k-ATTRACTORS: A PARTITIONAL CLUSTERING ALGORITHM FOR NUMERIC DATA ANALYSIS

Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior information about the data. Partitional clustering algorithms are efficient but suffer from sensitivity to the initial partition and noise. We propose here k-attractors, a partitional cluster...

Full description

Saved in:
Bibliographic Details
Published inApplied artificial intelligence Vol. 25; no. 2; pp. 97 - 115
Main Authors Kanellopoulos, Y., Antonellis, P., Tjortjis, C., Makris, C., Tsirakis, N.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 28.02.2011
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0883-9514
1087-6545
DOI10.1080/08839514.2011.534590

Cover

Abstract Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior information about the data. Partitional clustering algorithms are efficient but suffer from sensitivity to the initial partition and noise. We propose here k-attractors, a partitional clustering algorithm tailored to numeric data analysis. As a preprocessing (initialization) step, it uses maximal frequent item-set discovery and partitioning to define the number of clusters k and the initial cluster "attractors." During its main phase the algorithm uses a distance measure, which is adapted with high precision to the way initial attractors are determined. We applied k-attractors as well as k-means, EM, and FarthestFirst clustering algorithms to several datasets and compared results. Comparison favored k-attractors in terms of convergence speed and cluster formation quality in most cases, as it outperforms these three algorithms except from cases of datasets with very small cardinality containing only a few frequent item sets. On the downside, its initialization phase adds an overhead that can be deemed acceptable only when it contributes significantly to the algorithm's accuracy.
AbstractList Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior information about the data. Partitional clustering algorithms are efficient but suffer from sensitivity to the initial partition and noise. We propose here k-attractors, a partitional clustering algorithm tailored to numeric data analysis. As a preprocessing (initialization) step, it uses maximal frequent item-set discovery and partitioning to define the number of clusters k and the initial cluster "attractors." During its main phase the algorithm uses a distance measure, which is adapted with high precision to the way initial attractors are determined. We applied k-attractors as well as k-means, EM, and FarthestFirst clustering algorithms to several datasets and compared results. Comparison favored k-attractors in terms of convergence speed and cluster formation quality in most cases, as it outperforms these three algorithms except from cases of datasets with very small cardinality containing only a few frequent item sets. On the downside, its initialization phase adds an overhead that can be deemed acceptable only when it contributes significantly to the algorithm's accuracy.
Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior information about the data. Partitional clustering algorithms are efficient but suffer from sensitivity to the initial partition and noise. We propose here k-attractors, a partitional clustering algorithm tailored to numeric data analysis. As a preprocessing (initialization) step, it uses maximal frequent item-set discovery and partitioning to define the number of clusters k and the initial cluster "attractors." During its main phase the algorithm uses a distance measure, which is adapted with high precision to the way initial attractors are determined. We applied k-attractors as well as k-means, EM, and FarthestFirst clustering algorithms to several datasets and compared results. Comparison favored k-attractors in terms of convergence speed and cluster formation quality in most cases, as it outperforms these three algorithms except from cases of datasets with very small cardinality containing only a few frequent item sets. On the downside, its initialization phase adds an overhead that can be deemed acceptable only when it contributes significantly to the algorithm's accuracy. [PUBLICATION ABSTRACT]
Author Tjortjis, C.
Antonellis, P.
Tsirakis, N.
Kanellopoulos, Y.
Makris, C.
Author_xml – sequence: 1
  givenname: Y.
  surname: Kanellopoulos
  fullname: Kanellopoulos, Y.
  email: y.kanellopoulos@sig.eu
  organization: Software Improvement Group
– sequence: 2
  givenname: P.
  surname: Antonellis
  fullname: Antonellis, P.
  organization: University of Patras
– sequence: 3
  givenname: C.
  surname: Tjortjis
  fullname: Tjortjis, C.
  organization: University of Ioannina and University of Western Macedonia
– sequence: 4
  givenname: C.
  surname: Makris
  fullname: Makris, C.
  organization: University of Patras
– sequence: 5
  givenname: N.
  surname: Tsirakis
  fullname: Tsirakis, N.
  organization: University of Patras
BookMark eNqFkL1OwzAUhS0EEuXnDRgiFqYUu7GTmAVZAUpQaFDqDkyW4zhSII3BToV4e1wVFgbQHa5073eOjs4R2B_MoAE4Q3CKYAovYZpGlCA8nUGEpiTChMI9MPG_JIwJJvtgskXCLXMIjpx7gRCiJEET8PAaMs4rlvGyWl4FLHhiFc95Xi5YEWTFaslvq3wxD1gxL6uc3z8Gd2UVLFaP_pwFN4yzgHn0eZkvT8BBK3unT7_3MVjd3fLsPizKeZ6xIlRRHI9hreMaRjPS1NBPhGdIwzqtJcZUa9xoCmOSNKolSiUK1z4oxo3UUlMqUSxJdAwudr5v1rxvtBvFunNK970ctNk4kcY0oRRD6snzX-SL2djBhxMpoRHBiGIP4R2krHHO6la82W4t7adAUGzrFT_1im29Ylevl139kqlulGNnhtHKrv9PfL0Td0Nr7Fp-GNs3YpSfvbGtlYPqnIj-dPgCrDeNrQ
CitedBy_id crossref_primary_10_1016_j_eswa_2012_07_016
crossref_primary_10_1016_j_is_2020_101562
crossref_primary_10_3390_a14080242
crossref_primary_10_1007_s00607_019_00739_y
crossref_primary_10_1007_s11277_019_06709_z
crossref_primary_10_1016_j_appet_2021_105236
Cites_doi 10.1145/331499.331504
10.1007/3-540-48412-4_4
10.1109/TKDE.2007.1066
10.1109/TKDE.2006.106
10.1109/TKDE.2007.1048
10.1109/TKDE.2005.75
10.1006/jpdc.1997.1404
10.1137/1.9781611972733.6
10.1109/ICTAI.2007.31
10.1145/319950.320054
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
Copyright Taylor & Francis Ltd. Feb 2011
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: Copyright Taylor & Francis Ltd. Feb 2011
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1080/08839514.2011.534590
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1087-6545
EndPage 115
ExternalDocumentID 2307101911
10_1080_08839514_2011_534590
534590
GroupedDBID .4S
.7F
.DC
.QJ
0YH
23M
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAFWJ
AAJMT
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABPEM
ABTAI
ACGEJ
ACGFS
ACGOD
ACNCT
ACTIO
ACUHS
ADCVX
ADMLS
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFPKN
AGMYJ
AHQJS
AIJEM
AIYEW
AJWEG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
S-T
SNACF
TDBHL
TFL
TFW
TH9
TNC
TTHFI
TUS
TWF
UT5
UU3
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c366t-be6b0325db0b0b3421e0b8ba449ee4de90657dcf5cc7c4b00144daeae99a16a53
ISSN 0883-9514
IngestDate Sun Sep 28 11:18:19 EDT 2025
Sun Jun 29 16:17:52 EDT 2025
Wed Oct 01 02:45:48 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
Mon Oct 20 23:46:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-be6b0325db0b0b3421e0b8ba449ee4de90657dcf5cc7c4b00144daeae99a16a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 859354194
PQPubID 53050
PageCount 19
ParticipantIDs crossref_primary_10_1080_08839514_2011_534590
proquest_miscellaneous_869799409
crossref_citationtrail_10_1080_08839514_2011_534590
informaworld_taylorfrancis_310_1080_08839514_2011_534590
proquest_journals_859354194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2/28/2011
PublicationDateYYYYMMDD 2011-02-28
PublicationDate_xml – month: 02
  year: 2011
  text: 2/28/2011
  day: 28
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Applied artificial intelligence
PublicationYear 2011
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0010
CIT0001
CIT0012
CIT0011
Han J. (CIT0005) 2001
Hartigan J. A. (CIT0006) 1975
CIT0003
CIT0014
CIT0013
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
Witten I. H. (CIT0017) 2005
CIT0009
CIT0008
References_xml – volume-title: Data mining: Practical machine learning tools and techniques,
  year: 2005
  ident: CIT0017
– ident: CIT0007
  doi: 10.1145/331499.331504
– ident: CIT0011
  doi: 10.1007/3-540-48412-4_4
– ident: CIT0018
– ident: CIT0014
– ident: CIT0012
  doi: 10.1109/TKDE.2007.1066
– ident: CIT0015
  doi: 10.1109/TKDE.2006.106
– volume-title: Data mining: Concepts and techniques
  year: 2001
  ident: CIT0005
– ident: CIT0008
  doi: 10.1109/TKDE.2007.1048
– ident: CIT0013
  doi: 10.1109/TKDE.2005.75
– volume-title: Clustering algorithms
  year: 1975
  ident: CIT0006
– ident: CIT0001
– ident: CIT0004
– ident: CIT0010
  doi: 10.1006/jpdc.1997.1404
– ident: CIT0003
  doi: 10.1137/1.9781611972733.6
– ident: CIT0009
  doi: 10.1109/ICTAI.2007.31
– ident: CIT0016
  doi: 10.1145/319950.320054
SSID ssj0001771
Score 1.9481369
Snippet Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior information about the data. Partitional clustering...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms Acceptability
Accuracy
Algorithms
Artificial intelligence
Cluster analysis
Clustering
Clusters
Convergence
Data analysis
Data processing
Expert systems
Mathematical models
Numerical analysis
Preprocessing
Title k-ATTRACTORS: A PARTITIONAL CLUSTERING ALGORITHM FOR NUMERIC DATA ANALYSIS
URI https://www.tandfonline.com/doi/abs/10.1080/08839514.2011.534590
https://www.proquest.com/docview/859354194
https://www.proquest.com/docview/869799409
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: ABDBF
  dateStart: 19960201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXLjwjSgD5APiUgUlsZ00u0Vlo51Ki1pHKqfIdhyJbVrLll721_McOx_VJgaoUlS5dqz6_fz8bL_3ewh99KNEEFlGHg21DxsUkXgjIrVX6kAJn0jJdO1tMY8mGT1ds3XnOlRHl1Tys7q5M67kf6QKZSBXEyX7D5JtXwoF8B3kC0-QMDz_SsbnXsr5Mh3zxXJlQ8y_g306dfy241m24jVl1DCdfV0sp3zybQibvuE8q1M9Dr-kHNpA1R-r6apvpTamqenSMUz87FF3tkpaGB-ZzXazu7DOeq1ZnJrMxKb-9V4IGT8DY__MsRp0Z-HnV_2iojtTbUO6G01FPDDV7MmAtprUB-0VMcsV2ahaG-PsIBX29Kb10XUrcGADPG8pd-cNCZ2Zviz9KiOU2Xyj-1za80V-ks1mOT9e80_bX55JM2au413OlYfoUQjLgMn1Qfx5u3QHcb1Db_9PE2tpyNjv6HbPltljur21stfmCn-Gnrh9Bk4taJ6jB_ryBXra5PDATqW_RKd9DB3hFPcQhDsE4RZBGBCEHYKwQRBuEPQKZSfHfDzxXH4NT5EoqjypI-mTkBXShw-hYaB9OZKC0kRrWugEzNO4UCVTKlbUmNeUFkILnSQiiAQjr9HBJaDpDcJlyZJIwItCoqgQsOuWZUxGihIZC6b8ASLNSOXKkc-bHCgXedBw1Lrxzc345nZ8B8hrW20t-co99Ud9IeRVfehV2gw1Oflz08NGYLmb4de54QJkNEjoAOH2V1C_5k4NZthmB1Uicy9O_eTt_VUO0eNu9rxDB9XVTr8Hk7aSH2oY_gYWzZBW
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWDhjSjl4YHVJakfqdmiQmmhtKhNJZgs23UWUEGQLvx67DipKAiQQBnjc-LHnb-zz98BcBIwLrFKGSINE1gHRXLUxMqg1IRaBlgpavJoiz7rjMnVHS2jCV-LsErnQ6eeKCK31U653WZ0GRJ3ajUDW2RAPAMnxYRy67UvU4v1XRIDHPTnxjiMcp_LSSAnUt6e-6aWhdVpgbv0i63OF6D2OlDlr_u4k4f6LFN1_faJ1fFfbdsAawU8hbGfT5tgyUy3wHqZ-gEWlmAbXD2gOEmGcSsZDEdnMIa3Fhh3PbEubPXGoyTnqoJx73Iw7CadG2i9Tdgf5zkm4XmcxDC2Re9H3dEOGLcvklYHFWkZkMaMZUgZpgLcoBMV2AeTRmgC1VSSEG4MmRhuUU000SnVOtLEoTJCJtJIw7kMmaR4F1SmT1OzB2CaUs6kraiBNZHSOmsqjXBTE6wiSXVQBbgcDqELznKXOuNRhCW1adFdwnWX8N1VBWgu9ew5O34p3_w40iLL90pSn9hE4J9Fa-WsEIXyvwpHIUdJyEkVwPlbq7XuKEZOzdPMFmHuONX61vt___YxWOkkNz3R6_ava2DVb3a7u_YHoJK9zMyhRUuZOsr14R2ClP_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYmkCYu62BM6xjgA1d3Sf0j9W5RS2mhK6hNpe5k2Y59AaVopBf--tlxUhWmDQmUY_ycxPZ7eZ_93vcAOIsYl1hZhkjXRA6gSI56WBlkTaxlhJWipoq2mLLRglwu6XIri9-HVXoMbQNRRGWrvXLf57aJiPvuFAM7x4AEAk6KCeUOtO8yfyjmkzii6cYWx0kFubwE8iJN8tw_ennyc3pCXfqXqa7-P8MWkM2bh7CT2866VB39-IzU8S2f9hF8qJ1TmIbVtA_emeIAtJrCD7C2A5_A5S1Ks2yW9rPr2fwHTOGNc4vHgVYX9ieLeVYxVcF0cnE9G2ejn9BhTThdVBUm4SDNUpi6pr_m4_khWAzPs_4I1UUZkMaMlUgZpiLcpbmK3IVJNzaR6ilJCDeG5IY7nybJtaVaJ5p4n4yQXBppOJcxkxR_BjvFqjBfALSWciZdR12siZQOqimb4J4mWCWS6qgNcDMbQteM5b5wxp2IG2LTeriEHy4RhqsN0EbqPjB2vNC-tz3Roqx2SmwoayLw_0WPmkUhatV_EJ5AjpKYkzaAm7tOZ_1BjCzMau2aMH-Y6pD119c_-xS8vxkMxWQ8vToCe2Gn2yfafwM75e-1OXauUqlOKm34Az6x_oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=k-ATTRACTORS%3A+A+PARTITIONAL+CLUSTERING+ALGORITHM+FOR+NUMERIC+DATA+ANALYSIS&rft.jtitle=Applied+artificial+intelligence&rft.au=Kanellopoulos%2C+Y&rft.au=Antonellis%2C+P&rft.au=Tjortjis%2C+C&rft.au=Makris%2C+C&rft.date=2011-02-28&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=25&rft.issue=2&rft.spage=97&rft.epage=115&rft_id=info:doi/10.1080%2F08839514.2011.534590&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon