Snap-drift cuckoo search: A novel cuckoo search optimization algorithm
[Display omitted] •We propose a novel cuckoo optimization algorithm called snap-drift cuckoo search (SDCS).•The proposed SDCS employs reinforcement learning principles and improved search operators to achieve a more rapid and robust algorithm.•The improved algorithm compared with cuckoo search (CS)...
Saved in:
| Published in | Applied soft computing Vol. 52; pp. 771 - 794 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2016.09.048 |
Cover
| Abstract | [Display omitted]
•We propose a novel cuckoo optimization algorithm called snap-drift cuckoo search (SDCS).•The proposed SDCS employs reinforcement learning principles and improved search operators to achieve a more rapid and robust algorithm.•The improved algorithm compared with cuckoo search (CS) and its several extensions.•The improved algorithm compared with state-of-the algorithms and their variants.•Statistical comparisons of experimental results show that SDCS is superior to the other algorithms in terms of convergence speed and robustness.
Cuckoo search (CS) is one of the well-known evolutionary techniques in global optimization. Despite its efficiency and wide use, CS suffers from premature convergence and poor balance between exploration and exploitation. To address these issues, a new CS extension namely snap-drift cuckoo search (SDCS) is proposed in this study. The proposed algorithm first employs a learning strategy and then considers improved search operators. The learning strategy provides an online trade-off between local and global search via two snap and drift modes. In snap mode, SDCS tends to increase global search to prevent algorithm of being trapped in a local minima; and in drift mode, it reinforces the local search to enhance the convergence rate. Thereafter, SDCS improves search capability by employing new crossover and mutation search operators. The accuracy and performance of the proposed approach are evaluated by well-known benchmark functions. Statistical comparisons of experimental results show that SDCS is superior to CS, modified CS (MCS), and state-of-the-art optimization algorithms in terms of convergence speed and robustness. |
|---|---|
| AbstractList | [Display omitted]
•We propose a novel cuckoo optimization algorithm called snap-drift cuckoo search (SDCS).•The proposed SDCS employs reinforcement learning principles and improved search operators to achieve a more rapid and robust algorithm.•The improved algorithm compared with cuckoo search (CS) and its several extensions.•The improved algorithm compared with state-of-the algorithms and their variants.•Statistical comparisons of experimental results show that SDCS is superior to the other algorithms in terms of convergence speed and robustness.
Cuckoo search (CS) is one of the well-known evolutionary techniques in global optimization. Despite its efficiency and wide use, CS suffers from premature convergence and poor balance between exploration and exploitation. To address these issues, a new CS extension namely snap-drift cuckoo search (SDCS) is proposed in this study. The proposed algorithm first employs a learning strategy and then considers improved search operators. The learning strategy provides an online trade-off between local and global search via two snap and drift modes. In snap mode, SDCS tends to increase global search to prevent algorithm of being trapped in a local minima; and in drift mode, it reinforces the local search to enhance the convergence rate. Thereafter, SDCS improves search capability by employing new crossover and mutation search operators. The accuracy and performance of the proposed approach are evaluated by well-known benchmark functions. Statistical comparisons of experimental results show that SDCS is superior to CS, modified CS (MCS), and state-of-the-art optimization algorithms in terms of convergence speed and robustness. |
| Author | Rahati, Amin Rakhshani, Hojjat |
| Author_xml | – sequence: 1 givenname: Hojjat orcidid: 0000-0002-6337-1082 surname: Rakhshani fullname: Rakhshani, Hojjat email: rakhshani@pgs.usb.ac.ir – sequence: 2 givenname: Amin surname: Rahati fullname: Rahati, Amin email: a.rahati@cs.usb.ac.ir |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU_7B3bNxzYf4qUUq0LBg3oOcTaxqdtNSWJBf7271oseepqXYZ5h5pmgURc6i9AlwRXBhF9tKpMCVLTPFVYVruUJGhMpaKm4JKM-z7gsa1XzMzRJaYP7QUXlGC2fOrMrm-hdLuAD3kMokjUR1tfFvOjC3rZ_20XYZb_1Xyb70BWmfQvR5_X2HJ060yZ78Vun6GV5-7y4L1ePdw-L-aoExnkuQRAKsrGsUcwQbphjSkjBX0E0kmEqgFAKglsuxUw55WzNHOGc0dpgQgmbInnYCzGkFK3T4PPPLTka32qC9eBDb_TgQw8-NFa699Gj9B-6i35r4udx6OYA2f6pvbdRJ_C2A9v4aCHrJvhj-Df7Vnu8 |
| CitedBy_id | crossref_primary_10_1007_s00521_022_07000_2 crossref_primary_10_1080_0305215X_2017_1401067 crossref_primary_10_1007_s00521_022_06977_0 crossref_primary_10_1016_j_knosys_2021_107405 crossref_primary_10_1109_ACCESS_2020_2966856 crossref_primary_10_1016_j_infrared_2020_103295 crossref_primary_10_1016_j_eswa_2020_113246 crossref_primary_10_1109_ACCESS_2018_2861319 crossref_primary_10_1016_j_asoc_2024_111924 crossref_primary_10_1007_s12652_018_0891_3 crossref_primary_10_1016_j_future_2018_06_056 crossref_primary_10_1007_s00521_020_05418_0 crossref_primary_10_1109_ACCESS_2019_2904679 crossref_primary_10_1109_JIOT_2023_3285942 crossref_primary_10_3233_JIFS_182706 crossref_primary_10_1093_comjnl_bxz149 crossref_primary_10_1007_s00366_018_0643_1 crossref_primary_10_1016_j_eswa_2025_127026 crossref_primary_10_1016_j_swevo_2023_101248 crossref_primary_10_1007_s11042_022_13265_5 crossref_primary_10_1142_S1793431122500221 crossref_primary_10_1007_s00500_020_04850_7 crossref_primary_10_3390_math8020149 crossref_primary_10_1016_j_knosys_2019_07_007 crossref_primary_10_1016_j_knosys_2021_107387 crossref_primary_10_1007_s10489_018_1198_y crossref_primary_10_1016_j_knosys_2020_106729 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_1007_s10845_020_01723_6 crossref_primary_10_1007_s10462_022_10182_9 crossref_primary_10_3390_app10082964 crossref_primary_10_1155_2020_8847221 crossref_primary_10_1016_j_knosys_2021_107555 crossref_primary_10_1016_j_engappai_2020_103662 crossref_primary_10_1109_ACCESS_2022_3153493 crossref_primary_10_1016_j_enconman_2020_112615 crossref_primary_10_1142_S0219455421501200 crossref_primary_10_1007_s10462_023_10463_x crossref_primary_10_1016_j_eswa_2022_117428 crossref_primary_10_3233_IDT_idt230275 crossref_primary_10_3390_math9182335 crossref_primary_10_1007_s10489_018_1355_3 crossref_primary_10_1016_j_asoc_2018_03_004 crossref_primary_10_1007_s00500_018_3310_y crossref_primary_10_3233_JAE_210112 crossref_primary_10_1016_j_aej_2021_04_025 crossref_primary_10_1016_j_asoc_2021_107623 crossref_primary_10_1016_j_advengsoft_2022_103283 crossref_primary_10_1007_s00521_022_07565_y crossref_primary_10_1007_s10462_024_10829_9 crossref_primary_10_1109_TGRS_2018_2815281 crossref_primary_10_1007_s12652_020_01743_3 crossref_primary_10_1155_2023_2040866 crossref_primary_10_1155_2020_4568906 crossref_primary_10_1109_ACCESS_2021_3130640 crossref_primary_10_1109_JSTARS_2017_2755068 crossref_primary_10_1016_j_eswa_2024_125673 crossref_primary_10_1016_j_asoc_2021_107596 crossref_primary_10_1007_s00500_022_07283_6 crossref_primary_10_1016_j_asoc_2017_08_021 crossref_primary_10_1016_j_eswa_2020_113732 crossref_primary_10_1016_j_engappai_2017_10_024 crossref_primary_10_3390_math7090828 crossref_primary_10_1016_j_engappai_2018_04_012 crossref_primary_10_1016_j_geits_2022_100040 crossref_primary_10_1088_2631_8695_ada222 crossref_primary_10_1016_j_advengsoft_2020_102889 crossref_primary_10_1016_j_engappai_2019_07_019 crossref_primary_10_1016_j_asoc_2024_111435 crossref_primary_10_2139_ssrn_3270433 crossref_primary_10_1016_j_asoc_2022_109243 crossref_primary_10_1177_14613484241242737 crossref_primary_10_1016_j_asoc_2019_105720 crossref_primary_10_1142_S0218001422510065 crossref_primary_10_1016_j_jksuci_2021_11_016 crossref_primary_10_1109_ACCESS_2017_2738006 crossref_primary_10_3390_app11209741 crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_1016_j_istruc_2023_105819 crossref_primary_10_1007_s00521_019_04580_4 crossref_primary_10_1007_s00500_019_04245_3 crossref_primary_10_1007_s12559_020_09730_8 crossref_primary_10_1007_s00500_020_04918_4 crossref_primary_10_1007_s00500_022_06865_8 crossref_primary_10_1007_s10489_021_02862_w crossref_primary_10_1016_j_asoc_2019_105734 crossref_primary_10_1016_j_swevo_2022_101212 crossref_primary_10_3390_math10030495 crossref_primary_10_1007_s00500_021_05939_3 crossref_primary_10_1016_j_asoc_2021_107978 crossref_primary_10_51764_smutgd_1542508 crossref_primary_10_1016_j_eswa_2020_113750 crossref_primary_10_1007_s00521_021_06236_8 crossref_primary_10_1016_j_aei_2024_102947 crossref_primary_10_1587_transele_2023SEP0002 crossref_primary_10_3390_axioms11080391 crossref_primary_10_1109_JSTARS_2017_2699200 crossref_primary_10_1007_s41062_021_00473_5 crossref_primary_10_1016_j_asoc_2021_107584 crossref_primary_10_1007_s10462_024_10957_2 crossref_primary_10_1016_j_knosys_2024_112632 crossref_primary_10_1038_s41598_020_71502_z |
| Cites_doi | 10.1016/j.asoc.2011.02.032 10.1613/jair.301 10.1016/j.eswa.2016.03.032 10.1016/j.swevo.2015.05.002 10.1007/s00500-013-1183-7 10.1016/j.ins.2014.06.009 10.1177/003754970107600201 10.1016/j.amc.2014.09.079 10.1016/j.asoc.2014.10.004 10.1016/j.amc.2014.09.102 10.1016/j.neucom.2015.11.018 10.1016/j.apm.2015.10.052 10.1007/s00500-014-1502-7 10.1016/j.asoc.2014.06.034 10.1016/j.amc.2015.06.041 10.1016/j.tourman.2015.07.005 10.1109/TEVC.2005.857610 10.1109/TSMCA.2009.2012436 10.1016/j.asoc.2010.04.024 10.1007/s10489-015-0710-x 10.1145/2480741.2480752 10.1016/j.neucom.2014.03.082 10.1109/TEVC.2008.927706 10.1016/j.asoc.2010.01.006 10.1016/j.asoc.2015.06.027 10.1016/j.asoc.2011.01.037 10.1016/j.jmgm.2014.10.002 10.1016/j.amc.2009.03.090 10.1007/s00521-013-1354-6 10.1016/j.swevo.2016.03.001 10.1126/science.220.4598.671 10.1016/j.engappai.2013.06.010 10.1016/j.asoc.2010.12.001 10.1016/j.asoc.2014.01.009 10.1016/j.ins.2014.03.031 10.1109/4235.585893 10.1016/j.ins.2012.01.020 10.17562/PB-46-1 10.1016/j.asoc.2009.12.025 10.1016/j.chaos.2011.06.004 10.1016/j.compstruc.2015.05.008 10.1016/j.advengsoft.2013.12.007 10.1007/s10898-007-9149-x 10.1016/j.asoc.2015.07.031 10.1007/s10462-011-9276-0 10.1016/j.apm.2015.11.023 10.1016/j.ins.2014.11.042 10.1049/iet-gtd.2014.0285 10.1016/j.asoc.2015.07.041 10.1504/IJBIC.2011.042260 10.1080/0952813X.2015.1056238 10.1016/j.asoc.2014.10.010 10.1109/TEVC.2007.894200 10.1016/j.asoc.2014.10.026 10.1016/j.ijepes.2013.10.006 10.1016/j.eswa.2016.02.048 10.1016/j.energy.2013.07.011 10.1007/s11704-015-4178-y 10.1016/j.ijepes.2009.01.010 10.1016/j.eswa.2015.01.063 10.1016/j.asoc.2007.07.010 10.1002/tal.1033 10.1016/j.ins.2014.08.039 10.1016/j.asoc.2015.06.001 10.1109/4235.771163 10.1016/j.asoc.2014.02.005 10.1016/j.asoc.2012.07.021 10.1016/j.ins.2014.05.047 10.1016/j.ins.2009.03.004 10.1016/j.camwa.2011.11.010 10.1023/A:1008202821328 10.1016/j.cor.2011.09.026 10.1016/j.eswa.2012.12.033 10.1007/s00521-013-1367-1 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2016.09.048 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 794 |
| ExternalDocumentID | 10_1016_j_asoc_2016_09_048 S1568494616305075 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c366t-c712c8de3d93a16a3f397876bc7d83027c122c76e68759f9fe43f166324a01213 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 01 02:32:07 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Fri Feb 23 02:24:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lévy flights Nonparametric tests Cuckoo search Global numerical optimization Parameter sensitivity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-c712c8de3d93a16a3f397876bc7d83027c122c76e68759f9fe43f166324a01213 |
| ORCID | 0000-0002-6337-1082 |
| PageCount | 24 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2016_09_048 crossref_primary_10_1016_j_asoc_2016_09_048 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_09_048 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 2017-03-00 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Rashedi, Nezamabadi-pour, Saryazdi (bib0025) 2009; 179 Tsai, Chang, Lin (bib0075) 2012; 195 Basu, Chowdhury (bib0180) 2013; 60 Yang, Deb (bib0340) 2010; 1 Jiang, Ji, Shen (bib0080) 2014; 55 Hu, Cai, Fan (bib0250) 2014; 18 Ilunga-Mbuyamba, Cruz-Duarte, Avina-Cervantes, Correa-Cely, Lindner, Chalopin (bib0130) 2016; 56 Wang, Deb, Gandomi, Alavi (bib0270) 2016; 177 Khan (bib0065) 2012; 12 Derrac, García, Hui, Suganthan, Herrera (bib0405) 2014; 289 Melin, Olivas, Castillo, Valdez, Soria, Valdez (bib0230) 2013; 40 Liu, Fu (bib0165) 2015; 266 [Last Access: 6 October 2014 18:50]. Yang (bib0385) 2010 Rezaee Jordehi (bib0215) 2015; 26 Wang, Gandomi, Zhao, Chu (bib0310) 2016; 20 Bhateja, Bhateja, Chaudhury, Saxena (bib0185) 2015; 26 Alavidoost, Zarandi, Tarimoradi, Nemati (bib0300) 2014 Suresh, Lal (bib0160) 2016; 58 Mlakar, Fister, Fister (bib0335) 2016 Chen, Xin, Peng, Dou, Zhang (bib0200) 2009; 39 Kennedy, Eberhart (bib0010) 1995; vol. 1944 Subudhi, Jena (bib0085) 2011; 11 Mishra, Singh, Rokadia (bib0150) 2015; 9 Sharma, Gupta, Sharma (bib0235) 2016; 28 Li, Li, Gong (bib0090) 2014; 27 Črepinšek, Liu, Mernik (bib0195) 2013; 45 Storn, Price (bib0380) 1997; 11 Rahnamayan, Tizhoosh, Salama (bib0450) 2008; 12 Cheng, Jin (bib0255) 2015; 291 Huang, Ding, Yu, Wang, Lu (bib0315) 2016; 40 Xin, Yong, Guangming (bib0375) 1999; 3 Xin-She, Deb (bib0105) 2009 Qin, Huang, Suganthan (bib0460) 2009; 13 Araghi, Khosravi, Creighton (bib0135) 2015; 42 Tanabe, Fukunaga (bib0205) 2013 Karaboga, Akay (bib0050) 2011; 11 Rahmani, Yusof (bib0035) 2014; 248 Lynn, Suganthan (bib0240) 2015; 24 Civicioglu, Besdok (bib0110) 2013; 39 Tvrdík, Polakova (bib0455) 2013 Geem, Kim, Loganathan (bib0020) 2001; 76 Gandomi, Talatahari, Yang, Deb (bib0120) 2013; 22 Layeb (bib0125) 2011; 3 Cobos, Muñoz-Collazos, Urbano-Muñoz, Mendoza, León, Herrera-Viedma (bib0175) 2014; 281 Li, Yin (bib0330) 2015; 298 P.N. Suganthan, F. Herrera, in Wolpert, Macready (bib0100) 1997; 1 Karaboga, Ozturk (bib0060) 2011; 11 Holland (bib0005) 1975 Karaboga, Akay (bib0400) 2009; 214 Palmer-Brown, Jayne (bib0345) 2011; 24 Nápoles, Grau, Bello (bib0440) 2012 Mallipeddi, Suganthan, Pan, Tasgetiren (bib0465) 2011; 11 Wang, Yin, Zhong (bib0325) 2015; 9 Li, Wang, Yin (bib0260) 2014; 24 Lim, Mat Isa (bib0275) 2014; 273 Shi, Eberhart (bib0420) 1998 Yang, Deb (bib0115) 2013; 40 Mallipeddi, Wu, Lee, Suganthan (bib0220) 2014 Taguchi (bib0395) 1986 Jordehi (bib0045) 2015; 26 Marichelvam, Prabaharan, Yang (bib0320) 2014; 19 Chaturvedi, Pandit, Srivastava (bib0435) 2009; 31 Lim, Mat Isa (bib0265) 2014; 18 Nickabadi, Ebadzadeh, Safabakhsh (bib0055) 2011; 11 Dai, Yuan, Zhang (bib0210) 2015; 35 McKay, Beckman, Conover (bib0365) 1979; 21 Feng, Teng, Wang, Yao (bib0425) 2007 Rahnamayan, Tizhoosh, Salama (bib0445) 2008; 8 Walton, Hassan, Morgan, Brown (bib0305) 2011; 44 Karaboga, Basturk (bib0015) 2007; 39 Valdez, Melin, Castillo (bib0290) 2009 Tarimoradi, Alavidoost, Zarandi (bib0295) 2015; 35 Haklı, Uğuz (bib0040) 2014; 23 Tsai (bib0245) 2014; 247 Alavidoost, Tarimoradi, Zarandi (bib0285) 2015; 34 Yang, Deb (bib0095) 2014; 24 Liang, Qin, Suganthan, Baskar (bib0370) 2006; 10 Mirjalili, Mirjalili, Lewis (bib0390) 2014; 69 Gandomi, Yang, Talatahari, Deb (bib0070) 2012; 63 Xin, Chen, Hai (bib0415) 2009 Sutton, Barto (bib0350) 1998 Huang, Gao, Li (bib0170) 2015; 36 Moezi, Zakeri, Zare, Nedaei (bib0190) 2015; 157 Tan, Lin, Wang (bib0225) 2015; 151 Blum, Puchinger, Raidl, Roli (bib0280) 2011; 11 Cheung, Shen (bib0360) 2014; 54 Kirkpatrick, Gelatt, Vecchi (bib0030) 1983; 220 Eberhart, Shi (bib0430) 2001 Naumann, Evans, Walton, Hassan (bib0140) 2016; 40 Sait, Bala, El-Maleh (bib0145) 2016; 44 Sun, Sun, Wang, Zhang, Gao (bib0155) 2016; 52 Kaelbling, Littman, Moore (bib0355) 1996 Kennedy (10.1016/j.asoc.2016.09.048_bib0010) 1995; vol. 1944 Basu (10.1016/j.asoc.2016.09.048_bib0180) 2013; 60 Melin (10.1016/j.asoc.2016.09.048_bib0230) 2013; 40 Wang (10.1016/j.asoc.2016.09.048_bib0310) 2016; 20 Tarimoradi (10.1016/j.asoc.2016.09.048_bib0295) 2015; 35 Araghi (10.1016/j.asoc.2016.09.048_bib0135) 2015; 42 Mallipeddi (10.1016/j.asoc.2016.09.048_bib0220) 2014 Li (10.1016/j.asoc.2016.09.048_bib0330) 2015; 298 Wolpert (10.1016/j.asoc.2016.09.048_bib0100) 1997; 1 Xin-She (10.1016/j.asoc.2016.09.048_bib0105) 2009 Sait (10.1016/j.asoc.2016.09.048_bib0145) 2016; 44 Wang (10.1016/j.asoc.2016.09.048_bib0270) 2016; 177 Valdez (10.1016/j.asoc.2016.09.048_bib0290) 2009 Civicioglu (10.1016/j.asoc.2016.09.048_bib0110) 2013; 39 Hu (10.1016/j.asoc.2016.09.048_bib0250) 2014; 18 Črepinšek (10.1016/j.asoc.2016.09.048_bib0195) 2013; 45 Chaturvedi (10.1016/j.asoc.2016.09.048_bib0435) 2009; 31 Cheng (10.1016/j.asoc.2016.09.048_bib0255) 2015; 291 Rezaee Jordehi (10.1016/j.asoc.2016.09.048_bib0215) 2015; 26 Xin (10.1016/j.asoc.2016.09.048_bib0375) 1999; 3 10.1016/j.asoc.2016.09.048_bib0410 Alavidoost (10.1016/j.asoc.2016.09.048_bib0300) 2014 Huang (10.1016/j.asoc.2016.09.048_bib0315) 2016; 40 Storn (10.1016/j.asoc.2016.09.048_bib0380) 1997; 11 Tan (10.1016/j.asoc.2016.09.048_bib0225) 2015; 151 Karaboga (10.1016/j.asoc.2016.09.048_bib0050) 2011; 11 Gandomi (10.1016/j.asoc.2016.09.048_bib0120) 2013; 22 Mlakar (10.1016/j.asoc.2016.09.048_bib0335) 2016 Tanabe (10.1016/j.asoc.2016.09.048_bib0205) 2013 Suresh (10.1016/j.asoc.2016.09.048_bib0160) 2016; 58 Sharma (10.1016/j.asoc.2016.09.048_bib0235) 2016; 28 Palmer-Brown (10.1016/j.asoc.2016.09.048_bib0345) 2011; 24 Holland (10.1016/j.asoc.2016.09.048_bib0005) 1975 Huang (10.1016/j.asoc.2016.09.048_bib0170) 2015; 36 Kaelbling (10.1016/j.asoc.2016.09.048_bib0355) 1996 Cheung (10.1016/j.asoc.2016.09.048_bib0360) 2014; 54 Shi (10.1016/j.asoc.2016.09.048_bib0420) 1998 Tvrdík (10.1016/j.asoc.2016.09.048_bib0455) 2013 Yang (10.1016/j.asoc.2016.09.048_bib0115) 2013; 40 Yang (10.1016/j.asoc.2016.09.048_bib0385) 2010 Derrac (10.1016/j.asoc.2016.09.048_bib0405) 2014; 289 Karaboga (10.1016/j.asoc.2016.09.048_bib0400) 2009; 214 Moezi (10.1016/j.asoc.2016.09.048_bib0190) 2015; 157 Sun (10.1016/j.asoc.2016.09.048_bib0155) 2016; 52 Rahmani (10.1016/j.asoc.2016.09.048_bib0035) 2014; 248 Bhateja (10.1016/j.asoc.2016.09.048_bib0185) 2015; 26 Lim (10.1016/j.asoc.2016.09.048_bib0275) 2014; 273 Feng (10.1016/j.asoc.2016.09.048_bib0425) 2007 McKay (10.1016/j.asoc.2016.09.048_bib0365) 1979; 21 Rahnamayan (10.1016/j.asoc.2016.09.048_bib0445) 2008; 8 Jiang (10.1016/j.asoc.2016.09.048_bib0080) 2014; 55 Taguchi (10.1016/j.asoc.2016.09.048_bib0395) 1986 Nápoles (10.1016/j.asoc.2016.09.048_bib0440) 2012 Subudhi (10.1016/j.asoc.2016.09.048_bib0085) 2011; 11 Yang (10.1016/j.asoc.2016.09.048_bib0095) 2014; 24 Liu (10.1016/j.asoc.2016.09.048_bib0165) 2015; 266 Liang (10.1016/j.asoc.2016.09.048_bib0370) 2006; 10 Mirjalili (10.1016/j.asoc.2016.09.048_bib0390) 2014; 69 Tsai (10.1016/j.asoc.2016.09.048_bib0245) 2014; 247 Marichelvam (10.1016/j.asoc.2016.09.048_bib0320) 2014; 19 Layeb (10.1016/j.asoc.2016.09.048_bib0125) 2011; 3 Naumann (10.1016/j.asoc.2016.09.048_bib0140) 2016; 40 Tsai (10.1016/j.asoc.2016.09.048_bib0075) 2012; 195 Karaboga (10.1016/j.asoc.2016.09.048_bib0015) 2007; 39 Li (10.1016/j.asoc.2016.09.048_bib0090) 2014; 27 Ilunga-Mbuyamba (10.1016/j.asoc.2016.09.048_bib0130) 2016; 56 Lim (10.1016/j.asoc.2016.09.048_bib0265) 2014; 18 Xin (10.1016/j.asoc.2016.09.048_bib0415) 2009 Cobos (10.1016/j.asoc.2016.09.048_bib0175) 2014; 281 Chen (10.1016/j.asoc.2016.09.048_bib0200) 2009; 39 Eberhart (10.1016/j.asoc.2016.09.048_bib0430) 2001 Lynn (10.1016/j.asoc.2016.09.048_bib0240) 2015; 24 Li (10.1016/j.asoc.2016.09.048_bib0260) 2014; 24 Mishra (10.1016/j.asoc.2016.09.048_bib0150) 2015; 9 Sutton (10.1016/j.asoc.2016.09.048_bib0350) 1998 Walton (10.1016/j.asoc.2016.09.048_bib0305) 2011; 44 Nickabadi (10.1016/j.asoc.2016.09.048_bib0055) 2011; 11 Karaboga (10.1016/j.asoc.2016.09.048_bib0060) 2011; 11 Geem (10.1016/j.asoc.2016.09.048_bib0020) 2001; 76 Mallipeddi (10.1016/j.asoc.2016.09.048_bib0465) 2011; 11 Jordehi (10.1016/j.asoc.2016.09.048_bib0045) 2015; 26 Kirkpatrick (10.1016/j.asoc.2016.09.048_bib0030) 1983; 220 Yang (10.1016/j.asoc.2016.09.048_bib0340) 2010; 1 Alavidoost (10.1016/j.asoc.2016.09.048_bib0285) 2015; 34 Rahnamayan (10.1016/j.asoc.2016.09.048_bib0450) 2008; 12 Khan (10.1016/j.asoc.2016.09.048_bib0065) 2012; 12 Gandomi (10.1016/j.asoc.2016.09.048_bib0070) 2012; 63 Blum (10.1016/j.asoc.2016.09.048_bib0280) 2011; 11 Rashedi (10.1016/j.asoc.2016.09.048_bib0025) 2009; 179 Dai (10.1016/j.asoc.2016.09.048_bib0210) 2015; 35 Haklı (10.1016/j.asoc.2016.09.048_bib0040) 2014; 23 Wang (10.1016/j.asoc.2016.09.048_bib0325) 2015; 9 Qin (10.1016/j.asoc.2016.09.048_bib0460) 2009; 13 |
| References_xml | – volume: 26 start-page: 523 year: 2015 end-page: 530 ident: bib0215 article-title: Chaotic bat swarm optimisation (CBSO) publication-title: Appl. Soft Comput. – volume: 45 start-page: 1 year: 2013 end-page: 33 ident: bib0195 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. – volume: 34 start-page: 655 year: 2015 end-page: 677 ident: bib0285 article-title: Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems publication-title: Appl. Soft Comput. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0380 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 18 start-page: 39 year: 2014 end-page: 58 ident: bib0265 article-title: Teaching and peer-learning particle swarm optimization publication-title: Appl. Soft Comput. – start-page: 1 year: 2014 end-page: 24 ident: bib0300 article-title: Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times publication-title: J. Intell. Manuf. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0100 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 9 start-page: 615 year: 2015 end-page: 626 ident: bib0150 article-title: Optimal power flow in the presence of wind power using modified cuckoo search publication-title: IET Gener.Transm. Distrib. – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: bib0020 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation – start-page: 1760 year: 2014 end-page: 1767 ident: bib0220 article-title: Gaussian adaptation based parameter adaptation for differential evolution publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 35 start-page: 786 year: 2015 end-page: 788 ident: bib0295 article-title: Comparative Corrigendum note on papers fuzzy adaptive GA for multi-objective assembly line balancing continued modified GA for different types of assembly line balancing with fuzzy processing times: differences and similarities [Appl. Soft Comput. 34 (September 2015) 655–677] publication-title: Appl. Soft Comput. – volume: 39 start-page: 315 year: 2013 end-page: 346 ident: bib0110 article-title: A conceptual comparison of the Cuckoo-search particle swarm optimization, differential evolution and artificial bee colony algorithms publication-title: Artif. Intell. Rev. – start-page: 475 year: 2007 ident: bib0425 article-title: Chaotic inertia weight in particle swarm optimization publication-title: Innovative Computing, Information and Control,. ICICIC'07. Second International Conference on – volume: 11 start-page: 3021 year: 2011 end-page: 3031 ident: bib0050 article-title: A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems publication-title: Appl. Soft Comput. – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: bib0375 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 4135 year: 2011 end-page: 4151 ident: bib0280 article-title: Hybrid metaheuristics in combinatorial optimization: a survey publication-title: Appl. Soft Comput. – start-page: 505 year: 2009 end-page: 508 ident: bib0415 article-title: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight publication-title: Computational Sciences and Optimization, CSO 2009 – start-page: 94 year: 2001 end-page: 100 ident: bib0430 article-title: Tracking and optimizing dynamic systems with particle swarms publication-title: Evolutionary Computation, 2001 Proceedings of the 2001 Congress on – volume: 11 start-page: 652 year: 2011 end-page: 657 ident: bib0060 article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm publication-title: Appl. Soft Comput. – volume: 12 start-page: 3698 year: 2012 end-page: 3700 ident: bib0065 article-title: An initial seed selection algorithm for k-means clustering of georeferenced data to improve replicability of cluster assignments for mapping application publication-title: Appl. Soft Comput. – year: 1998 ident: bib0350 article-title: Reinforcement Learning: An Introduction – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib0030 article-title: Optimization by simmulated annealing publication-title: Science – volume: 23 start-page: 333 year: 2014 end-page: 345 ident: bib0040 article-title: A novel particle swarm optimization algorithm with Levy flight publication-title: Appl. Soft Comput. – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: bib0370 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. – volume: 40 start-page: 4543 year: 2016 end-page: 4559 ident: bib0140 article-title: A novel implementation of computational aerodynamic shape optimisation using modified cuckoo search publication-title: Appl. Math. Modell. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: bib0015 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. – volume: 44 start-page: 710 year: 2011 end-page: 718 ident: bib0305 article-title: Modified cuckoo search: a new gradient free optimisation algorithm publication-title: Chaos Solition Fract. – volume: 1 start-page: 330 year: 2010 end-page: 343 ident: bib0340 article-title: Engineering optimisation by cuckoo search publication-title: Int. J. Math. Modell. Numer. Optim. – volume: 42 start-page: 4422 year: 2015 end-page: 4431 ident: bib0135 article-title: Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network publication-title: Expert Syst. Appl. – start-page: 209 year: 2010 end-page: 218 ident: bib0385 article-title: Firefly algorithm, Levy flights and global optimization publication-title: Research and Development in Intelligent Systems XXVI – volume: 3 start-page: 297 year: 2011 end-page: 305 ident: bib0125 article-title: A novel quantum inspired cuckoo search for knapsack problems publication-title: Int. J. Bio-inspired Comput. – volume: 266 start-page: 1083 year: 2015 end-page: 1092 ident: bib0165 article-title: Cuckoo search algorithm based on frog leaping local search and chaos theory publication-title: Appl. Math. Comput. – volume: 54 start-page: 114 year: 2014 end-page: 122 ident: bib0360 article-title: Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure publication-title: J. Mol. Graph. Model. – volume: 12 start-page: 64 year: 2008 end-page: 79 ident: bib0450 article-title: Opposition-based differential evolution publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 2023 year: 2014 end-page: 2041 ident: bib0250 article-title: An improved memetic algorithm using ring neighborhood topology for constrained optimization publication-title: Soft Comput. – volume: 247 start-page: 1161 year: 2014 end-page: 1172 ident: bib0245 article-title: Novel bees algorithm: stochastic self-adaptive neighborhood publication-title: Appl. Math. Comput. – volume: 26 start-page: 315 year: 2015 end-page: 324 ident: bib0185 article-title: Cryptanalysis of vigenere cipher using Cuckoo search publication-title: Appl. Soft Comput. – volume: 24 start-page: 897 year: 2011 end-page: 905 ident: bib0345 article-title: Snap–drift neural network for self-organisation and sequence learning publication-title: Neural Netw. – volume: 55 start-page: 628 year: 2014 end-page: 644 ident: bib0080 article-title: A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints publication-title: Int. J. Electr. Power – volume: 22 start-page: 1330 year: 2013 end-page: 1349 ident: bib0120 article-title: Design optimization of truss structures using cuckoo search algorithm publication-title: Struct. Des. Tall Spec. – volume: 40 start-page: 3196 year: 2013 end-page: 3206 ident: bib0230 article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic publication-title: Expert Syst. Appl. – volume: 63 start-page: 191 year: 2012 end-page: 200 ident: bib0070 article-title: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization publication-title: Comput. Math. Appl. – volume: 31 start-page: 249 year: 2009 end-page: 257 ident: bib0435 article-title: Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch publication-title: Int. J. Electr. Power – year: 2016 ident: bib0335 article-title: Hybrid self-adaptive cuckoo search for global optimization publication-title: Swarm Evol. Comput. – start-page: 237 year: 1996 end-page: 285 ident: bib0355 article-title: Reinforcement learning: a survey publication-title: J. Artif. Intell. Res. – start-page: 210 year: 2009 end-page: 214 ident: bib0105 article-title: Cuckoo search via Levy flights publication-title: Nature & Biologically Inspired Computing, NaBIC 2009 – volume: 291 start-page: 43 year: 2015 end-page: 60 ident: bib0255 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. – volume: 273 start-page: 49 year: 2014 end-page: 72 ident: bib0275 article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy publication-title: Inf. Sci. – reference: , [Last Access: 6 October 2014 18:50]. – volume: 281 start-page: 248 year: 2014 end-page: 264 ident: bib0175 article-title: Clustering of web search results based on the cuckoo search algorithm and balanced Bayesian information criterion publication-title: Inf. Sci. – start-page: 2114 year: 2009 end-page: 2119 ident: bib0290 article-title: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making publication-title: Fuzzy Systems, FUZZ-IEEE 2009 – start-page: 1651 year: 2013 end-page: 1657 ident: bib0455 article-title: Competitive differential evolution applied to CEC 2013 problems publication-title: Evolutionary Computation (CEC), 2013 IEEE Congress on – volume: 60 start-page: 99 year: 2013 end-page: 108 ident: bib0180 article-title: Cuckoo search algorithm for economic dispatch publication-title: Energy – volume: 28 start-page: 403 year: 2016 end-page: 416 ident: bib0235 article-title: Fully informed artificial bee colony algorithm publication-title: J. Exp. Theor. Artif. Intell. – volume: 177 start-page: 147 year: 2016 end-page: 157 ident: bib0270 article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping publication-title: Neurocomputing – volume: 26 start-page: 401 year: 2015 end-page: 417 ident: bib0045 article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems publication-title: Appl. Soft Comput. – volume: 36 start-page: 349 year: 2015 end-page: 356 ident: bib0170 article-title: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes publication-title: Appl. Soft Comput. – volume: 35 start-page: 541 year: 2015 end-page: 557 ident: bib0210 article-title: A self-adaptive multi-objective harmony search algorithm based on harmony memory variance publication-title: Appl. Soft Comput. – volume: vol. 1944 start-page: 1942 year: 1995 end-page: 1948 ident: bib0010 article-title: Particle swarm optimization publication-title: Neural Networks, 1995 Proceedings – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib0400 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – volume: 52 start-page: 369 year: 2016 end-page: 379 ident: bib0155 article-title: Using a Grey—Markov model optimized by cuckoo search algorithm to forecast the annual foreign tourist arrivals to China publication-title: Tour. Manag. – volume: 11 start-page: 861 year: 2011 end-page: 871 ident: bib0085 article-title: A differential evolution based neural network approach to nonlinear system identification publication-title: Appl. Soft Comput. – volume: 39 start-page: 680 year: 2009 end-page: 691 ident: bib0200 article-title: Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. – volume: 56 start-page: 59 year: 2016 end-page: 68 ident: bib0130 article-title: Active contours driven by cuckoo search strategy for brain tumour images segmentation publication-title: Expert Syst. Appl. – volume: 44 start-page: 489 year: 2016 end-page: 506 ident: bib0145 article-title: Cuckoo search based resource optimization of datacenters publication-title: Appl. Intell. – volume: 289 start-page: 41 year: 2014 end-page: 58 ident: bib0405 article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach publication-title: Inf. Sci. – volume: 248 start-page: 287 year: 2014 end-page: 300 ident: bib0035 article-title: A new simple, fast and efficient algorithm for global optimization over continuous search-space problems: radial movement optimization publication-title: Appl. Math. Comput. – volume: 20 start-page: 273 year: 2016 end-page: 285 ident: bib0310 article-title: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization publication-title: Soft Comput. – volume: 9 start-page: 623 year: 2015 end-page: 635 ident: bib0325 article-title: Cuckoo search with varied scaling factor publication-title: Front. Comput. Sci. – start-page: 71 year: 2013 end-page: 78 ident: bib0205 article-title: Success-history based parameter adaptation for differential evolution publication-title: IEEE Congress on Evolutionary Computation – volume: 19 start-page: 93 year: 2014 end-page: 101 ident: bib0320 article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan publication-title: Appl. Soft Comput. – volume: 11 start-page: 1679 year: 2011 end-page: 1696 ident: bib0465 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl. Soft Comput. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib0460 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – volume: 40 start-page: 1616 year: 2013 end-page: 1624 ident: bib0115 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput. Oper. Res. – start-page: 69 year: 1998 end-page: 73 ident: bib0420 article-title: A modified particle swarm optimizer publication-title: Evolutionary Computation Proceedings 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib0025 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 11 start-page: 3658 year: 2011 end-page: 3670 ident: bib0055 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. – year: 1986 ident: bib0395 article-title: Introduction to Quality Engineering: Designing Quality into Products and Processes – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: bib0095 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Appl. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0390 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: bib0365 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 27 start-page: 70 year: 2014 end-page: 79 ident: bib0090 article-title: Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model publication-title: Eng. Appl. Artif. Intell. – volume: 24 start-page: 1233 year: 2014 end-page: 1247 ident: bib0260 article-title: Enhancing the performance of cuckoo search algorithm using orthogonal learning method publication-title: Neural Compu. Appl. – volume: 40 start-page: 3860 year: 2016 end-page: 3875 ident: bib0315 article-title: Chaos-enhanced cuckoo search optimization algorithms for global optimization publication-title: Appl. Math. Modell. – year: 1975 ident: bib0005 article-title: Adaptation in Natural and Artificial Systems – volume: 58 start-page: 184 year: 2016 end-page: 209 ident: bib0160 article-title: An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions publication-title: Expert Syst. Appl. – volume: 24 start-page: 11 year: 2015 end-page: 24 ident: bib0240 article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation publication-title: Swarm Evol. Comput. – volume: 298 start-page: 80 year: 2015 end-page: 97 ident: bib0330 article-title: Modified cuckoo search algorithm with self adaptive parameter method publication-title: Inf. Sci. – reference: P.N. Suganthan, F. Herrera, in, – volume: 8 start-page: 906 year: 2008 end-page: 918 ident: bib0445 article-title: Opposition versus randomness in soft computing techniques publication-title: Appl. Soft Comput. – volume: 157 start-page: 42 year: 2015 end-page: 50 ident: bib0190 article-title: On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler–Bernoulli beam publication-title: Comput. Struct. – volume: 151 start-page: 1208 year: 2015 end-page: 1215 ident: bib0225 article-title: Adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows publication-title: Neurocomputing – start-page: 05 year: 2012 end-page: 11 ident: bib0440 article-title: Constricted Particle Swarm Optimization based algorithm for global optimization publication-title: Polibits – volume: 195 start-page: 103 year: 2012 end-page: 123 ident: bib0075 article-title: Using decision tree, particle swarm optimization, and support vector regression to design a median-type filter with a 2-level impulse detector for image enhancement publication-title: Inf. Sci. – year: 1975 ident: 10.1016/j.asoc.2016.09.048_bib0005 – volume: 11 start-page: 4135 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0280 article-title: Hybrid metaheuristics in combinatorial optimization: a survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.02.032 – start-page: 237 year: 1996 ident: 10.1016/j.asoc.2016.09.048_bib0355 article-title: Reinforcement learning: a survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.301 – volume: 58 start-page: 184 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0160 article-title: An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.03.032 – volume: 24 start-page: 897 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0345 article-title: Snap–drift neural network for self-organisation and sequence learning publication-title: Neural Netw. – volume: 24 start-page: 11 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0240 article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.05.002 – volume: 18 start-page: 2023 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0250 article-title: An improved memetic algorithm using ring neighborhood topology for constrained optimization publication-title: Soft Comput. doi: 10.1007/s00500-013-1183-7 – volume: 289 start-page: 41 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0405 article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.009 – volume: 76 start-page: 60 year: 2001 ident: 10.1016/j.asoc.2016.09.048_bib0020 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 247 start-page: 1161 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0245 article-title: Novel bees algorithm: stochastic self-adaptive neighborhood publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.09.079 – volume: 26 start-page: 315 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0185 article-title: Cryptanalysis of vigenere cipher using Cuckoo search publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.004 – volume: 248 start-page: 287 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0035 article-title: A new simple, fast and efficient algorithm for global optimization over continuous search-space problems: radial movement optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.09.102 – volume: 177 start-page: 147 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0270 article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.018 – volume: 40 start-page: 3860 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0315 article-title: Chaos-enhanced cuckoo search optimization algorithms for global optimization publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2015.10.052 – volume: 20 start-page: 273 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0310 article-title: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization publication-title: Soft Comput. doi: 10.1007/s00500-014-1502-7 – start-page: 1760 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0220 article-title: Gaussian adaptation based parameter adaptation for differential evolution publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 23 start-page: 333 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0040 article-title: A novel particle swarm optimization algorithm with Levy flight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.034 – volume: 266 start-page: 1083 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0165 article-title: Cuckoo search algorithm based on frog leaping local search and chaos theory publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.06.041 – volume: 52 start-page: 369 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0155 article-title: Using a Grey—Markov model optimized by cuckoo search algorithm to forecast the annual foreign tourist arrivals to China publication-title: Tour. Manag. doi: 10.1016/j.tourman.2015.07.005 – volume: 1 start-page: 330 year: 2010 ident: 10.1016/j.asoc.2016.09.048_bib0340 article-title: Engineering optimisation by cuckoo search publication-title: Int. J. Math. Modell. Numer. Optim. – start-page: 209 year: 2010 ident: 10.1016/j.asoc.2016.09.048_bib0385 article-title: Firefly algorithm, Levy flights and global optimization – volume: 10 start-page: 281 year: 2006 ident: 10.1016/j.asoc.2016.09.048_bib0370 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 39 start-page: 680 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0200 article-title: Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. doi: 10.1109/TSMCA.2009.2012436 – volume: 11 start-page: 1679 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0465 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.024 – volume: 44 start-page: 489 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0145 article-title: Cuckoo search based resource optimization of datacenters publication-title: Appl. Intell. doi: 10.1007/s10489-015-0710-x – volume: 45 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0195 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – volume: 151 start-page: 1208 issue: Part 3 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0225 article-title: Adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.082 – volume: 13 start-page: 398 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0460 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 – volume: 11 start-page: 861 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0085 article-title: A differential evolution based neural network approach to nonlinear system identification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.01.006 – volume: 35 start-page: 541 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0210 article-title: A self-adaptive multi-objective harmony search algorithm based on harmony memory variance publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.027 – start-page: 1651 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0455 article-title: Competitive differential evolution applied to CEC 2013 problems – start-page: 94 year: 2001 ident: 10.1016/j.asoc.2016.09.048_bib0430 article-title: Tracking and optimizing dynamic systems with particle swarms – volume: 11 start-page: 3658 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0055 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.01.037 – volume: 54 start-page: 114 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0360 article-title: Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2014.10.002 – volume: 214 start-page: 108 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0400 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – volume: 24 start-page: 1233 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0260 article-title: Enhancing the performance of cuckoo search algorithm using orthogonal learning method publication-title: Neural Compu. Appl. doi: 10.1007/s00521-013-1354-6 – year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0335 article-title: Hybrid self-adaptive cuckoo search for global optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.03.001 – year: 1998 ident: 10.1016/j.asoc.2016.09.048_bib0350 – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.asoc.2016.09.048_bib0030 article-title: Optimization by simmulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 27 start-page: 70 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0090 article-title: Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.06.010 – volume: 11 start-page: 3021 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0050 article-title: A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.12.001 – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0300 article-title: Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times publication-title: J. Intell. Manuf. – volume: 18 start-page: 39 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0265 article-title: Teaching and peer-learning particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.01.009 – volume: 273 start-page: 49 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0275 article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.03.031 – volume: vol. 1944 start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2016.09.048_bib0010 article-title: Particle swarm optimization – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.asoc.2016.09.048_bib0100 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – year: 1986 ident: 10.1016/j.asoc.2016.09.048_bib0395 – volume: 195 start-page: 103 year: 2012 ident: 10.1016/j.asoc.2016.09.048_bib0075 article-title: Using decision tree, particle swarm optimization, and support vector regression to design a median-type filter with a 2-level impulse detector for image enhancement publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.01.020 – start-page: 05 year: 2012 ident: 10.1016/j.asoc.2016.09.048_bib0440 article-title: Constricted Particle Swarm Optimization based algorithm for global optimization publication-title: Polibits doi: 10.17562/PB-46-1 – volume: 11 start-page: 652 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0060 article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.025 – volume: 44 start-page: 710 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0305 article-title: Modified cuckoo search: a new gradient free optimisation algorithm publication-title: Chaos Solition Fract. doi: 10.1016/j.chaos.2011.06.004 – volume: 157 start-page: 42 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0190 article-title: On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler–Bernoulli beam publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2015.05.008 – start-page: 2114 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0290 article-title: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0390 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.asoc.2016.09.048_bib0015 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 36 start-page: 349 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0170 article-title: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.031 – volume: 39 start-page: 315 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0110 article-title: A conceptual comparison of the Cuckoo-search particle swarm optimization, differential evolution and artificial bee colony algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9276-0 – ident: 10.1016/j.asoc.2016.09.048_bib0410 – volume: 40 start-page: 4543 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0140 article-title: A novel implementation of computational aerodynamic shape optimisation using modified cuckoo search publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2015.11.023 – volume: 298 start-page: 80 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0330 article-title: Modified cuckoo search algorithm with self adaptive parameter method publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.11.042 – volume: 9 start-page: 615 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0150 article-title: Optimal power flow in the presence of wind power using modified cuckoo search publication-title: IET Gener.Transm. Distrib. doi: 10.1049/iet-gtd.2014.0285 – start-page: 71 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0205 article-title: Success-history based parameter adaptation for differential evolution publication-title: IEEE Congress on Evolutionary Computation – volume: 35 start-page: 786 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0295 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.041 – start-page: 475 year: 2007 ident: 10.1016/j.asoc.2016.09.048_bib0425 article-title: Chaotic inertia weight in particle swarm optimization – start-page: 69 year: 1998 ident: 10.1016/j.asoc.2016.09.048_bib0420 article-title: A modified particle swarm optimizer – volume: 3 start-page: 297 year: 2011 ident: 10.1016/j.asoc.2016.09.048_bib0125 article-title: A novel quantum inspired cuckoo search for knapsack problems publication-title: Int. J. Bio-inspired Comput. doi: 10.1504/IJBIC.2011.042260 – volume: 28 start-page: 403 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0235 article-title: Fully informed artificial bee colony algorithm publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2015.1056238 – volume: 26 start-page: 523 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0215 article-title: Chaotic bat swarm optimisation (CBSO) publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.010 – volume: 12 start-page: 64 year: 2008 ident: 10.1016/j.asoc.2016.09.048_bib0450 article-title: Opposition-based differential evolution publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.894200 – volume: 26 start-page: 401 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0045 article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.026 – start-page: 210 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0105 article-title: Cuckoo search via Levy flights – volume: 55 start-page: 628 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0080 article-title: A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2013.10.006 – volume: 56 start-page: 59 year: 2016 ident: 10.1016/j.asoc.2016.09.048_bib0130 article-title: Active contours driven by cuckoo search strategy for brain tumour images segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.048 – volume: 60 start-page: 99 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0180 article-title: Cuckoo search algorithm for economic dispatch publication-title: Energy doi: 10.1016/j.energy.2013.07.011 – volume: 9 start-page: 623 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0325 article-title: Cuckoo search with varied scaling factor publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-4178-y – volume: 31 start-page: 249 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0435 article-title: Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2009.01.010 – volume: 42 start-page: 4422 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0135 article-title: Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.01.063 – volume: 8 start-page: 906 year: 2008 ident: 10.1016/j.asoc.2016.09.048_bib0445 article-title: Opposition versus randomness in soft computing techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.07.010 – volume: 22 start-page: 1330 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0120 article-title: Design optimization of truss structures using cuckoo search algorithm publication-title: Struct. Des. Tall Spec. doi: 10.1002/tal.1033 – volume: 291 start-page: 43 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0255 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.039 – volume: 34 start-page: 655 year: 2015 ident: 10.1016/j.asoc.2016.09.048_bib0285 article-title: Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.001 – volume: 3 start-page: 82 year: 1999 ident: 10.1016/j.asoc.2016.09.048_bib0375 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 19 start-page: 93 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0320 article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.005 – start-page: 505 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0415 article-title: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight – volume: 12 start-page: 3698 year: 2012 ident: 10.1016/j.asoc.2016.09.048_bib0065 article-title: An initial seed selection algorithm for k-means clustering of georeferenced data to improve replicability of cluster assignments for mapping application publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.07.021 – volume: 281 start-page: 248 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0175 article-title: Clustering of web search results based on the cuckoo search algorithm and balanced Bayesian information criterion publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.05.047 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.asoc.2016.09.048_bib0025 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 63 start-page: 191 year: 2012 ident: 10.1016/j.asoc.2016.09.048_bib0070 article-title: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.11.010 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.asoc.2016.09.048_bib0380 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 40 start-page: 1616 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0115 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.09.026 – volume: 40 start-page: 3196 year: 2013 ident: 10.1016/j.asoc.2016.09.048_bib0230 article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.12.033 – volume: 24 start-page: 169 year: 2014 ident: 10.1016/j.asoc.2016.09.048_bib0095 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1367-1 – volume: 21 start-page: 239 year: 1979 ident: 10.1016/j.asoc.2016.09.048_bib0365 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics |
| SSID | ssj0016928 |
| Score | 2.5162556 |
| Snippet | [Display omitted]
•We propose a novel cuckoo optimization algorithm called snap-drift cuckoo search (SDCS).•The proposed SDCS employs reinforcement learning... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 771 |
| SubjectTerms | Cuckoo search Global numerical optimization Lévy flights Nonparametric tests Parameter sensitivity |
| Title | Snap-drift cuckoo search: A novel cuckoo search optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2016.09.048 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3Wdu8Nom3Uiz1VcRa6C1sdzcabZNSUo_-dmeSTbEgPXgKLDOwfNl5wTczhFwiod3W3oSBMSnmqkCyIJQOE2AdStte7GosFJ8GvD9y78feuEa6VS8M0iqN7y99euGtzUnLoNmaJ0lrCJVH4IYuh4yiDVkNNpq7ro9bDK6_VzQPi4fFflUUZihtGmdKjpcABJDexYtZp7gD6K_g9Cvg9PbIjskUaae8zD6p6fSA7FZbGKgxykPSG6ZiztQiiXMql_Izy2j5fG9oh6bZl56uH9MMvMTMtF9SMX3LFkn-Pjsio97ta7fPzHYEJh3OcyZ9y5aB0o4KHWFx4cSQWoBvm0hf4VAvX1q2LX2uOZQkYRzG2nVii-N4dlEMcjsm9TRL9QmhHhi5CELV1gKqIxFDCaYh8_Cx3nFi32kQq4IlkmZ0OG6wmEYVR-wjQigjhDJqhxFA2SBXK515OThjo7RXoR2t_f4IPPsGvdN_6p2RbRvjc0EmOyf1fLHUF5Bd5JNm8XyaZKvTfXl8xu_dQ3_wAzM_zmY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3rx24ifPXgzFbZu3eaNEAkqcAESbk1pO0VhI2R49G_3deuIJMaD1-a9ZPmt7-OX_PoeQrdG0O5qf0IgmBTxVChJGElKBESH0q4fe9oQxV6fdUbe89gfV1CrfAtjZJU29xc5Pc_W9qRu0awvptP6AJhH6EUeg46iAV2Nv4W2Pd8NDAO7_1rrPBwW5QtWjTUx5vblTCHyEgCB0XexfNipWQL0W3X6UXHaB2jPtoq4WXzNIaro5Ajtl2sYsI3KY9QeJGJB1HIaZ1iu5Eea4uL-PuAmTtJPPds8ximkibl9f4nF7DVdTrO3-QkatR-HrQ6x6xGIpIxlRAaOK0OlqYqocJigMfQWkNwmMlBmqlcgHdeVAdMMOEkUR7H2aOwwM59d5JPcTlE1SRN9hrAPUS7CSDW0AHokYuBgGlqPwBAeGge0hpwSFi7t7HCzwmLGS5HYOzdQcgMlb0QcoKyhu7XPopic8ae1X6LNN_4_h9T-h9_5P_1u0E5n2Ovy7lP_5QLtuqZY58qyS1TNlit9Ba1GNrnOr9I3t-zOZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Snap-drift+cuckoo+search%3A+A+novel+cuckoo+search+optimization+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Rakhshani%2C+Hojjat&rft.au=Rahati%2C+Amin&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=52&rft.spage=771&rft.epage=794&rft_id=info:doi/10.1016%2Fj.asoc.2016.09.048&rft.externalDocID=S1568494616305075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |