An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson's disease classification

•Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the deep features.•The efficacy of the proposed model are assesed with Multi-Kernel SVM classifier.•Deep Relief features result in an accuracy of 0....

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 66; p. 102452
Main Author Gunduz, Hakan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2021.102452

Cover

Abstract •Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the deep features.•The efficacy of the proposed model are assesed with Multi-Kernel SVM classifier.•Deep Relief features result in an accuracy of 0.916 with 0.772 MCC rates.•All reduced feature sets have higher MCC rates than the features without selection. Parkinson's disease (Pd) is a progressive disease caused by the loss of brain cells and brings about speech and pronunciation defects during the early stages. This study revealed a Pd classification system based on vocal features extracted from the voice recordings of the individuals and proposed a hybrid dimensionality reduction methods to extract robust features. Proposed method took advantage of the prominent aspects of Variational Autoencoders (VAE) and filter-based feature selection models. Relief and Fisher Score were selected as filter-based methods for their effective performance in handling noisy data while VAE was used as a feature extractor due to the capability of preserving the regular latent space properties during the feature generation. In order to assess the effectiveness of the devised method, multi-kernel Support Vector Machines (SVM) classifier were trained with obtained deep feature representations. The combination of deep Relief features and SVM with multiple kernels distinguished Pd individuals from healthy subjects with an accuracy of 0.916 with 0.772 Matthews Correlation Coefficient (MCC) rates using only 30 features. Compared to results obtained without dimensionality reduction, proposed model provided approximately 9% and 22% improvements on accuracy and MCC rates, respectively. All experimental results showed that models trained with the deep features had higher accuracy and MCC rates with those trained with Fisher Score and Relief selected features. In addition, all models trained with reduced features had higher classification performance than the model without selection. It was also concluded that using multiple kernels in the SVM boosted the classification performance.
AbstractList •Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the deep features.•The efficacy of the proposed model are assesed with Multi-Kernel SVM classifier.•Deep Relief features result in an accuracy of 0.916 with 0.772 MCC rates.•All reduced feature sets have higher MCC rates than the features without selection. Parkinson's disease (Pd) is a progressive disease caused by the loss of brain cells and brings about speech and pronunciation defects during the early stages. This study revealed a Pd classification system based on vocal features extracted from the voice recordings of the individuals and proposed a hybrid dimensionality reduction methods to extract robust features. Proposed method took advantage of the prominent aspects of Variational Autoencoders (VAE) and filter-based feature selection models. Relief and Fisher Score were selected as filter-based methods for their effective performance in handling noisy data while VAE was used as a feature extractor due to the capability of preserving the regular latent space properties during the feature generation. In order to assess the effectiveness of the devised method, multi-kernel Support Vector Machines (SVM) classifier were trained with obtained deep feature representations. The combination of deep Relief features and SVM with multiple kernels distinguished Pd individuals from healthy subjects with an accuracy of 0.916 with 0.772 Matthews Correlation Coefficient (MCC) rates using only 30 features. Compared to results obtained without dimensionality reduction, proposed model provided approximately 9% and 22% improvements on accuracy and MCC rates, respectively. All experimental results showed that models trained with the deep features had higher accuracy and MCC rates with those trained with Fisher Score and Relief selected features. In addition, all models trained with reduced features had higher classification performance than the model without selection. It was also concluded that using multiple kernels in the SVM boosted the classification performance.
