Using spatial analysis and Bayesian network to model the vulnerability and make insurance pricing of catastrophic risk

Vulnerability refers to the degree of an individual subject to the damage arising from a catastrophic disaster. It is affected by multiple indicators that include hazard intensity, environment, and individual characteristics. The traditional area aggregate approach does not differentiate the individ...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of geographical information science : IJGIS Vol. 24; no. 12; pp. 1759 - 1784
Main Authors Li, Lian-Fa, Wang, Jin-Feng, Leung, Hareton
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.12.2010
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN1365-8816
1362-3087
1365-8824
DOI10.1080/13658816.2010.510473

Cover

Abstract Vulnerability refers to the degree of an individual subject to the damage arising from a catastrophic disaster. It is affected by multiple indicators that include hazard intensity, environment, and individual characteristics. The traditional area aggregate approach does not differentiate the individuals exposed to the disaster. In this article, we propose a new solution of modeling vulnerability. Our strategy is to use spatial analysis and Bayesian network (BN) to model vulnerability and make insurance pricing in a spatially explicit manner. Spatial analysis is employed to preprocess the data, for example kernel density analysis (KDA) is employed to quantify the influence of geo-features on catastrophic risk and relate such influence to spatial distance. BN provides a consistent platform to integrate a variety of indicators including those extracted by spatial analysis techniques to model uncertainty of vulnerability. Our approach can differentiate attributes of different individuals at a finer scale, integrate quantitative indicators from multiple-sources, and evaluate the vulnerability even with missing data. In the pilot study case of seismic risk, our approach obtains a spatially located result of vulnerability and makes an insurance price at a finer scale for the insured buildings. The result obtained with our method is informative for decision-makers to make a spatially located planning of buildings and allocation of resources before, during, and after the disasters.
AbstractList Vulnerability refers to the degree of an individual subject to the damage arising from a catastrophic disaster. It is affected by multiple indicators that include hazard intensity, environment, and individual characteristics. The traditional area aggregate approach does not differentiate the individuals exposed to the disaster. In this article, we propose a new solution of modeling vulnerability. Our strategy is to use spatial analysis and Bayesian network (BN) to model vulnerability and make insurance pricing in a spatially explicit manner. Spatial analysis is employed to preprocess the data, for example kernel density analysis (KDA) is employed to quantify the influence of geo-features on catastrophic risk and relate such influence to spatial distance. BN provides a consistent platform to integrate a variety of indicators including those extracted by spatial analysis techniques to model uncertainty of vulnerability. Our approach can differentiate attributes of different individuals at a finer scale, integrate quantitative indicators from multiple-sources, and evaluate the vulnerability even with missing data. In the pilot study case of seismic risk, our approach obtains a spatially located result of vulnerability and makes an insurance price at a finer scale for the insured buildings. The result obtained with our method is informative for decision-makers to make a spatially located planning of buildings and allocation of resources before, during, and after the disasters.
Vulnerability refers to the degree of an individual subject to the damage arising from a catastrophic disaster. It is affected by multiple indicators that include hazard intensity, environment, and individual characteristics. The traditional area aggregate approach does not differentiate the individuals exposed to the disaster. In this article, we propose a new solution of modeling vulnerability. Our strategy is to use spatial analysis and Bayesian network (BN) to model vulnerability and make insurance pricing in a spatially explicit manner. Spatial analysis is employed to preprocess the data, for example kernel density analysis (KDA) is employed to quantify the influence of geo-features on catastrophic risk and relate such influence to spatial distance. BN provides a consistent platform to integrate a variety of indicators including those extracted by spatial analysis techniques to model uncertainty of vulnerability. Our approach can differentiate attributes of different individuals at a finer scale, integrate quantitative indicators from multiple-sources, and evaluate the vulnerability even with missing data. In the pilot study case of seismic risk, our approach obtains a spatially located result of vulnerability and makes an insurance price at a finer scale for the insured buildings. The result obtained with our method is informative for decision-makers to make a spatially located planning of buildings and allocation of resources before, during, and after the disasters. [PUBLICATION ABSTRACT]
Author Li, Lian-Fa
Wang, Jin-Feng
Leung, Hareton
Author_xml – sequence: 1
  givenname: Lian-Fa
  surname: Li
  fullname: Li, Lian-Fa
  email: lilf@lreis.ac.cn
  organization: Department of Computing , The Hong Kong Polytechnic University, Hung Hom
– sequence: 2
  givenname: Jin-Feng
  surname: Wang
  fullname: Wang, Jin-Feng
  organization: State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences & Natural Resources Research, Chinese Academy of Sciences
– sequence: 3
  givenname: Hareton
  surname: Leung
  fullname: Leung, Hareton
  organization: Department of Computing , The Hong Kong Polytechnic University, Hung Hom
BookMark eNqFkUFv1DAUhC1UJErpP-BgceGU1oljx-GCoAKKVIkLPVtvnWdq1rEX22mVf4_ThUsPcPLT6JuRPPOSnIQYkJDXLbtomWKXLZdCqVZedKxKomX9wJ-R0yp3DWdqOHm8RbMxL8h5zm7HOq5GpQZxSu5vsws_aD5AceApBPBrdrkeE_0IK2YHgQYsDzHtaYl0jhN6Wu6Q3i8-YIKd866sj_wMe6Qu5CVBMEgPyZktO1pqoEAuKR7unKHJ5f0r8tyCz3j-5z0jt58_fb-6bm6-ffl69eGmMVzK0pheTi3sxsFKpoTtWCfGYaofRAOj6REtmpEDCFMlO6qp51ZM7YCW74wFyc_I22PuIcVfC-aiZ5cNeg8B45K1EnKQohZXyTdPyJ9xSbWOCnUdH7vaWIXeHSGTYs4JrTau1OZiKAmc1y3T2yb67yZ620QfN6nm_om5NjRDWv9ne3-0uWBjmqEu4SddYPUx2a1plzX_Z8JvXXmnDA
CitedBy_id crossref_primary_10_1080_24694452_2017_1421896
crossref_primary_10_1007_s00477_015_1198_y
crossref_primary_10_5194_nhess_14_1625_2014
crossref_primary_10_3390_land10020210
crossref_primary_10_1111_j_1539_6924_2012_01790_x
crossref_primary_10_1785_0220230159
crossref_primary_10_1016_j_soildyn_2016_07_007
crossref_primary_10_1080_19475683_2013_782468
crossref_primary_10_1111_risa_12698
crossref_primary_10_1145_3516523
crossref_primary_10_1007_s11069_012_0475_z
crossref_primary_10_2139_ssrn_3994302
crossref_primary_10_1080_13658816_2013_862623
crossref_primary_10_3390_risks7020042
crossref_primary_10_1080_15732479_2020_1712736
crossref_primary_10_1016_j_chb_2013_07_058
crossref_primary_10_1016_j_scitotenv_2018_02_172
crossref_primary_10_1016_j_jag_2019_05_015
crossref_primary_10_2139_ssrn_3994309
crossref_primary_10_5194_nhess_18_1451_2018
crossref_primary_10_1016_j_scitotenv_2021_149947
crossref_primary_10_1007_s11069_021_04729_2
crossref_primary_10_1080_13658816_2017_1385789
crossref_primary_10_3390_su11205634
crossref_primary_10_1111_risa_14025
Cites_doi 10.1080/02533839.2002.9670731
10.1016/j.compenvurbsys.2008.09.006
10.1126/science.309.5737.1029
10.3133/ofr76416
10.1016/0022-1694(86)90114-9
10.1126/science.1116783
10.1016/0022-1694(94)02592-Y
10.1596/978-0-8213-6333-1
10.1080/13658810412331317742
10.1126/science.289.5487.2068
10.5194/nhess-6-911-2006
10.1785/BSSA0340040185
10.1080/136588100240903
10.1080/02693799208901923
10.1007/978-0-387-21606-5
10.4324/9780203468029
10.1785/BSSA0580051583
10.1785/gssrl.68.1.128
10.1029/95WR03716
10.1023/A:1008183011971
10.1007/978-1-4899-3324-9
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2010
Copyright Taylor & Francis Group Dec 2010
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2010
– notice: Copyright Taylor & Francis Group Dec 2010
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7QH
7UA
C1K
DOI 10.1080/13658816.2010.510473
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aqualine

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1362-3087
1365-8824
EndPage 1784
ExternalDocumentID 2229898681
10_1080_13658816_2010_510473
510473
GroupedDBID -~X
..I
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACHQT
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADUMR
ADXPE
AEISY
AENEX
AEOZL
AFKVX
AFRAH
AFRVT
AGBKS
AGDLA
AGMYJ
AHDZW
AIDBO
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBO
EBS
EDO
EJD
EMK
EPL
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
MM-
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TQWBC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZCA
ZGOLN
~02
~S~
AAYXX
CITATION
7SC
8FD
ADYSH
FR3
JQ2
KR7
L7M
L~C
L~D
7QH
7UA
C1K
ID FETCH-LOGICAL-c366t-c46d1ab97f6085f202597d473eca9c4eefec93aa5c73ef98d43f5d17ef3bcfa63
ISSN 1365-8816
IngestDate Mon Oct 06 18:12:59 EDT 2025
Fri Jul 25 08:12:39 EDT 2025
Wed Oct 01 04:32:55 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Mon Oct 20 23:45:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-c46d1ab97f6085f202597d473eca9c4eefec93aa5c73ef98d43f5d17ef3bcfa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 822392898
PQPubID 53147
PageCount 26
ParticipantIDs informaworld_taylorfrancis_310_1080_13658816_2010_510473
proquest_miscellaneous_856765010
proquest_journals_822392898
crossref_citationtrail_10_1080_13658816_2010_510473
crossref_primary_10_1080_13658816_2010_510473
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-00
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-00
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of geographical information science : IJGIS
PublicationYear 2010
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Paterson E. (CIT0044) 2008
Jakob M. (CIT0030) 1996
CIT0032
CIT0031
CIT0033
Tobler W.R. (CIT0049) 1979
William J.P. (CIT0052) 1982
Pearl J. (CIT0045) 1988
Silverman B.W. (CIT0047) 1986
CIT0036
Norsys S.C. (CIT0043) 2009
CIT0038
CIT0037
Burkhard A. (CIT0013) 1992
Gutenberg B. (CIT0025) 1944; 34
CIT0042
CIT0001
Korb K.B. (CIT0034) 2004
Zhang P. (CIT0060) 2005
CIT0048
CIT0007
CIT0006
CIT0009
Chen X. (CIT0014) 2008; 44
Cornell C.A. (CIT0016) 1968; 58
Kramer S.L. (CIT0035) 1996
CIT0050
Guo Z. (CIT0024) 1992
Huang C. (CIT0029) 2001
CIT0011
Hastie T. (CIT0027) 2001
Boore M.D. (CIT0012) 1997; 68
Bouckaert R.R. (CIT0055) 1995
McGuire R.K. (CIT0040) 1978
ADB (CIT0002) 2005
Alexander D. (CIT0003) 1993
McCoy J. (CIT0039) 2001
FEMA (CIT0021) 2001; 1
Meng S. (CIT0041) 2000
Algermissen S.T. (CIT0004) 1976
CIT0058
CIT0057
CIT0018
Fang X. (CIT0056) 2002
Witten I.H. (CIT0053) 2005
Civil and Structural Groups of Tsinghua University, Xi'an Jiaotong University and Beijing Jiaotong University (CIT0015) 2008; 29
CIT0019
CIT0023
CIT0022
ESRI (CIT0020) 2001
Bard P. (CIT0010) 1994
Day R.W. (CIT0017) 2002
Shi P. (CIT0046) 2002; 11
Shannon C.E. (CIT0059) 1949
Yi Z. (CIT0054) 1995
Varnakovida P. (CIT0051) 2008
Allmann A. (CIT0005) 2000
CIT0026
Hayes T.L. (CIT0028) 2001
References_xml – ident: CIT0058
  doi: 10.1080/02533839.2002.9670731
– ident: CIT0033
  doi: 10.1016/j.compenvurbsys.2008.09.006
– ident: CIT0011
– start-page: 54
  year: 2002
  ident: CIT0056
  publication-title: Marine Forecast (in Chinese) (19)
– ident: CIT0048
– ident: CIT0026
  doi: 10.1126/science.309.5737.1029
– year: 2000
  ident: CIT0005
  publication-title: Increasing loss potential in earth risk-a reinsurance perspective. Paper presented at the Euroconference on Earthquake Risk, IIASA Laxenburg bei Wien, Singapore, http://www.iiasa.ac.at/Research/RMP/july2000/papers.html
– ident: CIT0050
– volume-title: A probabilistic estimate of maximum acceleration in rock in the contiguous United States
  year: 1976
  ident: CIT0004
  doi: 10.3133/ofr76416
– volume-title: Cellular geography, philosophy in geography
  year: 1979
  ident: CIT0049
– ident: CIT0001
  doi: 10.1016/0022-1694(86)90114-9
– ident: CIT0038
  doi: 10.1126/science.1116783
– ident: CIT0057
  doi: 10.1016/0022-1694(94)02592-Y
– volume-title: Probabilistic reasoning in intelligent systems: networks of plausible inference
  year: 1988
  ident: CIT0045
– ident: CIT0009
  doi: 10.1596/978-0-8213-6333-1
– volume-title: Geotechnical earthquake engineering
  year: 1996
  ident: CIT0035
– ident: CIT0037
  doi: 10.1080/13658810412331317742
– volume-title: FRISK – a computer program for seismic risk analysis
  year: 1978
  ident: CIT0040
– ident: CIT0018
  doi: 10.1126/science.289.5487.2068
– volume-title: ArcGIS spatial analyst: advanced GIS spatial analysis using raster and vector data
  year: 2001
  ident: CIT0020
– volume-title: Using ArcGIS spatial analyst
  year: 2001
  ident: CIT0039
– volume-title: Actuarial rate review, Federal Emergency Management Agency and Federal Insurance and Mitigation Administration
  year: 2001
  ident: CIT0028
– volume-title: The Mathematical Theory of Communicatio
  year: 1949
  ident: CIT0059
– ident: CIT0032
– volume-title: Risk analysis of natural disasters
  year: 2001
  ident: CIT0029
– volume-title: Geotechnical earthquake engineering handbook
  year: 2002
  ident: CIT0017
– ident: CIT0019
– ident: CIT0036
– volume-title: Natural disasters
  year: 1993
  ident: CIT0003
– ident: CIT0023
  doi: 10.5194/nhess-6-911-2006
– volume: 34
  start-page: 185
  year: 1944
  ident: CIT0025
  publication-title: Bulletin of the Seismological Society of America
  doi: 10.1785/BSSA0340040185
– volume-title: Morphometric and geotechnical controls of debris flow frequency and magnitude in southwestern British Columbia
  year: 1996
  ident: CIT0030
– volume: 29
  start-page: 1
  year: 2008
  ident: CIT0015
  publication-title: Journal of Building Structures (in Chinese)
– volume-title: Strategies against Earthquakes for Cities (in Chinese)
  year: 1992
  ident: CIT0024
– ident: CIT0031
  doi: 10.1080/136588100240903
– volume-title: Bayesian Belief Network: from Construction to Inference [Dissertation]
  year: 1995
  ident: CIT0055
– volume-title: Hospital site selection analysis
  year: 2008
  ident: CIT0051
– ident: CIT0022
  doi: 10.1080/02693799208901923
– volume-title: The elements of statistical learning: data mining, inference and prediction. New York
  year: 2001
  ident: CIT0027
  doi: 10.1007/978-0-387-21606-5
– ident: CIT0042
  doi: 10.4324/9780203468029
– volume: 1
  volume-title: FEMA ITS Directorate
  year: 2001
  ident: CIT0021
– volume-title: The 2008 Wenchuan earthquake: risk management lessons and implications
  year: 2008
  ident: CIT0044
– volume: 44
  start-page: 434
  year: 2008
  ident: CIT0014
  publication-title: Acta Scientiarum Naturalium Universitatis Pekinensis
– volume: 58
  start-page: 1583
  year: 1968
  ident: CIT0016
  publication-title: Bulletin of the Seismological Society of America
  doi: 10.1785/BSSA0580051583
– volume-title: Practical non-life actuarial sciences
  year: 2000
  ident: CIT0041
– volume: 11
  start-page: 1
  year: 2002
  ident: CIT0046
  publication-title: Natural Disasters (in Chinese)
– volume-title: Netica APIs
  year: 2009
  ident: CIT0043
– volume: 68
  start-page: 128
  year: 1997
  ident: CIT0012
  publication-title: Seismological Research Letters
  doi: 10.1785/gssrl.68.1.128
– volume-title: New Generation of Data Mining Applications
  year: 2005
  ident: CIT0060
– ident: CIT0006
  doi: 10.1029/95WR03716
– volume-title: Bayesian artificial intelligence
  year: 2004
  ident: CIT0034
– volume-title: Natural hazard risk assessment and public policy
  year: 1982
  ident: CIT0052
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2005
  ident: CIT0053
– volume-title: Die Bestimmung der mittleren Anrissmaechtigkeit d0 zur Berechnung von Fliesslawinen
  year: 1992
  ident: CIT0013
– volume-title: Local effects of strong ground motion: basic physical phenomena and estimation methods for microzoning studies
  year: 1994
  ident: CIT0010
– volume-title: Forecast methods of seismic disaster and loss
  year: 1995
  ident: CIT0054
– ident: CIT0007
  doi: 10.1023/A:1008183011971
– volume-title: Density estimation for statistics and data analysis
  year: 1986
  ident: CIT0047
  doi: 10.1007/978-1-4899-3324-9
– volume-title: An initial assessment of the impact of the Earthquake and Tsunami of December 26, 2004 on South and Southeast Asia
  year: 2005
  ident: CIT0002
SSID ssib023898875
ssj0001015
ssib000159086
Score 2.0703232
Snippet Vulnerability refers to the degree of an individual subject to the damage arising from a catastrophic disaster. It is affected by multiple indicators that...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1759
SubjectTerms Bayesian analysis
Bayesian network
Catastrophes
data mining
Insurance premiums
insurance pricing
Location analysis
Risk assessment
spatial analysis
Studies
vulnerability
Title Using spatial analysis and Bayesian network to model the vulnerability and make insurance pricing of catastrophic risk
URI https://www.tandfonline.com/doi/abs/10.1080/13658816.2010.510473
https://www.proquest.com/docview/822392898
https://www.proquest.com/docview/856765010
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1362-3087
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: ABDBF
  dateStart: 19980701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9owFLcYPWyXaZ8a6zb5sB6zYZI4ybFdSyli3QU0tEvkOPZatQsUQqXuj93fsvdsJwSBuo9LFJzEGN4vfj8_vw9C3rMgCgSTzBNB3vMCkXAvETryIqZ4nLNAchPh_fmcDybBcBpOW61fDa-lVZl9kD93xpX8j1ShDeSKUbL_INm6U2iAc5AvHEHCcPwrGdv9_iU6RZuQf5dfBG3hR-JOmfjIwvp5I8c0VW8M07xdXWO2aeMYaxMw_RBXyjimL0wMwXyBO-7GHxoNPMtyMZtfYLbny-VVk89uGhQbaSi-2-LqFwYDLjurgVoVR4SmiLPh6VlNRkc2ThvG7PXXusKZs4eX0KqcljX-Q26SGmCVXgctZ7zYcgQZb9URqWsl2-kYffDimLlk2c02G3ldzeHuk8NqrzEjAz1KdqoK61uJveEXWCe_EBNX-GvVWLkDnH9J-5PRKB2fTMebVw0TwJrocRLzmB34_fmNhzXNcO__wD-2oHtA9nqgdbptsnc4OP72teYKMCGGVWQgDqMK7oy7H3eNbIM8baTW3aIShh-Nn5DHbmFDDy1Kn5KWKp6Rh6cOBnfPya1BK3VopRVa4SSnFVqpQystZ9SglQJa6QZazf2IVlqjlTq00pmmTbRSROsLMumfjD8NPFf1w5M-56UnA54zkSWR5rAc0D0g5UmUw49XUiQyUEormfhChBKadBLnga_DnEVK-5nUgvsvSbuYFeoVoaCtZC_WCYu4CJQIhcJiUxoYq-ZZN8s6xK_-zlS6lPhYmeU6ZS5zbiWEFIWQWiF0iFc_NbcpYf5wf9yUVFoa0GuL99S__9H9Sqqpe4WXKVB6WNQA3jqE1ldBKeBOnyjUbAW3hDyCpRfrvr63g33yaP1SviHtcrFSb4Fjl9k7B9TfOO7SYg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwFHxq4UAvlBYqFgr1odfAeu04yZFWoOVrTyD1ZjmOXSogWe1mkZZfz3tOsnyprdTeosSOZefZHjvjGYCvXCbScMsjI4tBJE2mosz4JEq4U2nBpVXhhPf5SA0v5cmPuGMTTltaJa2hfSMUEcZq6ty0Gd1R4vaJmpWmXDXMrJjUBsRbWI4R65OJgeiPniAYMvVezLg4QWXYrR4RMkZk3B3Nold2p-t-U8qz2euZtumrsTxMUEfvIe-q1vBSrvdmdb5n71-oPv5X3ddgtYWv7KCJtw_wxpUfYaV1Ur-ar8Nd4CCwKRG1MaFpNU_womDfzNzRmU1WNtxzVlcsOPEwRKHsbnZDCtiBrDsP6W_NtWNElifzD8fGE2IB_GSVZ7TpNK0n1fjql2XEjt-Ay6PDi-_DqPV2iKxQqo6sVAU3eZZ4haDPDxB6ZUmBdXHWZFY6553NhDGxxVs-SwspfFzwxHmRW2-U-ARLZVW6TWA4JtlB6nHdqYx0JjaOLIU84hKv8n6e90B030zbVvic_DduNG_1Ubs21dSmumnTHkSLXONG-OMv6dOn4aDrsOHiG3cULf6cdbsLHd2OIFONwA2hK0ZrD9jiKXZ9-p9jSlfNMEmsEgTYvL_172V_gZXhxfmZPjsenW7Du8GCrPMZlurJzO0g5Krz3dCpHgCPmRvs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkaAXaPkQS6H4wDVlvXGc5EgLqwLtqgcq9WZNHLtFLclqN1tp--uZcZJlCwIkuEXJOJGdsf1sv3kD8EaqVKG0MkJVjiKFuY5y9GmUSqezUiqrQ4T38UQfnqpPZ8nZWhQ_0yp5De1boYgwVnPnnpa-Z8S9ZWZWlkndErMSFhuI78I9zYdiHMQxnKwBGM7pvZpwaX7KqVf9AMjkkEkfmcWv7IPrfvOVW5PXLWnTX4byMD-NHwH2NWtpKZd7i6bYszc_iT7-T9W34GEHXsW71tu24Y6rHsODLo_6xfIJXAcGgpgzTZsMsVM8oYtS7OPSccSmqFrmuWhqEfLwCMKg4npxxfrXgaq7DPbf8NIJpspz6g8npjPmAJyL2gvecpo3s3p68dUK5sY_hdPxhy8Hh1GX2SGysdZNZJUuJRZ56jVBPj8i4JWnJdXFWcytcs47m8eIiaVbPs9KFfuklKnzcWE96vgZbFR15Z6DoBHJjjJPq06NymGCjhMKeUIlXhfDohhA3P8yYzvZc86-cWVkp47at6nhNjVtmw4gWpWatrIff7HP1r3BNGG7xbe5UUz856I7veeYbvyYG4JtBFzJWQcgVk-p4_NpDlauXpBJolOC13L44t-__Rrun7wfm6OPk887sDlaMXVewkYzW7hXhLeaYjd0qe_0FxqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+spatial+analysis+and+Bayesian+network+to+model+the+vulnerability+and+make+insurance+pricing+of+catastrophic+risk&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Li%2C+Lian-Fa&rft.au=Wang%2C+Jin-Feng&rft.au=Leung%2C+Hareton&rft.date=2010-12-01&rft.pub=Taylor+%26+Francis+LLC&rft.issn=1365-8816&rft.eissn=1365-8824&rft.volume=24&rft.issue=12&rft.spage=1759&rft_id=info:doi/10.1080%2F13658816.2010.510473&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2229898681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon