An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson's disease classification
•Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the deep features.•The efficacy of the proposed model are assesed with Multi-Kernel SVM classifier.•Deep Relief features result in an accuracy of 0....
        Saved in:
      
    
          | Published in | Biomedical signal processing and control Vol. 66; p. 102452 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.04.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1746-8094 1746-8108  | 
| DOI | 10.1016/j.bspc.2021.102452 | 
Cover
| Abstract | •Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the deep features.•The efficacy of the proposed model are assesed with Multi-Kernel SVM classifier.•Deep Relief features result in an accuracy of 0.916 with 0.772 MCC rates.•All reduced feature sets have higher MCC rates than the features without selection.
Parkinson's disease (Pd) is a progressive disease caused by the loss of brain cells and brings about speech and pronunciation defects during the early stages. This study revealed a Pd classification system based on vocal features extracted from the voice recordings of the individuals and proposed a hybrid dimensionality reduction methods to extract robust features. Proposed method took advantage of the prominent aspects of Variational Autoencoders (VAE) and filter-based feature selection models. Relief and Fisher Score were selected as filter-based methods for their effective performance in handling noisy data while VAE was used as a feature extractor due to the capability of preserving the regular latent space properties during the feature generation. In order to assess the effectiveness of the devised method, multi-kernel Support Vector Machines (SVM) classifier were trained with obtained deep feature representations. The combination of deep Relief features and SVM with multiple kernels distinguished Pd individuals from healthy subjects with an accuracy of 0.916 with 0.772 Matthews Correlation Coefficient (MCC) rates using only 30 features. Compared to results obtained without dimensionality reduction, proposed model provided approximately 9% and 22% improvements on accuracy and MCC rates, respectively. All experimental results showed that models trained with the deep features had higher accuracy and MCC rates with those trained with Fisher Score and Relief selected features. In addition, all models trained with reduced features had higher classification performance than the model without selection. It was also concluded that using multiple kernels in the SVM boosted the classification performance. | 
    
|---|---|
| AbstractList | •Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the deep features.•The efficacy of the proposed model are assesed with Multi-Kernel SVM classifier.•Deep Relief features result in an accuracy of 0.916 with 0.772 MCC rates.•All reduced feature sets have higher MCC rates than the features without selection.
Parkinson's disease (Pd) is a progressive disease caused by the loss of brain cells and brings about speech and pronunciation defects during the early stages. This study revealed a Pd classification system based on vocal features extracted from the voice recordings of the individuals and proposed a hybrid dimensionality reduction methods to extract robust features. Proposed method took advantage of the prominent aspects of Variational Autoencoders (VAE) and filter-based feature selection models. Relief and Fisher Score were selected as filter-based methods for their effective performance in handling noisy data while VAE was used as a feature extractor due to the capability of preserving the regular latent space properties during the feature generation. In order to assess the effectiveness of the devised method, multi-kernel Support Vector Machines (SVM) classifier were trained with obtained deep feature representations. The combination of deep Relief features and SVM with multiple kernels distinguished Pd individuals from healthy subjects with an accuracy of 0.916 with 0.772 Matthews Correlation Coefficient (MCC) rates using only 30 features. Compared to results obtained without dimensionality reduction, proposed model provided approximately 9% and 22% improvements on accuracy and MCC rates, respectively. All experimental results showed that models trained with the deep features had higher accuracy and MCC rates with those trained with Fisher Score and Relief selected features. In addition, all models trained with reduced features had higher classification performance than the model without selection. It was also concluded that using multiple kernels in the SVM boosted the classification performance. | 
    
| ArticleNumber | 102452 | 
    
| Author | Gunduz, Hakan | 
    
| Author_xml | – sequence: 1 givenname: Hakan surname: Gunduz fullname: Gunduz, Hakan organization: Software Engineering Department, Engineering and Natural Sciences Faculty, Bandirma Onyedi Eylul University, 10200, Bandirma, Balikesir, Turkey  | 
    
| BookMark | eNp9kLtOBCEUhonRxHX1BazorGaFYa6JjTHeEhMttCYMHJR1ltlwGBPfwweW2dHGwooDh-_n8B2RfT94IOSUsxVnvDpfrzrc6lXOcp4O8qLM98iC10WVNZw1-781a4tDcoS4Zqxoal4syNelp2Ct0w58pMZtwKMbvOpd_KQBzKhj2tINxLfB0BGdf6XW9RFC1ikEQy2oOAagCD3Md5U39EMFp-IuiKoxDuD1YCAgTf0nFd6dx8GfYXoQIcVQ3StEl8bYQcfkwKoe4eRnXZKXm-vnq7vs4fH2_uryIdOiqmKmbAulLkXXlQwaK4RQleGitdbUBkDkFW-LXFciKQJWtl3X1kJAW7MOTK24WJJmztVhQAxgpXZxN0EMyvWSMznZlWs52ZWTXTnbTWj-B90Gt1Hh83_oYoYgferDQZA4eddgXEjypBncf_g3fb-asw | 
    
| CitedBy_id | crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1016_j_compbiomed_2024_109078 crossref_primary_10_3390_min11080846 crossref_primary_10_7717_peerj_cs_988 crossref_primary_10_3390_ijms25147978 crossref_primary_10_3389_fenrg_2022_1012721 crossref_primary_10_3390_electronics10141740 crossref_primary_10_1007_s42600_023_00335_2 crossref_primary_10_1016_j_bspc_2023_105472 crossref_primary_10_1186_s40854_021_00243_3 crossref_primary_10_3390_bioengineering10050588 crossref_primary_10_1016_j_bspc_2023_105358 crossref_primary_10_1016_j_bbe_2022_06_007 crossref_primary_10_3233_IDA_215826 crossref_primary_10_7717_peerj_cs_1702 crossref_primary_10_1080_13682199_2023_2204038 crossref_primary_10_1007_s40031_022_00851_2 crossref_primary_10_1177_20552076231173569 crossref_primary_10_1016_j_arr_2024_102285 crossref_primary_10_1016_j_ins_2022_12_098 crossref_primary_10_1109_TIM_2024_3351248 crossref_primary_10_1016_j_eswa_2025_126503 crossref_primary_10_1007_s12553_023_00810_x crossref_primary_10_3390_diagnostics12123000 crossref_primary_10_1177_17483026231215186 crossref_primary_10_1016_j_engappai_2022_105737 crossref_primary_10_1016_j_eswa_2023_119651 crossref_primary_10_32604_cmc_2024_044963 crossref_primary_10_1080_13682199_2023_2200060 crossref_primary_10_1007_s00521_023_08508_x crossref_primary_10_1109_ACCESS_2022_3150774 crossref_primary_10_1080_19420889_2022_2153648 crossref_primary_10_1016_j_knosys_2024_112589 crossref_primary_10_3390_bdcc6010024 crossref_primary_10_2196_46105 crossref_primary_10_3233_IDA_216493 crossref_primary_10_3390_agriculture11080707 crossref_primary_10_1007_s10278_021_00558_8 crossref_primary_10_1108_JSM_04_2024_0156 crossref_primary_10_1016_j_heliyon_2024_e38470 crossref_primary_10_1016_j_bspc_2022_104140 crossref_primary_10_3390_electronics10202534 crossref_primary_10_3389_fnins_2022_957181 crossref_primary_10_1002_cpe_8089 crossref_primary_10_1016_j_bspc_2022_103691 crossref_primary_10_1080_02648725_2023_2200333 crossref_primary_10_1016_j_bbe_2021_04_014 crossref_primary_10_1051_e3sconf_202455601011 crossref_primary_10_1109_ACCESS_2025_3549630 crossref_primary_10_32604_cmc_2022_024545 crossref_primary_10_1016_j_compbiomed_2021_104841 crossref_primary_10_1109_ACCESS_2024_3487001 crossref_primary_10_3390_diagnostics15010073 crossref_primary_10_1007_s00521_021_06612_4 crossref_primary_10_1007_s11042_024_20276_x crossref_primary_10_1016_j_procs_2024_04_221 crossref_primary_10_3233_JIFS_230183 crossref_primary_10_5188_ijsmer_25_102 crossref_primary_10_1007_s42979_024_03187_4 crossref_primary_10_1080_03772063_2024_2409677 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1007_s10044_024_01289_6  | 
    
| Cites_doi | 10.1016/j.bspc.2020.102165 10.1177/1536867X1601600407 10.3389/fgene.2019.00226 10.1016/j.eswa.2018.06.003 10.31590/ejosat.655795 10.1109/TBME.2012.2183367 10.1007/s11042-017-5515-y 10.1016/j.cogsys.2018.12.004 10.1109/ACCESS.2019.2936564 10.1016/S0161-813X(02)00098-0 10.1016/j.bbe.2020.01.003 10.3906/elk-1704-256 10.1016/j.cmpb.2014.01.004 10.1016/j.artmed.2018.08.007 10.1049/iet-ipr.2019.1526 10.1016/j.eswa.2017.08.015 10.1016/j.mehy.2020.109678 10.1145/3136625 10.1504/IJDMB.2012.048196 10.1109/RBME.2018.2840679 10.1016/j.patrec.2018.02.010 10.1016/j.cogsys.2018.07.004 10.1016/j.jbi.2018.07.014 10.1016/j.asoc.2018.10.022 10.1016/j.cmpb.2015.12.011 10.1016/j.bspc.2013.02.006 10.1001/archneur.56.1.33 10.1002/mds.23212 10.1136/jnnp.2007.131045 10.1016/j.bbe.2019.05.006 10.1016/S0893-6080(99)00032-5 10.1016/j.eswa.2019.06.052 10.1109/TGRS.2017.2729882  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.bspc.2021.102452 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1746-8108 | 
    
| ExternalDocumentID | 10_1016_j_bspc_2021_102452 S1746809421000495  | 
    
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c366t-af9e5c53bb50e8f333a6d139ffd7dee3261942c63101e059bb9733e970bed7a13 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1746-8094 | 
    
| IngestDate | Wed Oct 29 21:19:21 EDT 2025 Thu Apr 24 23:13:24 EDT 2025 Fri Feb 23 02:44:47 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Dimensionality reduction Variational autoencoder Fisher score Multi-Kernel SVM Parkinson's disease prediction Relief  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c366t-af9e5c53bb50e8f333a6d139ffd7dee3261942c63101e059bb9733e970bed7a13 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_102452 crossref_primary_10_1016_j_bspc_2021_102452 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102452  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2021 2021-04-00  | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Biomedical signal processing and control | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Gunduz (bib0130) 2019; 7 Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (bib0105) 2017; 50 Langston (bib0005) 2002; 23 Hariharan, Polat, Sindhu (bib0080) 2014; 113 Gelb, Oliver, Gilman (bib0015) 1999; 56 Nagasubramanian, Sankayya (bib0170) 2020 Khalid, Khalil, Nasreen (bib0190) 2014 Yücelbaş, Yücelbaş (bib0150) 2019; 6 Chollet (bib0220) 2018 Jankovic (bib0010) 2008; 79 Walker, Doersch, Gupta, Hebert (bib0205) 2016 Gu, Chanussot, Jia, Benediktsson (bib0120) 2017; 55 Manogaran, Varatharajan, Priyan (bib0125) 2018; 77 Polat, Nour (bib0225) 2020 Karan, Sahu, Mahto (bib0175) 2020 Ebersbach, Ebersbach, Edler, Kaufhold, Kusch, Kupsch, Wissel (bib0020) 2010; 25 Peng, Guan, Shang (bib0100) 2019; 10 Sakar, Serbes, Gunduz, Tunc, Nizam, Sakar, Tutuncu, Aydin, Isenkul, Apaydin (bib0035) 2019; 74 Guenther, Schonlau (bib0215) 2016; 16 Tirumala, Shahamiri, Garhwal, Wang (bib0180) 2017; 90 Liu, Li, Tan, Wang, Zhang (bib0075) 2020; 63 Chen, Shi, Zhang, Wu, Guizani (bib0090) 2017 Zuo, Wang, Liu, Chen (bib0065) 2013; 8 Wang, Chen, Hao, Peng, Hu (bib0155) 2019; 119 Impedovo, Pirlo (bib0160) 2018; 12 Mostafa, Mustapha, Mohammed, Hamed, Arunkumar, Ghani, Jaber, Khaleefah (bib0040) 2019; 54 Ali, Zhu, Zhou, Liu (bib0030) 2019; 137 Galaz, Mekyska, Mzourek, Smekal, Rektorova, Eliasova, Kostalova, Mrackova, Berankova (bib0060) 2016; 127 Sharma, Giri (bib0140) 2014; 4 Urbanowicz, Meeker, La Cava, Olson, Moore (bib0200) 2018; 85 DeMaagd, Philip (bib0025) 2015; 40 Tuncer, Dogan, Acharya (bib0050) 2020; 40 Pereira, Pereira, Weber, Hook, de Albuquerque, Papa (bib0115) 2019; 95 Amari, Wu (bib0210) 1999; 12 Wingate, Kollia, Bidaut, Kollias (bib0165) 2020; 14 Sakar, Serbes, Sakar (bib0185) 2017; 12 Tsanas, Little, McSharry, Spielman, Ramig (bib0070) 2012; 59 Gündüz (bib0230) 2019 Yildirim, San Tan, Acharya (bib0095) 2018; 52 Kursun, Gumus, Sertbas, Favorov (bib0055) 2012; 6 Weston, Mukherjee, Chapelle, Pontil, Poggio, Vapnik (bib0195) 2001 Pu, Gan, Henao, Yuan, Li, Stevens, Carin (bib0110) 2016 Solana-Lavalle, Galán-Hernández, Rosas-Romero (bib0135) 2020; 40 Bhoi (bib0085) 2017; 21 Gündüz, Çataltepe, Yaslan (bib0045) 2017; 25 Parisi, RaviChandran, Manaog (bib0145) 2018; 110 Peng (10.1016/j.bspc.2021.102452_bib0100) 2019; 10 Gündüz (10.1016/j.bspc.2021.102452_bib0230) 2019 Tuncer (10.1016/j.bspc.2021.102452_bib0050) 2020; 40 Weston (10.1016/j.bspc.2021.102452_bib0195) 2001 Nagasubramanian (10.1016/j.bspc.2021.102452_bib0170) 2020 Urbanowicz (10.1016/j.bspc.2021.102452_bib0200) 2018; 85 Sharma (10.1016/j.bspc.2021.102452_bib0140) 2014; 4 Hariharan (10.1016/j.bspc.2021.102452_bib0080) 2014; 113 Khalid (10.1016/j.bspc.2021.102452_bib0190) 2014 Wingate (10.1016/j.bspc.2021.102452_bib0165) 2020; 14 Tirumala (10.1016/j.bspc.2021.102452_bib0180) 2017; 90 Langston (10.1016/j.bspc.2021.102452_bib0005) 2002; 23 Zuo (10.1016/j.bspc.2021.102452_bib0065) 2013; 8 Yildirim (10.1016/j.bspc.2021.102452_bib0095) 2018; 52 Li (10.1016/j.bspc.2021.102452_bib0105) 2017; 50 Walker (10.1016/j.bspc.2021.102452_bib0205) 2016 Polat (10.1016/j.bspc.2021.102452_bib0225) 2020 Solana-Lavalle (10.1016/j.bspc.2021.102452_bib0135) 2020; 40 Jankovic (10.1016/j.bspc.2021.102452_bib0010) 2008; 79 Pereira (10.1016/j.bspc.2021.102452_bib0115) 2019; 95 Gunduz (10.1016/j.bspc.2021.102452_bib0130) 2019; 7 Pu (10.1016/j.bspc.2021.102452_bib0110) 2016 Manogaran (10.1016/j.bspc.2021.102452_bib0125) 2018; 77 Gelb (10.1016/j.bspc.2021.102452_bib0015) 1999; 56 Ali (10.1016/j.bspc.2021.102452_bib0030) 2019; 137 Sakar (10.1016/j.bspc.2021.102452_bib0035) 2019; 74 Parisi (10.1016/j.bspc.2021.102452_bib0145) 2018; 110 Guenther (10.1016/j.bspc.2021.102452_bib0215) 2016; 16 Yücelbaş (10.1016/j.bspc.2021.102452_bib0150) 2019; 6 Galaz (10.1016/j.bspc.2021.102452_bib0060) 2016; 127 Karan (10.1016/j.bspc.2021.102452_bib0175) 2020 DeMaagd (10.1016/j.bspc.2021.102452_bib0025) 2015; 40 Mostafa (10.1016/j.bspc.2021.102452_bib0040) 2019; 54 Chen (10.1016/j.bspc.2021.102452_bib0090) 2017 Liu (10.1016/j.bspc.2021.102452_bib0075) 2020; 63 Ebersbach (10.1016/j.bspc.2021.102452_bib0020) 2010; 25 Gu (10.1016/j.bspc.2021.102452_bib0120) 2017; 55 Impedovo (10.1016/j.bspc.2021.102452_bib0160) 2018; 12 Tsanas (10.1016/j.bspc.2021.102452_bib0070) 2012; 59 Amari (10.1016/j.bspc.2021.102452_bib0210) 1999; 12 Bhoi (10.1016/j.bspc.2021.102452_bib0085) 2017; 21 Wang (10.1016/j.bspc.2021.102452_bib0155) 2019; 119 Sakar (10.1016/j.bspc.2021.102452_bib0185) 2017; 12 Kursun (10.1016/j.bspc.2021.102452_bib0055) 2012; 6 Chollet (10.1016/j.bspc.2021.102452_bib0220) 2018 Gündüz (10.1016/j.bspc.2021.102452_bib0045) 2017; 25  | 
    
| References_xml | – volume: 23 start-page: 443 year: 2002 end-page: 450 ident: bib0005 article-title: Parkinson’s disease: current and future challenges publication-title: Neurotoxicology – volume: 110 start-page: 182 year: 2018 end-page: 190 ident: bib0145 article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease publication-title: Expert Syst. Appl. – volume: 90 start-page: 250 year: 2017 end-page: 271 ident: bib0180 article-title: Speaker identification features extraction methods: a systematic review publication-title: Expert Syst. Appl. – volume: 4 start-page: 2278 year: 2014 end-page: 3075 ident: bib0140 article-title: Automatic recognition of Parkinson’s disease via artificial neural network and support vector machine publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) – start-page: 668 year: 2001 end-page: 674 ident: bib0195 article-title: Feature selection for svms publication-title: Advances in Neural Information Processing Systems – volume: 6 year: 2019 ident: bib0150 article-title: Automatic diagnosis of Parkinson’s disease by applying ica methods to tqwt features publication-title: BSEU J. Sci. – year: 2018 ident: bib0220 article-title: Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek – start-page: 109678 year: 2020 ident: bib0225 article-title: Parkinson disease classification using one against all based data sampling with the acoustic features from the speech signals publication-title: Med. Hypotheses – volume: 8 start-page: 364 year: 2013 end-page: 373 ident: bib0065 article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach publication-title: Biomed. Signal Process. Control – volume: 7 start-page: 115540 year: 2019 end-page: 115551 ident: bib0130 article-title: Deep learning-based Parkinson’s disease classification using vocal feature sets publication-title: IEEE Access – volume: 40 start-page: 505 year: 2020 end-page: 516 ident: bib0135 article-title: Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features publication-title: Biocybern. Biomed. Eng. – volume: 25 start-page: 4829 year: 2017 end-page: 4840 ident: bib0045 article-title: Stock daily return prediction using expanded features and feature selection publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 21 year: 2017 ident: bib0085 article-title: Classification and clustering of Parkinson’s and healthy control gait dynamics using lda and k-means publication-title: Int. J. Bioautom. – start-page: 372 year: 2014 end-page: 378 ident: bib0190 article-title: A survey of feature selection and feature extraction techniques in machine learning publication-title: 2014 Science and Information Conference – volume: 10 start-page: 226 year: 2019 ident: bib0100 article-title: Predicting parkinson’s disease genes based on node2vec and autoencoder publication-title: Front. Genet. – volume: 77 start-page: 4379 year: 2018 end-page: 4399 ident: bib0125 article-title: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system publication-title: Multimed. Tools Appl. – volume: 40 start-page: 211 year: 2020 end-page: 220 ident: bib0050 article-title: Automated detection of parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels publication-title: Biocybern. Biomed. Eng. – start-page: 2352 year: 2016 end-page: 2360 ident: bib0110 article-title: Variational autoencoder for deep learning of images, labels and captions publication-title: Advances in Neural Information Processing Systems – volume: 56 start-page: 33 year: 1999 end-page: 39 ident: bib0015 article-title: Diagnostic criteria for parkinson disease publication-title: Arch. Neurol. – volume: 12 start-page: 783 year: 1999 end-page: 789 ident: bib0210 article-title: Improving support vector machine classifiers by modifying kernel functions publication-title: Neural Netw. – volume: 6 start-page: 144 year: 2012 end-page: 161 ident: bib0055 article-title: Selection of vocal features for Parkinson’s disease diagnosis publication-title: Int. J. Data Min. Bioinform. – volume: 52 start-page: 198 year: 2018 end-page: 211 ident: bib0095 article-title: An efficient compression of ecg signals using deep convolutional autoencoders publication-title: Cognit. Syst. Res. – start-page: 835 year: 2016 end-page: 851 ident: bib0205 article-title: An uncertain future: forecasting from static images using variational autoencoders publication-title: European Conference on Computer Vision – volume: 59 start-page: 1264 year: 2012 end-page: 1271 ident: bib0070 article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. – volume: 79 start-page: 368 year: 2008 end-page: 376 ident: bib0010 article-title: Parkinson’s disease: clinical features and diagnosis publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 16 start-page: 917 year: 2016 end-page: 937 ident: bib0215 article-title: Support vector machines publication-title: Stata J. – start-page: 1 year: 2020 end-page: 4 ident: bib0175 article-title: Stacked auto-encoder based time-frequency features of speech signal for parkinson disease prediction publication-title: 2020 International Conference on Artificial Intelligence and Signal Processing (AISP) – start-page: 1 year: 2020 end-page: 16 ident: bib0170 article-title: Multi-variate vocal data analysis for detection of Parkinson disease using deep learning publication-title: Neural Comput. Appl. – volume: 127 start-page: 301 year: 2016 end-page: 317 ident: bib0060 article-title: Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease publication-title: Comput. Methods Progr. Biomed. – volume: 50 start-page: 1 year: 2017 end-page: 45 ident: bib0105 article-title: Feature selection: a data perspective publication-title: ACM Comput. Surv. (CSUR) – volume: 54 start-page: 90 year: 2019 end-page: 99 ident: bib0040 article-title: Examining multiple feature evaluation and classification methods for improving the diagnosis of Parkinson’s disease publication-title: Cogn. Syst. Res. – volume: 119 start-page: 3 year: 2019 end-page: 11 ident: bib0155 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recognit. Lett. – volume: 12 year: 2017 ident: bib0185 article-title: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease publication-title: PLOS ONE – volume: 95 start-page: 48 year: 2019 end-page: 63 ident: bib0115 article-title: A survey on computer-assisted Parkinson’s disease diagnosis publication-title: Artif. Intell. Med. – year: 2017 ident: bib0090 article-title: Deep features learning for medical image analysis with convolutional autoencoder neural network publication-title: IEEE Trans. Big Data – volume: 55 start-page: 6547 year: 2017 end-page: 6565 ident: bib0120 article-title: Multiple kernel learning for hyperspectral image classification: a review publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 25 start-page: 1902 year: 2010 end-page: 1908 ident: bib0020 article-title: Comparing exercise in Parkinson’s disease-the Berlin big study publication-title: Mov. Disord. – volume: 40 start-page: 504 year: 2015 ident: bib0025 article-title: Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis publication-title: Pharm. Ther. – volume: 137 start-page: 22 year: 2019 end-page: 28 ident: bib0030 article-title: Early diagnosis of parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection publication-title: Expert Syst. Appl. – volume: 12 start-page: 209 year: 2018 end-page: 220 ident: bib0160 article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective publication-title: IEEE Rev. Biomed. Eng. – volume: 85 start-page: 189 year: 2018 end-page: 203 ident: bib0200 article-title: Relief-based feature selection: introduction and review publication-title: J. Biomed. Inform. – volume: 113 start-page: 904 year: 2014 end-page: 913 ident: bib0080 article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease publication-title: Comput. Methods Progr. Biomed. – volume: 74 start-page: 255 year: 2019 end-page: 263 ident: bib0035 article-title: A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform publication-title: Appl. Soft Comput. – start-page: 1164 year: 2019 end-page: 1172 ident: bib0230 article-title: Comparison of different dimensionality reduction methods in the detection of Parkinson’s disease publication-title: Eur. J. Sci. Technol. – volume: 63 start-page: 102165. year: 2020 ident: bib0075 article-title: Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson’s disease publication-title: Biomed. Signal Process. Control – volume: 14 start-page: 1980 year: 2020 end-page: 1989 ident: bib0165 article-title: Unified deep learning approach for prediction of Parkinson’s disease publication-title: IET Image Process. – volume: 63 start-page: 102165. year: 2020 ident: 10.1016/j.bspc.2021.102452_bib0075 article-title: Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson’s disease publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102165 – start-page: 2352 year: 2016 ident: 10.1016/j.bspc.2021.102452_bib0110 article-title: Variational autoencoder for deep learning of images, labels and captions – volume: 6 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0150 article-title: Automatic diagnosis of Parkinson’s disease by applying ica methods to tqwt features publication-title: BSEU J. Sci. – start-page: 835 year: 2016 ident: 10.1016/j.bspc.2021.102452_bib0205 article-title: An uncertain future: forecasting from static images using variational autoencoders publication-title: European Conference on Computer Vision – volume: 16 start-page: 917 issue: 4 year: 2016 ident: 10.1016/j.bspc.2021.102452_bib0215 article-title: Support vector machines publication-title: Stata J. doi: 10.1177/1536867X1601600407 – volume: 10 start-page: 226 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0100 article-title: Predicting parkinson’s disease genes based on node2vec and autoencoder publication-title: Front. Genet. doi: 10.3389/fgene.2019.00226 – volume: 110 start-page: 182 year: 2018 ident: 10.1016/j.bspc.2021.102452_bib0145 article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.003 – start-page: 372 year: 2014 ident: 10.1016/j.bspc.2021.102452_bib0190 article-title: A survey of feature selection and feature extraction techniques in machine learning – start-page: 1164 issue: 17 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0230 article-title: Comparison of different dimensionality reduction methods in the detection of Parkinson’s disease publication-title: Eur. J. Sci. Technol. doi: 10.31590/ejosat.655795 – volume: 59 start-page: 1264 issue: 5 year: 2012 ident: 10.1016/j.bspc.2021.102452_bib0070 article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2183367 – volume: 12 issue: 8 year: 2017 ident: 10.1016/j.bspc.2021.102452_bib0185 article-title: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease publication-title: PLOS ONE – year: 2018 ident: 10.1016/j.bspc.2021.102452_bib0220 – volume: 77 start-page: 4379 issue: 4 year: 2018 ident: 10.1016/j.bspc.2021.102452_bib0125 article-title: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5515-y – volume: 54 start-page: 90 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0040 article-title: Examining multiple feature evaluation and classification methods for improving the diagnosis of Parkinson’s disease publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.12.004 – volume: 7 start-page: 115540 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0130 article-title: Deep learning-based Parkinson’s disease classification using vocal feature sets publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936564 – volume: 23 start-page: 443 issue: 4–5 year: 2002 ident: 10.1016/j.bspc.2021.102452_bib0005 article-title: Parkinson’s disease: current and future challenges publication-title: Neurotoxicology doi: 10.1016/S0161-813X(02)00098-0 – volume: 40 start-page: 505 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102452_bib0135 article-title: Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.01.003 – volume: 25 start-page: 4829 issue: 6 year: 2017 ident: 10.1016/j.bspc.2021.102452_bib0045 article-title: Stock daily return prediction using expanded features and feature selection publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1704-256 – volume: 113 start-page: 904 issue: 3 year: 2014 ident: 10.1016/j.bspc.2021.102452_bib0080 article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2014.01.004 – volume: 21 issue: 1 year: 2017 ident: 10.1016/j.bspc.2021.102452_bib0085 article-title: Classification and clustering of Parkinson’s and healthy control gait dynamics using lda and k-means publication-title: Int. J. Bioautom. – volume: 95 start-page: 48 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0115 article-title: A survey on computer-assisted Parkinson’s disease diagnosis publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.08.007 – volume: 14 start-page: 1980 issue: 10 year: 2020 ident: 10.1016/j.bspc.2021.102452_bib0165 article-title: Unified deep learning approach for prediction of Parkinson’s disease publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.1526 – volume: 90 start-page: 250 year: 2017 ident: 10.1016/j.bspc.2021.102452_bib0180 article-title: Speaker identification features extraction methods: a systematic review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.015 – start-page: 109678 year: 2020 ident: 10.1016/j.bspc.2021.102452_bib0225 article-title: Parkinson disease classification using one against all based data sampling with the acoustic features from the speech signals publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2020.109678 – year: 2017 ident: 10.1016/j.bspc.2021.102452_bib0090 article-title: Deep features learning for medical image analysis with convolutional autoencoder neural network publication-title: IEEE Trans. Big Data – volume: 4 start-page: 2278 issue: 3 year: 2014 ident: 10.1016/j.bspc.2021.102452_bib0140 article-title: Automatic recognition of Parkinson’s disease via artificial neural network and support vector machine publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) – volume: 50 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.bspc.2021.102452_bib0105 article-title: Feature selection: a data perspective publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3136625 – volume: 6 start-page: 144 issue: 2 year: 2012 ident: 10.1016/j.bspc.2021.102452_bib0055 article-title: Selection of vocal features for Parkinson’s disease diagnosis publication-title: Int. J. Data Min. Bioinform. doi: 10.1504/IJDMB.2012.048196 – volume: 12 start-page: 209 year: 2018 ident: 10.1016/j.bspc.2021.102452_bib0160 article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2018.2840679 – volume: 119 start-page: 3 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0155 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.010 – volume: 52 start-page: 198 year: 2018 ident: 10.1016/j.bspc.2021.102452_bib0095 article-title: An efficient compression of ecg signals using deep convolutional autoencoders publication-title: Cognit. Syst. Res. doi: 10.1016/j.cogsys.2018.07.004 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2021.102452_bib0170 article-title: Multi-variate vocal data analysis for detection of Parkinson disease using deep learning publication-title: Neural Comput. Appl. – volume: 85 start-page: 189 year: 2018 ident: 10.1016/j.bspc.2021.102452_bib0200 article-title: Relief-based feature selection: introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – volume: 74 start-page: 255 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0035 article-title: A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.022 – volume: 127 start-page: 301 year: 2016 ident: 10.1016/j.bspc.2021.102452_bib0060 article-title: Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2015.12.011 – volume: 8 start-page: 364 issue: 4 year: 2013 ident: 10.1016/j.bspc.2021.102452_bib0065 article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.02.006 – volume: 56 start-page: 33 issue: 1 year: 1999 ident: 10.1016/j.bspc.2021.102452_bib0015 article-title: Diagnostic criteria for parkinson disease publication-title: Arch. Neurol. doi: 10.1001/archneur.56.1.33 – volume: 25 start-page: 1902 issue: 12 year: 2010 ident: 10.1016/j.bspc.2021.102452_bib0020 article-title: Comparing exercise in Parkinson’s disease-the Berlin big study publication-title: Mov. Disord. doi: 10.1002/mds.23212 – volume: 79 start-page: 368 issue: 4 year: 2008 ident: 10.1016/j.bspc.2021.102452_bib0010 article-title: Parkinson’s disease: clinical features and diagnosis publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.131045 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2021.102452_bib0175 article-title: Stacked auto-encoder based time-frequency features of speech signal for parkinson disease prediction – volume: 40 start-page: 211 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102452_bib0050 article-title: Automated detection of parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.05.006 – start-page: 668 year: 2001 ident: 10.1016/j.bspc.2021.102452_bib0195 article-title: Feature selection for svms – volume: 12 start-page: 783 issue: 6 year: 1999 ident: 10.1016/j.bspc.2021.102452_bib0210 article-title: Improving support vector machine classifiers by modifying kernel functions publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00032-5 – volume: 137 start-page: 22 year: 2019 ident: 10.1016/j.bspc.2021.102452_bib0030 article-title: Early diagnosis of parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.06.052 – volume: 55 start-page: 6547 issue: 11 year: 2017 ident: 10.1016/j.bspc.2021.102452_bib0120 article-title: Multiple kernel learning for hyperspectral image classification: a review publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2729882 – volume: 40 start-page: 504 issue: 8 year: 2015 ident: 10.1016/j.bspc.2021.102452_bib0025 article-title: Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis publication-title: Pharm. Ther.  | 
    
| SSID | ssj0048714 | 
    
| Score | 2.4942596 | 
    
| Snippet | •Our study proposes a PD diagnosis system based on different types of vocal features.•Relief and Fisher Score methods are combined with VAE to generate the... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 102452 | 
    
| SubjectTerms | Dimensionality reduction Fisher score Multi-Kernel SVM Parkinson's disease prediction Relief Variational autoencoder  | 
    
| Title | An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson's disease classification | 
    
| URI | https://dx.doi.org/10.1016/j.bspc.2021.102452 | 
    
| Volume | 66 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD0IHiS2yW6yybEUS1XsRQu9hX1KRdLSph79Ff5gdzabUkF68JhkBsLOZufb7DffIHRNjLQgOLHfNzFxQE2qAhFGOsi4DDXRWcYM_Bp4HiXDMX2cxJMG6te1MECr9Gt_taa71drf6fjR7Myn086LxdJJancnUehwLhSaU8qgi8Hd15rmYfG40_cG4wCsfeFMxfESyznIGEYhKBjQOPo7OW0knMEB2vdIEfeqlzlEDV0cob0N_cBj9N0rsHYaEDZ1YAVC_ZXIhoXWeAGirDDsuOoSjYHi_obNFM7HA8heChvtdD3x0nXDAVteKPxp98_-HyHmq3IGWpfAd8b2OVRJu4KxmyX2hztYAgIHypFzOkHjwf1rfxj4NguBJElSBtxkOpYxESLu6tQQQniiLDA0RjGlNYE9Fo1kYoFgqC0aEyJjxIaRdYVWjIfkFDWLWaHPEJZCpFxE3DBBqehqwTXLmJIWdkZUZKSFwnp8c-k1yKEVxkdek83ec4hJDjHJq5i00O3aZ14pcGy1juuw5b_mUW5TxBa_83_6XaBduKq4PJeoWS5W-srClFK03Txso53ew9Nw9AMtxets | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MHEg1lht9steyREggpchITbpk-DMQvh4dFf4Q-20y0EE8PB67aTbDrdzjfdb75B6JYYaUFwYr9vYmgQm7oKRBjpIOUy1ESnKTNwNdDtJe1B_DykwxJqLmthgFbpz_7iTHentX9S9atZnYxG1VeLpZO6zU6i0OFcuoW2YxoxyMAevlY8DwvIncA3zA5guq-cKUheYjYBHcMoBAmDmEZ_R6e1iNM6QPseKuJG8TaHqKTzI7S3JiB4jL4bOdZOBMLGDqxAqb9Q2bDYGk9BlRXWHRdtojFw3N-wGcEP8gDCl8JGO2FPPHPtcGAuzxX-tAm0vyTEfDEfg9glEJ6xHYcyaVcxdjfD_u8OlgDBgXPkjE7QoPXYb7YD32chkCRJ5gE3qaaSEiFoTdcNIYQnyiJDYxRTWhNIsuJIJhYJhtrCMSFSRqwfWU1oxXhITlE5H-f6DGEpRJ2LiBsm4ljUtOCapUxJizujWKSkgsLl-mbSi5BDL4yPbMk2e8_AJxn4JCt8UkH3K5tJIcGxcTZdui37tZEyGyM22J3_0-4G7bT73U7Weeq9XKBdGCmIPZeoPJ8u9JXFLHNx7fbkD6nj7QE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+dimensionality+reduction+method+using+filter-based+feature+selection+and+variational+autoencoders+on+Parkinson%27s+disease+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gunduz%2C+Hakan&rft.date=2021-04-01&rft.issn=1746-8094&rft.volume=66&rft.spage=102452&rft_id=info:doi/10.1016%2Fj.bspc.2021.102452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102452 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |