules have been widely used for detecting relations between attribute-value pairs of categorical datasets. Existing solutions of mining interesting association rules are based on the support-confidence theory. However, it is non-trivial for the user to understand and modify the rules or...

Full description

Saved in:
Bibliographic Details
Published inJournal of visual languages and computing Vol. 42; pp. 76 - 85
Main Authors Chen, Wei, Xie, Cong, Shang, Pingping, Peng, Qunsheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2017
Subjects
Online AccessGet full text
ISSN1045-926X
1095-8533
DOI10.1016/j.jvlc.2017.08.007

Cover

Abstract Association rules have been widely used for detecting relations between attribute-value pairs of categorical datasets. Existing solutions of mining interesting association rules are based on the support-confidence theory. However, it is non-trivial for the user to understand and modify the rules or the results of intermediate steps in the mining process, because the interestingness of rules might differ largely for various tasks and users. In this paper we reinforce conventional association rule mining process by mapping the entire process into a visualization assisted loop, with which the user workload for modulating parameters and mining rules is reduced, and the mining efficiency is greatly improved. A hierarchical matrix-based visualization technique is proposed for the user to explore the measure value and the intermediate results of association rules. We also design a set of visual exploration tools to support interactively inspection and manipulation of mining process. The effectiveness and usability of our approach is demonstrated with two scenarios.
AbstractList Association rules have been widely used for detecting relations between attribute-value pairs of categorical datasets. Existing solutions of mining interesting association rules are based on the support-confidence theory. However, it is non-trivial for the user to understand and modify the rules or the results of intermediate steps in the mining process, because the interestingness of rules might differ largely for various tasks and users. In this paper we reinforce conventional association rule mining process by mapping the entire process into a visualization assisted loop, with which the user workload for modulating parameters and mining rules is reduced, and the mining efficiency is greatly improved. A hierarchical matrix-based visualization technique is proposed for the user to explore the measure value and the intermediate results of association rules. We also design a set of visual exploration tools to support interactively inspection and manipulation of mining process. The effectiveness and usability of our approach is demonstrated with two scenarios.
Author Chen, Wei
Peng, Qunsheng
Xie, Cong
Shang, Pingping
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: chenwei@cad.zju.edu.cn
  organization: State Key Lab of CAD& CG Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Cong
  surname: Xie
  fullname: Xie, Cong
  email: coxie@cs.stonybrook.edu
  organization: Stony Brook University, New York, USA
– sequence: 3
  givenname: Pingping
  surname: Shang
  fullname: Shang, Pingping
  organization: State Key Lab of CAD& CG Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Qunsheng
  surname: Peng
  fullname: Peng, Qunsheng
  organization: State Key Lab of CAD& CG Zhejiang University, Hangzhou, China
BookMark eNp9z81KxDAQwPEgK7i7-gKe-gKtk6ZJU_Aii1-w4EXFW0iTiaR0U0m6C_v2tq4nD55mDvMf-K3IIgwBCbmmUFCg4qYrukNvihJoXYAsAOozsqTQ8FxyxhbzXvG8KcXHBVml1MF0IZlYEvHu0173mQ66PyafssFl-4Qxt9EfMGQ6pcF4PfohZHHfY7bzwYfPS3LudJ_w6neuydvD_evmKd--PD5v7ra5YUKMuUXkNdpSNxJAW9O2DdQVsLrlTHPBdA2G2sq1zhjHDTWNE6yqQYOWliNna1Ke_po4pBTRqa_odzoeFQU1y1WnZrma5QqkmlxTJP9Exo8_hDFq3_-f3p5SnFAHj1El4zEYtD6iGZUd_H_5N9n_d-k
CitedBy_id crossref_primary_10_1016_j_bdr_2021_100240
crossref_primary_10_1007_s00371_020_01803_x
crossref_primary_10_1016_j_eswa_2019_113043
crossref_primary_10_4018_IJAEIS_2020070105
crossref_primary_10_1016_j_compeleceng_2021_107655
crossref_primary_10_1587_transinf_2019IIP0008
crossref_primary_10_1007_s11042_019_07951_0
crossref_primary_10_1108_IDD_09_2020_0110
crossref_primary_10_1016_j_ipm_2019_102066
crossref_primary_10_1016_j_matpr_2021_01_597
crossref_primary_10_1016_j_ins_2021_12_121
crossref_primary_10_1016_j_jvlc_2018_08_007
crossref_primary_10_3390_electronics11091344
crossref_primary_10_1016_j_jvlc_2018_08_003
Cites_doi 10.1109/TVCG.2014.2346913
10.4236/ijis.2013.31A005
10.1109/MCG.2017.21
10.1145/1132960.1132963
10.1179/000870403235002042
10.1109/TVCG.2016.2598479
10.1145/1010614.1010616
10.1016/j.cag.2007.01.023
10.1007/s11390-016-1663-1
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jvlc.2017.08.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Languages & Literatures
Computer Science
EISSN 1095-8533
EndPage 85
ExternalDocumentID 10_1016_j_jvlc_2017_08_007
S1045926X17300071
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG5
LX9
M3X
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SSS
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-dee57ed2a9800adcbb9074037b53a563a70c1d4fbfccf5c1c9f63470a0a8d5e53
IEDL.DBID .~1
ISSN 1045-926X
IngestDate Thu Apr 24 23:12:15 EDT 2025
Wed Oct 01 04:05:31 EDT 2025
Fri Feb 23 02:32:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Association rules
Categorical data
Visual analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-dee57ed2a9800adcbb9074037b53a563a70c1d4fbfccf5c1c9f63470a0a8d5e53
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_jvlc_2017_08_007
crossref_citationtrail_10_1016_j_jvlc_2017_08_007
elsevier_sciencedirect_doi_10_1016_j_jvlc_2017_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationTitle Journal of visual languages and computing
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References LeBlanc, Ward, Wittels (bib0030) 1990
Lopes, Pinho, Paulovich, Minghim (bib0021) 2007; 31
Savasere, Omiecinski, Navathe (bib0026) 1998
Geng, Hamilton (bib0003) 2006; 38
Xia, Chen, Hou, Hu, Huang, Ebertk (bib0018) 2016
Wong, Whitney, Thomas (bib0020) 1999
GroupLens, Movielens data sets
Liu, Suchitra, Zhang, Feng, Ng, Wong (bib0011) 2012
Ng, Lakshmanan, Han, Pang (bib0010) 1998
Accessed: 2013-03.
Xia, Hou, Chen, Qian, Ebert, Chen (bib0031) 2017; 37
Hahsler, Chelluboina (bib0006) 2011
Friendly (bib0015) 2000
Lu, Chen, Ma, Ke, Li, Zhang, Maciejewski (bib0017) 2017
Ong, Ong, Ng, Lim (bib0013) 2002
Wang, Zhang, Ma, Xia, Chen (bib0019) 2016; 31
Koh, Rountree (bib0027) 2005
Agrawal, Srikant (bib0009) 1994; vol. 1215
Blanchard, Guillet, Briand (bib0022) 2003
Han, Kamber, Pei (bib0002) 2006
Herawan, Yanto, Deris (bib0024) 2009; vol. 5857
Wu, Zhang, Zhang (bib0028) 2004; 22
Leung, Irani, Carmichael (bib0012) 2008
Hofmann, Siebes, Wilhelm (bib0005) 2000
Xie, Chen, Huang, Hu, Barlowe, Yang (bib0014) 2014; 20
Sekhavat, Hoeber (bib0023) 2013; 3
Lei, Xie, Shang, Zhang, Chen, Peng (bib0008) 2016
Agrawal, Imielinski, Swami (bib0001) 1993
Zhao, Liu (bib0007) 2001
Harrower, Brewer (bib0029) 2003; 40
Srikant, Vu, Agrawal (bib0004) 1997
Xie, Zhong, Mueller (bib0016) 2017; 23
Wu (10.1016/j.jvlc.2017.08.007_bib0028) 2004; 22
Xia (10.1016/j.jvlc.2017.08.007_bib0031) 2017; 37
Herawan (10.1016/j.jvlc.2017.08.007_bib0024) 2009; vol. 5857
Geng (10.1016/j.jvlc.2017.08.007_bib0003) 2006; 38
Srikant (10.1016/j.jvlc.2017.08.007_bib0004) 1997
Sekhavat (10.1016/j.jvlc.2017.08.007_bib0023) 2013; 3
Han (10.1016/j.jvlc.2017.08.007_bib0002) 2006
10.1016/j.jvlc.2017.08.007_bib0025
Agrawal (10.1016/j.jvlc.2017.08.007_bib0001) 1993
Hofmann (10.1016/j.jvlc.2017.08.007_bib0005) 2000
Wong (10.1016/j.jvlc.2017.08.007_bib0020) 1999
Ong (10.1016/j.jvlc.2017.08.007_bib0013) 2002
Ng (10.1016/j.jvlc.2017.08.007_bib0010) 1998
Lopes (10.1016/j.jvlc.2017.08.007_bib0021) 2007; 31
Zhao (10.1016/j.jvlc.2017.08.007_bib0007) 2001
Hahsler (10.1016/j.jvlc.2017.08.007_bib0006) 2011
Koh (10.1016/j.jvlc.2017.08.007_bib0027) 2005
LeBlanc (10.1016/j.jvlc.2017.08.007_bib0030) 1990
Lu (10.1016/j.jvlc.2017.08.007_bib0017) 2017
Xie (10.1016/j.jvlc.2017.08.007_bib0016) 2017; 23
Agrawal (10.1016/j.jvlc.2017.08.007_bib0009) 1994; vol. 1215
Xia (10.1016/j.jvlc.2017.08.007_bib0018) 2016
Liu (10.1016/j.jvlc.2017.08.007_bib0011) 2012
Savasere (10.1016/j.jvlc.2017.08.007_bib0026) 1998
Leung (10.1016/j.jvlc.2017.08.007_bib0012) 2008
Xie (10.1016/j.jvlc.2017.08.007_bib0014) 2014; 20
Blanchard (10.1016/j.jvlc.2017.08.007_bib0022) 2003
Wang (10.1016/j.jvlc.2017.08.007_bib0019) 2016; 31
Friendly (10.1016/j.jvlc.2017.08.007_bib0015) 2000
Harrower (10.1016/j.jvlc.2017.08.007_bib0029) 2003; 40
Lei (10.1016/j.jvlc.2017.08.007_bib0008) 2016
References_xml – start-page: 494
  year: 1998
  end-page: 502
  ident: bib0026
  article-title: Mining for strong negative associations in a large database of customer transactions
  publication-title: Data Engineering, 1998. Proceedings., 14th International Conference on
– start-page: 59
  year: 2001
  end-page: 64
  ident: bib0007
  article-title: Visual analysis of the behavior of discovered rules
  publication-title: ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining (KDD 2001), Proc. Workshop on Visual Data Mining, San Francisco, USA
– start-page: 230
  year: 1990
  end-page: 237
  ident: bib0030
  article-title: Exploring n-dimensional databases
  publication-title: Visualization, 1990. Visualization’90., Proceedings of the First IEEE Conference on
– reference: GroupLens, Movielens data sets, (
– volume: 40
  start-page: 27
  year: 2003
  end-page: 37
  ident: bib0029
  article-title: Colorbrewer. org: an online tool for selecting colour schemes for maps
  publication-title: Cartogr. J.
– start-page: 227
  year: 2000
  end-page: 235
  ident: bib0005
  article-title: Visualizing association rules with interactive mosaic plots
  publication-title: Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 81
  year: 2016
  end-page: 90
  ident: bib0018
  article-title: Dimscanner: a relation-based visual exploration approach towards data dimension inspection
  publication-title: Visual Analytics Science and Technology (VAST), 2016 IEEE Conference on
– start-page: 120
  year: 1999
  end-page: 123
  ident: bib0020
  article-title: Visualizing association rules for text mining
  publication-title: Information Visualization, 1999.(Info Vis’ 99) Proceedings. 1999 IEEE Symposium on
– volume: 22
  start-page: 381
  year: 2004
  end-page: 405
  ident: bib0028
  article-title: Efficient mining of both positive and negative association rules
  publication-title: ACM Trans. Inf. Syst.
– start-page: 96
  year: 2016
  end-page: 103
  ident: bib0008
  article-title: Visual analysis of user-driven association rule mining
  publication-title: Proceedings of the 9th International Symposium on Visual Information Communication and Interaction
– volume: 31
  start-page: 787
  year: 2016
  end-page: 804
  ident: bib0019
  article-title: A survey of visual analytic pipelines
  publication-title: J. Comput. Sci. Technol.
– volume: 20
  start-page: 1743
  year: 2014
  end-page: 1752
  ident: bib0014
  article-title: Vaet: a visual analytics approach for e-transactions time-series
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 38
  start-page: 9
  year: 2006
  ident: bib0003
  article-title: Interestingness measures for data mining: a survey
  publication-title: ACM Comput. Surv.
– volume: 31
  start-page: 316
  year: 2007
  end-page: 326
  ident: bib0021
  article-title: Visual text mining using association rules
  publication-title: Comput. Graph.
– year: 2006
  ident: bib0002
  article-title: Data Mining: Concepts and Techniques
– volume: 23
  start-page: 51
  year: 2017
  end-page: 60
  ident: bib0016
  article-title: A visual analytics approach for categorical joint distribution reconstruction from marginal projections
  publication-title: IEEE Trans. Vis. Comput. Graph.
– start-page: 493
  year: 2003
  end-page: 496
  ident: bib0022
  article-title: A user-driven and quality-oriented visualization for mining association rules
  publication-title: Data Mining, 2003. ICDM 2003. Third IEEE International Conference on
– start-page: 97
  year: 2005
  end-page: 106
  ident: bib0027
  article-title: Finding sporadic rules using apriori-inverse
  publication-title: Advances in Knowledge Discovery and Data Mining
– year: 2002
  ident: bib0013
  article-title: Crystalclear: active visualization of association rules
  publication-title: ICDM-02 Workshop on Active Mining (AM-02)
– volume: vol. 1215
  start-page: 487
  year: 1994
  end-page: 499
  ident: bib0009
  article-title: Fast algorithms for mining association rules
  publication-title: Proc. 20th Int. Conf. very Large Data Bases, VLDB
– start-page: 13
  year: 1998
  end-page: 24
  ident: bib0010
  article-title: Exploratory mining and pruning optimizations of constrained associations rules
  publication-title: Proceedings of the ACM SIGMOD Conference, Seattle, WA
– year: 2011
  ident: bib0006
  article-title: Visualizing association rules: introduction to the r-extension package arulesviz
  publication-title: R Project Module
– volume: 3
  start-page: 34
  year: 2013
  end-page: 49
  ident: bib0023
  article-title: Visualizing association rules using linked matrix, graph, and detail views
  publication-title: Int. J. Intell. Sci.
– volume: vol. 5857
  start-page: 664
  year: 2009
  end-page: 674
  ident: bib0024
  article-title: Smarviz: Soft maximal association rules visualization
  publication-title: Visual Informatics: Bridging Research and Practice
– start-page: 875
  year: 2008
  end-page: 880
  ident: bib0012
  article-title: Wifisviz: effective visualization of frequent itemsets
  publication-title: Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on
– start-page: 1
  year: 2017
  end-page: 16
  ident: bib0017
  article-title: Recent progress and trends in predictive visual analytics
  publication-title: Front. Comput. Sci.
– volume: 37
  start-page: 42
  year: 2017
  end-page: 53
  ident: bib0031
  article-title: Visualizing rank time series of wikipedia top-viewed pages
  publication-title: IEEE Comput. Graph. Appl.
– start-page: 207
  year: 1993
  end-page: 216
  ident: bib0001
  article-title: Mining association rules between sets of items in large databases
  publication-title: Proceedings of the ACM SIGMOD International Conference on Management of Data, Washington D.C.
– start-page: 67
  year: 1997
  end-page: 73
  ident: bib0004
  article-title: Mining association rules with item constraints
  publication-title: Proceedings of the 3rd International Conference Knowledge Discovery and Data Mining (KDD-97)
– reference: ). Accessed: 2013-03.
– start-page: 1536
  year: 2012
  end-page: 1539
  ident: bib0011
  article-title: Assocexplorer: an association rule visualization system for exploratory data analysis
  publication-title: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2000
  ident: bib0015
  article-title: Visualizing Categorical Data
– volume: 20
  start-page: 1743
  issue: 12
  year: 2014
  ident: 10.1016/j.jvlc.2017.08.007_bib0014
  article-title: Vaet: a visual analytics approach for e-transactions time-series
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2014.2346913
– year: 2000
  ident: 10.1016/j.jvlc.2017.08.007_bib0015
– start-page: 1
  year: 2017
  ident: 10.1016/j.jvlc.2017.08.007_bib0017
  article-title: Recent progress and trends in predictive visual analytics
  publication-title: Front. Comput. Sci.
– year: 2011
  ident: 10.1016/j.jvlc.2017.08.007_bib0006
  article-title: Visualizing association rules: introduction to the r-extension package arulesviz
  publication-title: R Project Module
– start-page: 97
  year: 2005
  ident: 10.1016/j.jvlc.2017.08.007_bib0027
  article-title: Finding sporadic rules using apriori-inverse
– year: 2006
  ident: 10.1016/j.jvlc.2017.08.007_bib0002
– start-page: 494
  year: 1998
  ident: 10.1016/j.jvlc.2017.08.007_bib0026
  article-title: Mining for strong negative associations in a large database of customer transactions
– volume: 3
  start-page: 34
  issue: 1A
  year: 2013
  ident: 10.1016/j.jvlc.2017.08.007_bib0023
  article-title: Visualizing association rules using linked matrix, graph, and detail views
  publication-title: Int. J. Intell. Sci.
  doi: 10.4236/ijis.2013.31A005
– volume: 37
  start-page: 42
  issue: 2
  year: 2017
  ident: 10.1016/j.jvlc.2017.08.007_bib0031
  article-title: Visualizing rank time series of wikipedia top-viewed pages
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.2017.21
– volume: vol. 1215
  start-page: 487
  year: 1994
  ident: 10.1016/j.jvlc.2017.08.007_bib0009
  article-title: Fast algorithms for mining association rules
– start-page: 67
  year: 1997
  ident: 10.1016/j.jvlc.2017.08.007_bib0004
  article-title: Mining association rules with item constraints
– volume: 38
  start-page: 9
  issue: 3
  year: 2006
  ident: 10.1016/j.jvlc.2017.08.007_bib0003
  article-title: Interestingness measures for data mining: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1132960.1132963
– start-page: 207
  year: 1993
  ident: 10.1016/j.jvlc.2017.08.007_bib0001
  article-title: Mining association rules between sets of items in large databases
– start-page: 81
  year: 2016
  ident: 10.1016/j.jvlc.2017.08.007_bib0018
  article-title: Dimscanner: a relation-based visual exploration approach towards data dimension inspection
– start-page: 96
  year: 2016
  ident: 10.1016/j.jvlc.2017.08.007_bib0008
  article-title: Visual analysis of user-driven association rule mining
– start-page: 493
  year: 2003
  ident: 10.1016/j.jvlc.2017.08.007_bib0022
  article-title: A user-driven and quality-oriented visualization for mining association rules
– volume: 40
  start-page: 27
  issue: 1
  year: 2003
  ident: 10.1016/j.jvlc.2017.08.007_bib0029
  article-title: Colorbrewer. org: an online tool for selecting colour schemes for maps
  publication-title: Cartogr. J.
  doi: 10.1179/000870403235002042
– ident: 10.1016/j.jvlc.2017.08.007_bib0025
– start-page: 13
  year: 1998
  ident: 10.1016/j.jvlc.2017.08.007_bib0010
  article-title: Exploratory mining and pruning optimizations of constrained associations rules
– year: 2002
  ident: 10.1016/j.jvlc.2017.08.007_bib0013
  article-title: Crystalclear: active visualization of association rules
– volume: 23
  start-page: 51
  issue: 1
  year: 2017
  ident: 10.1016/j.jvlc.2017.08.007_bib0016
  article-title: A visual analytics approach for categorical joint distribution reconstruction from marginal projections
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2016.2598479
– volume: 22
  start-page: 381
  issue: 3
  year: 2004
  ident: 10.1016/j.jvlc.2017.08.007_bib0028
  article-title: Efficient mining of both positive and negative association rules
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/1010614.1010616
– start-page: 227
  year: 2000
  ident: 10.1016/j.jvlc.2017.08.007_bib0005
  article-title: Visualizing association rules with interactive mosaic plots
– start-page: 59
  year: 2001
  ident: 10.1016/j.jvlc.2017.08.007_bib0007
  article-title: Visual analysis of the behavior of discovered rules
– start-page: 120
  year: 1999
  ident: 10.1016/j.jvlc.2017.08.007_bib0020
  article-title: Visualizing association rules for text mining
– volume: 31
  start-page: 316
  issue: 3
  year: 2007
  ident: 10.1016/j.jvlc.2017.08.007_bib0021
  article-title: Visual text mining using association rules
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2007.01.023
– start-page: 230
  year: 1990
  ident: 10.1016/j.jvlc.2017.08.007_bib0030
  article-title: Exploring n-dimensional databases
– volume: 31
  start-page: 787
  issue: 4
  year: 2016
  ident: 10.1016/j.jvlc.2017.08.007_bib0019
  article-title: A survey of visual analytic pipelines
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-016-1663-1
– start-page: 1536
  year: 2012
  ident: 10.1016/j.jvlc.2017.08.007_bib0011
  article-title: Assocexplorer: an association rule visualization system for exploratory data analysis
– start-page: 875
  year: 2008
  ident: 10.1016/j.jvlc.2017.08.007_bib0012
  article-title: Wifisviz: effective visualization of frequent itemsets
– volume: vol. 5857
  start-page: 664
  year: 2009
  ident: 10.1016/j.jvlc.2017.08.007_bib0024
  article-title: Smarviz: Soft maximal association rules visualization
SSID ssj0007836
Score 2.2429216
Snippet Association rules have been widely used for detecting relations between attribute-value pairs of categorical datasets. Existing solutions of mining interesting...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Association rules
Categorical data
Visual analysis
Title Visual analysis of user-driven association rule mining
URI https://dx.doi.org/10.1016/j.jvlc.2017.08.007
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8533
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwfkPlAbGgUCd-pBlRRVWgsEBRt8hPqVUpqA9Gfju-xKEgoQ6MOfmi6Oyc7-y770PoXFofCwlmogzu1plzNMpo5uCS1ylmfA6dQIPzw6Po9tndgA9qqF31wkBZZfD9pU8vvHWQNIM1m-_DYfPJJxI8S8QgBsh1UvSRM5YCi8HV57LMA7oUSkQCHsHo0DhT1niNPsYAYxinBYwnUMr-tTn92HA6W2gjRIr4uvyYbVSzkx20GaJGHP7JmRdVxAyVbAcd9MIp5Axf4N43cPJsF4mX4Wzh3yoDFgl-cxjOKSIzBbeH5XK28HQxtvi1IJDYQ_3OzXO7GwXqhEhTIeaRsZan1iQy8wGhNFopSIIJTRWnkgsqU6Jjw5xyWjuuY505QVlKJJEtwy2n-6g-eZvYQ4RVy4iEWBozpXzsJaRUlvkkkmmTKCJaRyiubJbrgCsO9BbjvCogG-Vg5xzsnAPnJUmP0OW3znuJqrFyNK-mIv-1NnLv9lfoHf9T7wStw1NZsneK6vPpwp750GOuGsXaaqC169v77uMXy6HYsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLDwfr88IBYUmsSPNCNCVAVCF1rULfJTalUKalpGfju-xCkgoQ6sF18UnZ3znX33fQhdCONiIU51kMLdOrWWBClJLVzyWkm1y6FjaHB-6vB2jz70WX8J3da9MFBW6X1_5dNLb-0lDW_Nxvtg0Hh2iQRLY96PAHI9hD7yFcriBDKw68_vOg9oU6ggCVgAw33nTFXkNfwYAY5hlJQ4nsAp-9fu9GPHaW2idR8q4pvqa7bQkhlvow0fNmL_UxZOVDMz1LJttJ_5Y8gCX-Jsjpxc7CD-Mihm7q3Cg5HgN4vhoCLQE_B7WHxPF57MRga_lgwSu6jXuuvetgPPnRAowvk00MawxOhYpC4iFFpJCVlwSBLJiGCciCRUkaZWWqUsU5FKLSc0CUUompoZRvbQ8vhtbA4Qlk3N49CQiErpgi8uhDTUZZFU6ViGvHmIotpmufLA4sBvMcrrCrJhDnbOwc45kF6GySG6muu8V7AaC0ezeiryX4sjd35_gd7RP_XO0Wq7-5Tl2X3n8RitwZOqfu8ELU8nM3Pq4pCpPCvX2Rfy3dpH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+analysis+of+user-driven+association+rule+mining&rft.jtitle=Journal+of+visual+languages+and+computing&rft.au=Chen%2C+Wei&rft.au=Xie%2C+Cong&rft.au=Shang%2C+Pingping&rft.au=Peng%2C+Qunsheng&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=1045-926X&rft.eissn=1095-8533&rft.volume=42&rft.spage=76&rft.epage=85&rft_id=info:doi/10.1016%2Fj.jvlc.2017.08.007&rft.externalDocID=S1045926X17300071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-926X&client=summon