ArticleNumber 102452
Author Gunduz, Hakan
Author_xml – sequence: 1
  givenname: Hakan
  surname: Gunduz
  fullname: Gunduz, Hakan
  organization: Software Engineering Department, Engineering and Natural Sciences Faculty, Bandirma Onyedi Eylul University, 10200, Bandirma, Balikesir, Turkey
BookMark eNp9kLtOBCEUhonRxHX1BazorGaFYa6JjTHeEhMttCYMHJR1ltlwGBPfwweW2dHGwooDh-_n8B2RfT94IOSUsxVnvDpfrzrc6lXOcp4O8qLM98iC10WVNZw1-781a4tDcoS4Zqxoal4syNelp2Ct0w58pMZtwKMbvOpd_KQBzKhj2tINxLfB0BGdf6XW9RFC1ikEQy2oOAagCD3Md5U39EMFp-IuiKoxDuD1YCAgTf0nFd6dx8GfYXoQIcVQ3StEl8bYQcfkwKoe4eRnXZKXm-vnq7vs4fH2_uryIdOiqmKmbAulLkXXlQwaK4RQleGitdbUBkDkFW-LXFciKQJWtl3X1kJAW7MOTK24WJJmztVhQAxgpXZxN0EMyvWSMznZlWs52ZWTXTnbTWj-B90Gt1Hh83_oYoYgferDQZA4eddgXEjypBncf_g3fb-asw
CitedBy_id crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1016_j_compbiomed_2024_109078
crossref_primary_10_3390_min11080846
crossref_primary_10_7717_peerj_cs_988
crossref_primary_10_3390_ijms25147978
crossref_primary_10_3389_fenrg_2022_1012721
crossref_primary_10_3390_electronics10141740
crossref_primary_10_1007_s42600_023_00335_2
crossref_primary_10_1016_j_bspc_2023_105472
crossref_primary_10_1186_s40854_021_00243_3
crossref_primary_10_3390_bioengineering10050588
crossref_primary_10_1016_j_bspc_2023_105358
crossref_primary_10_1016_j_bbe_2022_06_007
crossref_primary_10_3233_IDA_215826
crossref_primary_10_7717_peerj_cs_1702
crossref_primary_10_1080_13682199_2023_2204038
crossref_primary_10_1007_s40031_022_00851_2
crossref_primary_10_1177_20552076231173569
crossref_primary_10_1016_j_arr_2024_102285
crossref_primary_10_1016_j_ins_2022_12_098
crossref_primary_10_1109_TIM_2024_3351248
crossref_primary_10_1016_j_eswa_2025_126503
crossref_primary_10_1007_s12553_023_00810_x
crossref_primary_10_3390_diagnostics12123000
crossref_primary_10_1177_17483026231215186
crossref_primary_10_1016_j_engappai_2022_105737
crossref_primary_10_1016_j_eswa_2023_119651
crossref_primary_10_32604_cmc_2024_044963
crossref_primary_10_1080_13682199_2023_2200060
crossref_primary_10_1007_s00521_023_08508_x
crossref_primary_10_1109_ACCESS_2022_3150774
crossref_primary_10_1080_19420889_2022_2153648
crossref_primary_10_1016_j_knosys_2024_112589
crossref_primary_10_3390_bdcc6010024
crossref_primary_10_2196_46105
crossref_primary_10_3233_IDA_216493
crossref_primary_10_3390_agriculture11080707
crossref_primary_10_1007_s10278_021_00558_8
crossref_primary_10_1108_JSM_04_2024_0156
crossref_primary_10_1016_j_heliyon_2024_e38470
crossref_primary_10_1016_j_bspc_2022_104140
crossref_primary_10_3390_electronics10202534
crossref_primary_10_3389_fnins_2022_957181
crossref_primary_10_1002_cpe_8089
crossref_primary_10_1016_j_bspc_2022_103691
crossref_primary_10_1080_02648725_2023_2200333
crossref_primary_10_1016_j_bbe_2021_04_014
crossref_primary_10_1051_e3sconf_202455601011
crossref_primary_10_1109_ACCESS_2025_3549630
crossref_primary_10_32604_cmc_2022_024545
crossref_primary_10_1016_j_compbiomed_2021_104841
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_3390_diagnostics15010073
crossref_primary_10_1007_s00521_021_06612_4
crossref_primary_10_1007_s11042_024_20276_x
crossref_primary_10_1016_j_procs_2024_04_221
crossref_primary_10_3233_JIFS_230183
crossref_primary_10_5188_ijsmer_25_102
crossref_primary_10_1007_s42979_024_03187_4
crossref_primary_10_1080_03772063_2024_2409677
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1007_s10044_024_01289_6
Cites_doi 10.1016/j.bspc.2020.102165
10.1177/1536867X1601600407
10.3389/fgene.2019.00226
10.1016/j.eswa.2018.06.003
10.31590/ejosat.655795
10.1109/TBME.2012.2183367
10.1007/s11042-017-5515-y
10.1016/j.cogsys.2018.12.004
10.1109/ACCESS.2019.2936564
10.1016/S0161-813X(02)00098-0
10.1016/j.bbe.2020.01.003
10.3906/elk-1704-256
10.1016/j.cmpb.2014.01.004
10.1016/j.artmed.2018.08.007
10.1049/iet-ipr.2019.1526
10.1016/j.eswa.2017.08.015
10.1016/j.mehy.2020.109678
10.1145/3136625
10.1504/IJDMB.2012.048196
10.1109/RBME.2018.2840679
10.1016/j.patrec.2018.02.010
10.1016/j.cogsys.2018.07.004
10.1016/j.jbi.2018.07.014
10.1016/j.asoc.2018.10.022
10.1016/j.cmpb.2015.12.011
10.1016/j.bspc.2013.02.006
10.1001/archneur.56.1.33
10.1002/mds.23212
10.1136/jnnp.2007.131045
10.1016/j.bbe.2019.05.006
10.1016/S0893-6080(99)00032-5
10.1016/j.eswa.2019.06.052
10.1109/TGRS.2017.2729882
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102452
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102452
S1746809421000495
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-af9e5c53bb50e8f333a6d139ffd7dee3261942c63101e059bb9733e970bed7a13
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 29 21:19:21 EDT 2025
Thu Apr 24 23:13:24 EDT 2025
Fri Feb 23 02:44:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Variational autoencoder
Fisher score
Multi-Kernel SVM
Parkinson's disease prediction
Relief
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-af9e5c53bb50e8f333a6d139ffd7dee3261942c63101e059bb9733e970bed7a13
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_102452
crossref_primary_10_1016_j_bspc_2021_102452
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102452
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gunduz (bib0130) 2019; 7
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (bib0105) 2017; 50
Langston (bib0005) 2002; 23
Hariharan, Polat, Sindhu (bib0080) 2014; 113
Gelb, Oliver, Gilman (bib0015) 1999; 56
Nagasubramanian, Sankayya (bib0170) 2020
Khalid, Khalil, Nasreen (bib0190) 2014
Yücelbaş, Yücelbaş (bib0150) 2019; 6
Chollet (bib0220) 2018
Jankovic (bib0010) 2008; 79
Walker, Doersch, Gupta, Hebert (bib0205) 2016
Gu, Chanussot, Jia, Benediktsson (bib0120) 2017; 55
Manogaran, Varatharajan, Priyan (bib0125) 2018; 77
Polat, Nour (bib0225) 2020
Karan, Sahu, Mahto (bib0175) 2020
Ebersbach, Ebersbach, Edler, Kaufhold, Kusch, Kupsch, Wissel (bib0020) 2010; 25
Peng, Guan, Shang (bib0100) 2019; 10
Sakar, Serbes, Gunduz, Tunc, Nizam, Sakar, Tutuncu, Aydin, Isenkul, Apaydin (bib0035) 2019; 74
Guenther, Schonlau (bib0215) 2016; 16
Tirumala, Shahamiri, Garhwal, Wang (bib0180) 2017; 90
Liu, Li, Tan, Wang, Zhang (bib0075) 2020; 63
Chen, Shi, Zhang, Wu, Guizani (bib0090) 2017
Zuo, Wang, Liu, Chen (bib0065) 2013; 8
Wang, Chen, Hao, Peng, Hu (bib0155) 2019; 119
Impedovo, Pirlo (bib0160) 2018; 12
Mostafa, Mustapha, Mohammed, Hamed, Arunkumar, Ghani, Jaber, Khaleefah (bib0040) 2019; 54
Ali, Zhu, Zhou, Liu (bib0030) 2019; 137
Galaz, Mekyska, Mzourek, Smekal, Rektorova, Eliasova, Kostalova, Mrackova, Berankova (bib0060) 2016; 127
Sharma, Giri (bib0140) 2014; 4
Urbanowicz, Meeker, La Cava, Olson, Moore (bib0200) 2018; 85
DeMaagd, Philip (bib0025) 2015; 40
Tuncer, Dogan, Acharya (bib0050) 2020; 40
Pereira, Pereira, Weber, Hook, de Albuquerque, Papa (bib0115) 2019; 95
Amari, Wu (bib0210) 1999; 12
Wingate, Kollia, Bidaut, Kollias (bib0165) 2020; 14
Sakar, Serbes, Sakar (bib0185) 2017; 12
Tsanas, Little, McSharry, Spielman, Ramig (bib0070) 2012; 59
Gündüz (bib0230) 2019
Yildirim, San Tan, Acharya (bib0095) 2018; 52
Kursun, Gumus, Sertbas, Favorov (bib0055) 2012; 6
Weston, Mukherjee, Chapelle, Pontil, Poggio, Vapnik (bib0195) 2001
Pu, Gan, Henao, Yuan, Li, Stevens, Carin (bib0110) 2016
Solana-Lavalle, Galán-Hernández, Rosas-Romero (bib0135) 2020; 40
Bhoi (bib0085) 2017; 21
Gündüz, Çataltepe, Yaslan (bib0045) 2017; 25
Parisi, RaviChandran, Manaog (bib0145) 2018; 110
Peng (10.1016/j.bspc.2021.102452_bib0100) 2019; 10
Gündüz (10.1016/j.bspc.2021.102452_bib0230) 2019
Tuncer (10.1016/j.bspc.2021.102452_bib0050) 2020; 40
Weston (10.1016/j.bspc.2021.102452_bib0195) 2001
Nagasubramanian (10.1016/j.bspc.2021.102452_bib0170) 2020
Urbanowicz (10.1016/j.bspc.2021.102452_bib0200) 2018; 85
Sharma (10.1016/j.bspc.2021.102452_bib0140) 2014; 4
Hariharan (10.1016/j.bspc.2021.102452_bib0080) 2014; 113
Khalid (10.1016/j.bspc.2021.102452_bib0190) 2014
Wingate (10.1016/j.bspc.2021.102452_bib0165) 2020; 14
Tirumala (10.1016/j.bspc.2021.102452_bib0180) 2017; 90
Langston (10.1016/j.bspc.2021.102452_bib0005) 2002; 23
Zuo (10.1016/j.bspc.2021.102452_bib0065) 2013; 8
Yildirim (10.1016/j.bspc.2021.102452_bib0095) 2018; 52
Li (10.1016/j.bspc.2021.102452_bib0105) 2017; 50
Walker (10.1016/j.bspc.2021.102452_bib0205) 2016
Polat (10.1016/j.bspc.2021.102452_bib0225) 2020
Solana-Lavalle (10.1016/j.bspc.2021.102452_bib0135) 2020; 40
Jankovic (10.1016/j.bspc.2021.102452_bib0010) 2008; 79
Pereira (10.1016/j.bspc.2021.102452_bib0115) 2019; 95
Gunduz (10.1016/j.bspc.2021.102452_bib0130) 2019; 7
Pu (10.1016/j.bspc.2021.102452_bib0110) 2016
Manogaran (10.1016/j.bspc.2021.102452_bib0125) 2018; 77
Gelb (10.1016/j.bspc.2021.102452_bib0015) 1999; 56
Ali (10.1016/j.bspc.2021.102452_bib0030) 2019; 137
Sakar (10.1016/j.bspc.2021.102452_bib0035) 2019; 74
Parisi (10.1016/j.bspc.2021.102452_bib0145) 2018; 110
Guenther (10.1016/j.bspc.2021.102452_bib0215) 2016; 16
Yücelbaş (10.1016/j.bspc.2021.102452_bib0150) 2019; 6
Galaz (10.1016/j.bspc.2021.102452_bib0060) 2016; 127
Karan (10.1016/j.bspc.2021.102452_bib0175) 2020
DeMaagd (10.1016/j.bspc.2021.102452_bib0025) 2015; 40
Mostafa (10.1016/j.bspc.2021.102452_bib0040) 2019; 54
Chen (10.1016/j.bspc.2021.102452_bib0090) 2017
Liu (10.1016/j.bspc.2021.102452_bib0075) 2020; 63
Ebersbach (10.1016/j.bspc.2021.102452_bib0020) 2010; 25
Gu (10.1016/j.bspc.2021.102452_bib0120) 2017; 55
Impedovo (10.1016/j.bspc.2021.102452_bib0160) 2018; 12
Tsanas (10.1016/j.bspc.2021.102452_bib0070) 2012; 59
Amari (10.1016/j.bspc.2021.102452_bib0210) 1999; 12
Bhoi (10.1016/j.bspc.2021.102452_bib0085) 2017; 21
Wang (10.1016/j.bspc.2021.102452_bib0155) 2019; 119
Sakar (10.1016/j.bspc.2021.102452_bib0185) 2017; 12
Kursun (10.1016/j.bspc.2021.102452_bib0055) 2012; 6
Chollet (10.1016/j.bspc.2021.102452_bib0220) 2018
Gündüz (10.1016/j.bspc.2021.102452_bib0045) 2017; 25
References_xml – volume: 23
  start-page: 443
  year: 2002
  end-page: 450
  ident: bib0005
  article-title: Parkinson’s disease: current and future challenges
  publication-title: Neurotoxicology
– volume: 110
  start-page: 182
  year: 2018
  end-page: 190
  ident: bib0145
  article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease
  publication-title: Expert Syst. Appl.
– volume: 90
  start-page: 250
  year: 2017
  end-page: 271
  ident: bib0180
  article-title: Speaker identification features extraction methods: a systematic review
  publication-title: Expert Syst. Appl.
– volume: 4
  start-page: 2278
  year: 2014
  end-page: 3075
  ident: bib0140
  article-title: Automatic recognition of Parkinson’s disease via artificial neural network and support vector machine
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– start-page: 668
  year: 2001
  end-page: 674
  ident: bib0195
  article-title: Feature selection for svms
  publication-title: Advances in Neural Information Processing Systems
– volume: 6
  year: 2019
  ident: bib0150
  article-title: Automatic diagnosis of Parkinson’s disease by applying ica methods to tqwt features
  publication-title: BSEU J. Sci.
– year: 2018
  ident: bib0220
  article-title: Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek
– start-page: 109678
  year: 2020
  ident: bib0225
  article-title: Parkinson disease classification using one against all based data sampling with the acoustic features from the speech signals
  publication-title: Med. Hypotheses
– volume: 8
  start-page: 364
  year: 2013
  end-page: 373
  ident: bib0065
  article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach
  publication-title: Biomed. Signal Process. Control
– volume: 7
  start-page: 115540
  year: 2019
  end-page: 115551
  ident: bib0130
  article-title: Deep learning-based Parkinson’s disease classification using vocal feature sets
  publication-title: IEEE Access
– volume: 40
  start-page: 505
  year: 2020
  end-page: 516
  ident: bib0135
  article-title: Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features
  publication-title: Biocybern. Biomed. Eng.
– volume: 25
  start-page: 4829
  year: 2017
  end-page: 4840
  ident: bib0045
  article-title: Stock daily return prediction using expanded features and feature selection
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 21
  year: 2017
  ident: bib0085
  article-title: Classification and clustering of Parkinson’s and healthy control gait dynamics using lda and k-means
  publication-title: Int. J. Bioautom.
– start-page: 372
  year: 2014
  end-page: 378
  ident: bib0190
  article-title: A survey of feature selection and feature extraction techniques in machine learning
  publication-title: 2014 Science and Information Conference
– volume: 10
  start-page: 226
  year: 2019
  ident: bib0100
  article-title: Predicting parkinson’s disease genes based on node2vec and autoencoder
  publication-title: Front. Genet.
– volume: 77
  start-page: 4379
  year: 2018
  end-page: 4399
  ident: bib0125
  article-title: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system
  publication-title: Multimed. Tools Appl.
– volume: 40
  start-page: 211
  year: 2020
  end-page: 220
  ident: bib0050
  article-title: Automated detection of parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels
  publication-title: Biocybern. Biomed. Eng.
– start-page: 2352
  year: 2016
  end-page: 2360
  ident: bib0110
  article-title: Variational autoencoder for deep learning of images, labels and captions
  publication-title: Advances in Neural Information Processing Systems
– volume: 56
  start-page: 33
  year: 1999
  end-page: 39
  ident: bib0015
  article-title: Diagnostic criteria for parkinson disease
  publication-title: Arch. Neurol.
– volume: 12
  start-page: 783
  year: 1999
  end-page: 789
  ident: bib0210
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
– volume: 6
  start-page: 144
  year: 2012
  end-page: 161
  ident: bib0055
  article-title: Selection of vocal features for Parkinson’s disease diagnosis
  publication-title: Int. J. Data Min. Bioinform.
– volume: 52
  start-page: 198
  year: 2018
  end-page: 211
  ident: bib0095
  article-title: An efficient compression of ecg signals using deep convolutional autoencoders
  publication-title: Cognit. Syst. Res.
– start-page: 835
  year: 2016
  end-page: 851
  ident: bib0205
  article-title: An uncertain future: forecasting from static images using variational autoencoders
  publication-title: European Conference on Computer Vision
– volume: 59
  start-page: 1264
  year: 2012
  end-page: 1271
  ident: bib0070
  article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 79
  start-page: 368
  year: 2008
  end-page: 376
  ident: bib0010
  article-title: Parkinson’s disease: clinical features and diagnosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 16
  start-page: 917
  year: 2016
  end-page: 937
  ident: bib0215
  article-title: Support vector machines
  publication-title: Stata J.
– start-page: 1
  year: 2020
  end-page: 4
  ident: bib0175
  article-title: Stacked auto-encoder based time-frequency features of speech signal for parkinson disease prediction
  publication-title: 2020 International Conference on Artificial Intelligence and Signal Processing (AISP)
– start-page: 1
  year: 2020
  end-page: 16
  ident: bib0170
  article-title: Multi-variate vocal data analysis for detection of Parkinson disease using deep learning
  publication-title: Neural Comput. Appl.
– volume: 127
  start-page: 301
  year: 2016
  end-page: 317
  ident: bib0060
  article-title: Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease
  publication-title: Comput. Methods Progr. Biomed.
– volume: 50
  start-page: 1
  year: 2017
  end-page: 45
  ident: bib0105
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 54
  start-page: 90
  year: 2019
  end-page: 99
  ident: bib0040
  article-title: Examining multiple feature evaluation and classification methods for improving the diagnosis of Parkinson’s disease
  publication-title: Cogn. Syst. Res.
– volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: bib0155
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recognit. Lett.
– volume: 12
  year: 2017
  ident: bib0185
  article-title: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease
  publication-title: PLOS ONE
– volume: 95
  start-page: 48
  year: 2019
  end-page: 63
  ident: bib0115
  article-title: A survey on computer-assisted Parkinson’s disease diagnosis
  publication-title: Artif. Intell. Med.
– year: 2017
  ident: bib0090
  article-title: Deep features learning for medical image analysis with convolutional autoencoder neural network
  publication-title: IEEE Trans. Big Data
– volume: 55
  start-page: 6547
  year: 2017
  end-page: 6565
  ident: bib0120
  article-title: Multiple kernel learning for hyperspectral image classification: a review
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 25
  start-page: 1902
  year: 2010
  end-page: 1908
  ident: bib0020
  article-title: Comparing exercise in Parkinson’s disease-the Berlin big study
  publication-title: Mov. Disord.
– volume: 40
  start-page: 504
  year: 2015
  ident: bib0025
  article-title: Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis
  publication-title: Pharm. Ther.
– volume: 137
  start-page: 22
  year: 2019
  end-page: 28
  ident: bib0030
  article-title: Early diagnosis of parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 209
  year: 2018
  end-page: 220
  ident: bib0160
  article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 85
  start-page: 189
  year: 2018
  end-page: 203
  ident: bib0200
  article-title: Relief-based feature selection: introduction and review
  publication-title: J. Biomed. Inform.
– volume: 113
  start-page: 904
  year: 2014
  end-page: 913
  ident: bib0080
  article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease
  publication-title: Comput. Methods Progr. Biomed.
– volume: 74
  start-page: 255
  year: 2019
  end-page: 263
  ident: bib0035
  article-title: A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform
  publication-title: Appl. Soft Comput.
– start-page: 1164
  year: 2019
  end-page: 1172
  ident: bib0230
  article-title: Comparison of different dimensionality reduction methods in the detection of Parkinson’s disease
  publication-title: Eur. J. Sci. Technol.
– volume: 63
  start-page: 102165.
  year: 2020
  ident: bib0075
  article-title: Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson’s disease
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 1980
  year: 2020
  end-page: 1989
  ident: bib0165
  article-title: Unified deep learning approach for prediction of Parkinson’s disease
  publication-title: IET Image Process.
– volume: 63
  start-page: 102165.
  year: 2020
  ident: 10.1016/j.bspc.2021.102452_bib0075
  article-title: Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson’s disease
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102165
– start-page: 2352
  year: 2016
  ident: 10.1016/j.bspc.2021.102452_bib0110
  article-title: Variational autoencoder for deep learning of images, labels and captions
– volume: 6
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0150
  article-title: Automatic diagnosis of Parkinson’s disease by applying ica methods to tqwt features
  publication-title: BSEU J. Sci.
– start-page: 835
  year: 2016
  ident: 10.1016/j.bspc.2021.102452_bib0205
  article-title: An uncertain future: forecasting from static images using variational autoencoders
  publication-title: European Conference on Computer Vision
– volume: 16
  start-page: 917
  issue: 4
  year: 2016
  ident: 10.1016/j.bspc.2021.102452_bib0215
  article-title: Support vector machines
  publication-title: Stata J.
  doi: 10.1177/1536867X1601600407
– volume: 10
  start-page: 226
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0100
  article-title: Predicting parkinson’s disease genes based on node2vec and autoencoder
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00226
– volume: 110
  start-page: 182
  year: 2018
  ident: 10.1016/j.bspc.2021.102452_bib0145
  article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.003
– start-page: 372
  year: 2014
  ident: 10.1016/j.bspc.2021.102452_bib0190
  article-title: A survey of feature selection and feature extraction techniques in machine learning
– start-page: 1164
  issue: 17
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0230
  article-title: Comparison of different dimensionality reduction methods in the detection of Parkinson’s disease
  publication-title: Eur. J. Sci. Technol.
  doi: 10.31590/ejosat.655795
– volume: 59
  start-page: 1264
  issue: 5
  year: 2012
  ident: 10.1016/j.bspc.2021.102452_bib0070
  article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2183367
– volume: 12
  issue: 8
  year: 2017
  ident: 10.1016/j.bspc.2021.102452_bib0185
  article-title: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease
  publication-title: PLOS ONE
– year: 2018
  ident: 10.1016/j.bspc.2021.102452_bib0220
– volume: 77
  start-page: 4379
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2021.102452_bib0125
  article-title: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5515-y
– volume: 54
  start-page: 90
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0040
  article-title: Examining multiple feature evaluation and classification methods for improving the diagnosis of Parkinson’s disease
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.12.004
– volume: 7
  start-page: 115540
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0130
  article-title: Deep learning-based Parkinson’s disease classification using vocal feature sets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936564
– volume: 23
  start-page: 443
  issue: 4–5
  year: 2002
  ident: 10.1016/j.bspc.2021.102452_bib0005
  article-title: Parkinson’s disease: current and future challenges
  publication-title: Neurotoxicology
  doi: 10.1016/S0161-813X(02)00098-0
– volume: 40
  start-page: 505
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102452_bib0135
  article-title: Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.01.003
– volume: 25
  start-page: 4829
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2021.102452_bib0045
  article-title: Stock daily return prediction using expanded features and feature selection
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1704-256
– volume: 113
  start-page: 904
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2021.102452_bib0080
  article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2014.01.004
– volume: 21
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2021.102452_bib0085
  article-title: Classification and clustering of Parkinson’s and healthy control gait dynamics using lda and k-means
  publication-title: Int. J. Bioautom.
– volume: 95
  start-page: 48
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0115
  article-title: A survey on computer-assisted Parkinson’s disease diagnosis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.08.007
– volume: 14
  start-page: 1980
  issue: 10
  year: 2020
  ident: 10.1016/j.bspc.2021.102452_bib0165
  article-title: Unified deep learning approach for prediction of Parkinson’s disease
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.1526
– volume: 90
  start-page: 250
  year: 2017
  ident: 10.1016/j.bspc.2021.102452_bib0180
  article-title: Speaker identification features extraction methods: a systematic review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.015
– start-page: 109678
  year: 2020
  ident: 10.1016/j.bspc.2021.102452_bib0225
  article-title: Parkinson disease classification using one against all based data sampling with the acoustic features from the speech signals
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109678
– year: 2017
  ident: 10.1016/j.bspc.2021.102452_bib0090
  article-title: Deep features learning for medical image analysis with convolutional autoencoder neural network
  publication-title: IEEE Trans. Big Data
– volume: 4
  start-page: 2278
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2021.102452_bib0140
  article-title: Automatic recognition of Parkinson’s disease via artificial neural network and support vector machine
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– volume: 50
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2021.102452_bib0105
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3136625
– volume: 6
  start-page: 144
  issue: 2
  year: 2012
  ident: 10.1016/j.bspc.2021.102452_bib0055
  article-title: Selection of vocal features for Parkinson’s disease diagnosis
  publication-title: Int. J. Data Min. Bioinform.
  doi: 10.1504/IJDMB.2012.048196
– volume: 12
  start-page: 209
  year: 2018
  ident: 10.1016/j.bspc.2021.102452_bib0160
  article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2840679
– volume: 119
  start-page: 3
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0155
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 52
  start-page: 198
  year: 2018
  ident: 10.1016/j.bspc.2021.102452_bib0095
  article-title: An efficient compression of ecg signals using deep convolutional autoencoders
  publication-title: Cognit. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.004
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102452_bib0170
  article-title: Multi-variate vocal data analysis for detection of Parkinson disease using deep learning
  publication-title: Neural Comput. Appl.
– volume: 85
  start-page: 189
  year: 2018
  ident: 10.1016/j.bspc.2021.102452_bib0200
  article-title: Relief-based feature selection: introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– volume: 74
  start-page: 255
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0035
  article-title: A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.022
– volume: 127
  start-page: 301
  year: 2016
  ident: 10.1016/j.bspc.2021.102452_bib0060
  article-title: Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2015.12.011
– volume: 8
  start-page: 364
  issue: 4
  year: 2013
  ident: 10.1016/j.bspc.2021.102452_bib0065
  article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.02.006
– volume: 56
  start-page: 33
  issue: 1
  year: 1999
  ident: 10.1016/j.bspc.2021.102452_bib0015
  article-title: Diagnostic criteria for parkinson disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.56.1.33
– volume: 25
  start-page: 1902
  issue: 12
  year: 2010
  ident: 10.1016/j.bspc.2021.102452_bib0020
  article-title: Comparing exercise in Parkinson’s disease-the Berlin big study
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23212
– volume: 79
  start-page: 368
  issue: 4
  year: 2008
  ident: 10.1016/j.bspc.2021.102452_bib0010
  article-title: Parkinson’s disease: clinical features and diagnosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.131045
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102452_bib0175
  article-title: Stacked auto-encoder based time-frequency features of speech signal for parkinson disease prediction
– volume: 40
  start-page: 211
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102452_bib0050
  article-title: Automated detection of parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.05.006
– start-page: 668
  year: 2001
  ident: 10.1016/j.bspc.2021.102452_bib0195
  article-title: Feature selection for svms
– volume: 12
  start-page: 783
  issue: 6
  year: 1999
  ident: 10.1016/j.bspc.2021.102452_bib0210
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00032-5
– volume: 137
  start-page: 22
  year: 2019
  ident: 10.1016/j.bspc.2021.102452_bib0030
  article-title: Early diagnosis of parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.06.052
– volume: 55
  start-page: 6547
  issue: 11
  year: 2017
  ident: 10.1016/j.bspc.2021.102452_bib0120
  article-title: Multiple kernel learning for hyperspectral image classification: a review
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2729882
– volume: 40
  start-page: 504
  issue: 8
  year: 2015
  ident: 10.1016/j.bspc.2021.102452_bib0025
  article-title: Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis
  publication-title: Pharm. Ther.
SSID ssj0048714
Score 2.4942596
Snippet •Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102452
SubjectTerms Dimensionality reduction
Fisher score
Multi-Kernel SVM
Parkinson's disease prediction
Relief
Variational autoencoder
Title An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson's disease classification
URI https://dx.doi.org/10.1016/j.bspc.2021.102452
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD0IHiS2yW6yybEUS1XsRQu9hX1KRdLSph79Ff5gdzabUkF68JhkBsLOZufb7DffIHRNjLQgOLHfNzFxQE2qAhFGOsi4DDXRWcYM_Bp4HiXDMX2cxJMG6te1MECr9Gt_taa71drf6fjR7Myn086LxdJJancnUehwLhSaU8qgi8Hd15rmYfG40_cG4wCsfeFMxfESyznIGEYhKBjQOPo7OW0knMEB2vdIEfeqlzlEDV0cob0N_cBj9N0rsHYaEDZ1YAVC_ZXIhoXWeAGirDDsuOoSjYHi_obNFM7HA8heChvtdD3x0nXDAVteKPxp98_-HyHmq3IGWpfAd8b2OVRJu4KxmyX2hztYAgIHypFzOkHjwf1rfxj4NguBJElSBtxkOpYxESLu6tQQQniiLDA0RjGlNYE9Fo1kYoFgqC0aEyJjxIaRdYVWjIfkFDWLWaHPEJZCpFxE3DBBqehqwTXLmJIWdkZUZKSFwnp8c-k1yKEVxkdek83ec4hJDjHJq5i00O3aZ14pcGy1juuw5b_mUW5TxBa_83_6XaBduKq4PJeoWS5W-srClFK03Txso53ew9Nw9AMtxets
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MHEg1lht9steyREggpchITbpk-DMQvh4dFf4Q-20y0EE8PB67aTbDrdzjfdb75B6JYYaUFwYr9vYmgQm7oKRBjpIOUy1ESnKTNwNdDtJe1B_DykwxJqLmthgFbpz_7iTHentX9S9atZnYxG1VeLpZO6zU6i0OFcuoW2YxoxyMAevlY8DwvIncA3zA5guq-cKUheYjYBHcMoBAmDmEZ_R6e1iNM6QPseKuJG8TaHqKTzI7S3JiB4jL4bOdZOBMLGDqxAqb9Q2bDYGk9BlRXWHRdtojFw3N-wGcEP8gDCl8JGO2FPPHPtcGAuzxX-tAm0vyTEfDEfg9glEJ6xHYcyaVcxdjfD_u8OlgDBgXPkjE7QoPXYb7YD32chkCRJ5gE3qaaSEiFoTdcNIYQnyiJDYxRTWhNIsuJIJhYJhtrCMSFSRqwfWU1oxXhITlE5H-f6DGEpRJ2LiBsm4ljUtOCapUxJizujWKSkgsLl-mbSi5BDL4yPbMk2e8_AJxn4JCt8UkH3K5tJIcGxcTZdui37tZEyGyM22J3_0-4G7bT73U7Weeq9XKBdGCmIPZeoPJ8u9JXFLHNx7fbkD6nj7QE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+dimensionality+reduction+method+using+filter-based+feature+selection+and+variational+autoencoders+on+Parkinson%27s+disease+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gunduz%2C+Hakan&rft.date=2021-04-01&rft.issn=1746-8094&rft.volume=66&rft.spage=102452&rft_id=info:doi/10.1016%2Fj.bspc.2021.102452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon