Integrated DDPG-PSO energy management systems for enhanced battery cycling and efficient grid utilization
•Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration and exploitation stages.•Leverage DDPG's RL capabilities to achieve a robust EMS algorithm for energy environment with stochas...
Saved in:
| Published in | Energy nexus Vol. 18; p. 100448 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2772-4271 2772-4271 |
| DOI | 10.1016/j.nexus.2025.100448 |
Cover
| Abstract | •Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration and exploitation stages.•Leverage DDPG's RL capabilities to achieve a robust EMS algorithm for energy environment with stochastic renewable resources and increased system complexity in mid and long-term energy optimization problems.•Utilizing the PSO to optimize actor network parameters in the DDPG framework, resulting in optimal shallow battery scheduling compared to DDPG's deep cycling for extending the battery's lifespan.•Introducing flexibility in specifying actions has enhanced the effectiveness of the DDPG-PSO EMS, enabling it to significantly reduce grid capacity requirements and utilization compared to standalone DDPG and other metaheuristic methods.
Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic Policy Gradient (DDPG) with Particle Swarm Optimization (PSO) to enhance exploration and exploitation in the optimization process, aiming to improve energy resource utilization and reduce costs in hybrid energy systems. The integrated DDPG-PSO approach leverages DDPG's reinforcement learning and PSO's global search capabilities to enhance optimization solution quality. The PSO optimizes the DDPG actor-network parameters, providing a strong initial policy. DDPG then fine-tunes these parameters by interacting with the energy system, making decisions on battery scheduling and grid usage to maximize cost rewards. The results show that the integrated DDPG-PSO EMS outperforms the traditional DDPG in terms of battery scheduling and grid utilization efficiency. Cost evaluations under critical peak tariffs indicate that both EMS algorithms achieved a 34 % cost saving compared to a grid-only system. Under differential grid tariffs, the proposed DDPG-PSO approach achieved a 28 % cost reduction, outperforming the standalone DDPG, which achieved a 25 % saving. Notably, the DDPG-PSO effectively reduced overall grid dependency, yielding a total operational cost of $665.19, compared to $780.70 for the DDPG. resenting a 14.8 % reduction. The battery charge/discharge profiles further highlight the advantages of the DDPG-PSO strategy. It demonstrated more stable and efficient energy flow behavior, characterized by shallow cycling and partial discharges sustained over several hours. In contrast, the DDPG exhibited more aggressive deep cycling, fluctuating frequently between minimum and maximum charge levels. This improved energy flow management by DDPG-PSO not only reduces wear on the battery system but also promotes long-term sustainability and reliability in hybrid energy management. |
|---|---|
| AbstractList | Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic Policy Gradient (DDPG) with Particle Swarm Optimization (PSO) to enhance exploration and exploitation in the optimization process, aiming to improve energy resource utilization and reduce costs in hybrid energy systems. The integrated DDPG-PSO approach leverages DDPG's reinforcement learning and PSO's global search capabilities to enhance optimization solution quality. The PSO optimizes the DDPG actor-network parameters, providing a strong initial policy. DDPG then fine-tunes these parameters by interacting with the energy system, making decisions on battery scheduling and grid usage to maximize cost rewards. The results show that the integrated DDPG-PSO EMS outperforms the traditional DDPG in terms of battery scheduling and grid utilization efficiency. Cost evaluations under critical peak tariffs indicate that both EMS algorithms achieved a 34 % cost saving compared to a grid-only system. Under differential grid tariffs, the proposed DDPG-PSO approach achieved a 28 % cost reduction, outperforming the standalone DDPG, which achieved a 25 % saving. Notably, the DDPG-PSO effectively reduced overall grid dependency, yielding a total operational cost of $665.19, compared to $780.70 for the DDPG. resenting a 14.8 % reduction. The battery charge/discharge profiles further highlight the advantages of the DDPG-PSO strategy. It demonstrated more stable and efficient energy flow behavior, characterized by shallow cycling and partial discharges sustained over several hours. In contrast, the DDPG exhibited more aggressive deep cycling, fluctuating frequently between minimum and maximum charge levels. This improved energy flow management by DDPG-PSO not only reduces wear on the battery system but also promotes long-term sustainability and reliability in hybrid energy management. •Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration and exploitation stages.•Leverage DDPG's RL capabilities to achieve a robust EMS algorithm for energy environment with stochastic renewable resources and increased system complexity in mid and long-term energy optimization problems.•Utilizing the PSO to optimize actor network parameters in the DDPG framework, resulting in optimal shallow battery scheduling compared to DDPG's deep cycling for extending the battery's lifespan.•Introducing flexibility in specifying actions has enhanced the effectiveness of the DDPG-PSO EMS, enabling it to significantly reduce grid capacity requirements and utilization compared to standalone DDPG and other metaheuristic methods. Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic Policy Gradient (DDPG) with Particle Swarm Optimization (PSO) to enhance exploration and exploitation in the optimization process, aiming to improve energy resource utilization and reduce costs in hybrid energy systems. The integrated DDPG-PSO approach leverages DDPG's reinforcement learning and PSO's global search capabilities to enhance optimization solution quality. The PSO optimizes the DDPG actor-network parameters, providing a strong initial policy. DDPG then fine-tunes these parameters by interacting with the energy system, making decisions on battery scheduling and grid usage to maximize cost rewards. The results show that the integrated DDPG-PSO EMS outperforms the traditional DDPG in terms of battery scheduling and grid utilization efficiency. Cost evaluations under critical peak tariffs indicate that both EMS algorithms achieved a 34 % cost saving compared to a grid-only system. Under differential grid tariffs, the proposed DDPG-PSO approach achieved a 28 % cost reduction, outperforming the standalone DDPG, which achieved a 25 % saving. Notably, the DDPG-PSO effectively reduced overall grid dependency, yielding a total operational cost of $665.19, compared to $780.70 for the DDPG. resenting a 14.8 % reduction. The battery charge/discharge profiles further highlight the advantages of the DDPG-PSO strategy. It demonstrated more stable and efficient energy flow behavior, characterized by shallow cycling and partial discharges sustained over several hours. In contrast, the DDPG exhibited more aggressive deep cycling, fluctuating frequently between minimum and maximum charge levels. This improved energy flow management by DDPG-PSO not only reduces wear on the battery system but also promotes long-term sustainability and reliability in hybrid energy management. |
| ArticleNumber | 100448 |
| Author | Ibrahim, Oladimeji Low, Wen Yao Ayop, Razman Yahaya, Nor Zaihar Ayinla, Shehu Lukman Amosa, Temitope Ibrahim Aziz, Mohd Junaidi Abdul Dahiru, Ahmed Tijjani |
| Author_xml | – sequence: 1 givenname: Oladimeji surname: Ibrahim fullname: Ibrahim, Oladimeji email: ibrahimoladimeji@utm.my organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia – sequence: 2 givenname: Mohd Junaidi Abdul orcidid: 0000-0002-0476-5348 surname: Aziz fullname: Aziz, Mohd Junaidi Abdul email: junaidi@utm.my organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia – sequence: 3 givenname: Razman surname: Ayop fullname: Ayop, Razman email: razman.ayop@utm.my organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia – sequence: 4 givenname: Wen Yao surname: Low fullname: Low, Wen Yao email: wylow2@live.utm.my organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia – sequence: 5 givenname: Nor Zaihar surname: Yahaya fullname: Yahaya, Nor Zaihar email: norzaihar_yahaya@utp.edu.my organization: Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia – sequence: 6 givenname: Ahmed Tijjani surname: Dahiru fullname: Dahiru, Ahmed Tijjani email: tijjanidahiru.ahmad@utm.my organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia – sequence: 7 givenname: Temitope Ibrahim surname: Amosa fullname: Amosa, Temitope Ibrahim organization: Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA – sequence: 8 givenname: Shehu Lukman surname: Ayinla fullname: Ayinla, Shehu Lukman email: ayinla.sl@unilorin.edu.ng organization: Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia |
| BookMark | eNqNkMFO3DAQQC1EJSjlC7j4B7K14yRODhwQtLASEki0Z2tij4NXWQfZ3rbh6_ESVHFCnGyN5z1Z7ys59JNHQs44W3HGm--blcd_u7gqWVnnCauq9oAcl1KWRVVKfvjufkROY9wwxsqWc8HrY-LWPuEQIKGhV1f318X9wx1Fj2GY6RY8DLhFn2icY8JtpHYK-fURvM77PaSEYaZ61qPzAwVvKFrrtNsjQ3CG7pIb3TMkN_lv5IuFMeLp23lCfv_88evypri9u15fXtwWWjRNKiR2aBFNzyuh-64GC8hK3WArBTImLa81B1FBl_cNZ8CkQd3LuoVGdMaIE7JevGaCjXoKbgthVhM49TqYwqAgJKdHVJ1tQdcca-jqqu1kX5WNZaKV2d01GrOrWlw7_wTzXxjH_0LO1L6-2qjX-mpfXy31MyYWTIcpxoD2k9T5QmGu88dhUHFfMpd2AXXK33cf8i8M9qM6 |
| Cites_doi | 10.1016/j.heliyon.2024.e30697 10.1016/j.rser.2020.109725 10.1016/j.engappai.2023.106693 10.3390/en14030584 10.1016/j.renene.2023.119379 10.1109/APSCON56343.2023.10101173 10.1016/j.est.2024.111010 10.1016/j.est.2024.112909 10.1016/j.asoc.2024.111947 10.1016/j.asoc.2022.109981 10.1016/j.est.2024.112034 10.1186/s40807-023-00078-9 10.1007/s42979-021-00592-x 10.1016/j.esr.2024.101298 10.1016/j.knosys.2023.110554 10.3390/machines9120343 10.1016/j.apenergy.2022.120525 10.1016/j.jclepro.2022.135414 10.3390/en15020578 10.1016/j.compchemeng.2005.02.006 10.3390/technologies11040096 10.1007/s12046-021-01626-z 10.1016/j.compeleceng.2022.107808 10.1109/ACCESS.2020.3022944 10.1002/er.4883 10.1016/j.engappai.2022.105721 10.1016/j.engappai.2021.104326 10.1016/j.scs.2022.104317 10.1016/j.esr.2022.100899 10.1016/j.ijepes.2020.106457 10.1155/2024/2194986 10.1109/ICDCM60322.2024.10665114 10.1109/WCNC57260.2024.10570841 10.1016/j.est.2022.104787 10.1016/j.solener.2018.06.027 10.1016/j.rineng.2024.102398 10.1016/j.energy.2021.120030 10.1016/j.egyr.2023.05.067 10.1016/j.knosys.2021.107044 10.1016/j.aej.2023.09.066 10.1016/j.enconman.2017.04.019 10.3390/pr9050825 10.1016/j.energy.2017.02.174 10.1016/j.esr.2024.101409 10.1016/j.apenergy.2021.116716 10.1016/j.rser.2024.114676 10.1016/j.est.2024.112497 10.1115/1.4062969 10.1109/ACCESS.2022.3158666 10.1016/j.renene.2019.06.147 10.1016/j.ejor.2020.07.063 10.1016/j.energy.2019.116073 10.1016/j.solener.2023.01.027 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.nexus.2025.100448 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2772-4271 |
| ExternalDocumentID | oai_doaj_org_article_9f8ac51e5a954897b426f03879c396ce 10.1016/j.nexus.2025.100448 10_1016_j_nexus_2025_100448 S2772427125000890 |
| GroupedDBID | 0R~ 6I. AAFTH AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c366t-7e9efeedb143cb95afae02c6e873e007f15c1a34a9c36d10a07decb758a639dd3 |
| IEDL.DBID | UNPAY |
| ISSN | 2772-4271 |
| IngestDate | Fri Oct 03 12:51:51 EDT 2025 Tue Aug 19 23:41:20 EDT 2025 Wed Oct 01 05:48:00 EDT 2025 Sat Aug 16 17:01:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Policy gradient Grid efficiency Hybrid energy Particle swarm optimization Energy management system Battery scheduling |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-7e9efeedb143cb95afae02c6e873e007f15c1a34a9c36d10a07decb758a639dd3 |
| ORCID | 0000-0002-0476-5348 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.nexus.2025.100448 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9f8ac51e5a954897b426f03879c396ce unpaywall_primary_10_1016_j_nexus_2025_100448 crossref_primary_10_1016_j_nexus_2025_100448 elsevier_sciencedirect_doi_10_1016_j_nexus_2025_100448 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy nexus |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Akter (bib0002) 2024; 51 Abualigah (bib0030) 2022; 15 W.a.A.K. Cole. Cost Projections for Utility-Scale Battery Storage: 2023 Update. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-85332. Bakdi, Bounoua, Guichi, Mekhilef (bib0059) 2021; 125 Fathollahi, Andresen (bib0055) 2024; 9 Floudas, Akrotirianakis, Caratzoulas, Meyer, Kallrath (bib0016) 2005; 29 García-Miguel, Alonso-Martinez, Gómez, Rodríguez-Amenedo (bib0007) 2024; 157 Seyyedabbasi, Aliyev, Kiani, Gulle, Basyildiz, Shah (bib0025) 2021; 223 Rizvi, Pratap, Singh (bib0041) 2022; 36 2024: IEEE, pp. 1–6. Meng, Hussain, Luo, Wang, Jin (bib0034) 2024 Suresh, Janik, Jasinski, Guerrero, Leonowicz (bib0018) 2023; 134 Wang, Guo, Tsay, Perng (bib0056) 2021; 9 PVGIS. "Photovoltaic Geographical Information System." European Commission. (accessed). Alatawi (bib0045) 2024; 2024 Lin, Chang, Huang, Su (bib0047) 2023; 11 Ngoo, Goh, Sabar, Hijazi, Kendall (bib0020) 2024 Babu, Roselyn, Sundaravadivel (bib0011) 2023; 9 Gomes, Melicio, Mendes (bib0014) 2021; 223 Teferi, Tella, Hampannavar (bib0012) 2024; 23 Cui, Geng, Zhu, Han (bib0028) 2017; 125 Khawaja, Qiqieh, Alzubi, Alzubi, Allahham, Giaouris (bib0035) 2023; 251 Guo (bib0050) 2020; 8 Das, Dutta, De, De (bib0001) 2024; 202 Barbosa, Junior, Rocha, de Souza Barbosa, Bolis (bib0006) 2024; 97 . Roy, Das (bib0022) 2021; 46 Tightiz, Dang, Yoo (bib0054) 2023; 82 Yıldız (bib0019) 2023; 271 Nutakki, Mandava (bib0033) 2023; 119 Sarker (bib0036) 2021; 2 Saharia, Brahma, Sarmah (bib0024) 2018; 10 Hosseini (bib0043) 2024; 53 Tahir (bib0005) 2024; 94 Wang, Kim, Suresh (bib0017) 2023; 23 He, Huang, Meng, Zhao, Wang, Li (bib0046) 2022; 52 Zhang, Chen, Zhou, Han, Liu (bib0052) 2025 Sumiea (bib0026) 2024 H. Hu, M. Hernandez, Y.G. Kim, K.J. Ahmed, K. Tsukamoto, and M.J. Lee, "DDPG-based wireless resource allocation for time-constrained applications," in Liu (bib0010) 2023; 219 Fan, Zhang, He, Liu, Hu, Zhang (bib0048) 2021; 14 E. Buraimoh et al., "Distributed deep deterministic policy gradient agents for real-time energy management of DC microgrid," in 2023: IEEE, pp. 1–3. Balderrama, Lombardi, Riva, Canedo, Colombo, Quoilin (bib0015) 2019; 188 Chen, Wang, Sun, Zhang, Du, Zhao (bib0053) 2022; 10 Rathor, Saxena (bib0013) 2020; 44 Ikeda, Nagai (bib0037) 2021; 289 Domínguez-Barbero, García-González, Sanz-Bobi (bib0049) 2023; 125 Guichi, Talha, Berkouk, Mekhilef, Gassab (bib0060) 2018; 170 Gao, Matsunami, Miyata, Akashi (bib0004) 2023; 89 Al-Falahi, Jayasinghe, Enshaei (bib0029) 2017; 143 Yin, Li (bib0040) 2021; 104 Nam, Hwangbo, Yoo (bib0038) 2020; 122 Lazard, "2024 Lazard’s levelized cost of storage analysis – version v17.0. Accessed June 2024. Duan, Chen, Chang, Ni, Kumar, Zhang (bib0021) 2022; 10 J. Song, B. Zhang, and J. Lia, "Deep reinforcement learning empowered particle swarm optimization for aerial base station deployment," in Cheng, Li, Li (bib0042) 2022; 99 Gao, Li, Hong (bib0032) 2021; 9 Kim, Kim (bib0044) 2023; 332 Tayab, Hasan, Shah, Islam (bib0008) 2024; 91 Emrani, Berrada (bib0009) 2024; 84 Thirunavukkarasu, Seyedmahmoudian, Jamei, Horan, Mekhilef, Stojcevski (bib0003) 2022; 43 Bengio, Lodi, Prouvost (bib0023) 2021; 290 2024: IEEE, pp. 1–5. Sinsel, Riemke, Hoffmann (bib0027) 2020; 145 Mirjalili, Aslani, Zahedi, Soleimani (bib0031) 2023; 10 Ying, Wang, Yu, Li, Yu, Liu (bib0039) 2023; 384 Sinsel (10.1016/j.nexus.2025.100448_bib0027) 2020; 145 Tightiz (10.1016/j.nexus.2025.100448_bib0054) 2023; 82 Liu (10.1016/j.nexus.2025.100448_bib0010) 2023; 219 10.1016/j.nexus.2025.100448_bib0051 Tahir (10.1016/j.nexus.2025.100448_bib0005) 2024; 94 Alatawi (10.1016/j.nexus.2025.100448_bib0045) 2024; 2024 Gomes (10.1016/j.nexus.2025.100448_bib0014) 2021; 223 Roy (10.1016/j.nexus.2025.100448_bib0022) 2021; 46 Gao (10.1016/j.nexus.2025.100448_bib0004) 2023; 89 Babu (10.1016/j.nexus.2025.100448_bib0011) 2023; 9 Nam (10.1016/j.nexus.2025.100448_bib0038) 2020; 122 He (10.1016/j.nexus.2025.100448_bib0046) 2022; 52 Barbosa (10.1016/j.nexus.2025.100448_bib0006) 2024; 97 Saharia (10.1016/j.nexus.2025.100448_bib0024) 2018; 10 Ikeda (10.1016/j.nexus.2025.100448_bib0037) 2021; 289 Emrani (10.1016/j.nexus.2025.100448_bib0009) 2024; 84 Nutakki (10.1016/j.nexus.2025.100448_bib0033) 2023; 119 Balderrama (10.1016/j.nexus.2025.100448_bib0015) 2019; 188 Domínguez-Barbero (10.1016/j.nexus.2025.100448_bib0049) 2023; 125 Fathollahi (10.1016/j.nexus.2025.100448_bib0055) 2024; 9 Seyyedabbasi (10.1016/j.nexus.2025.100448_bib0025) 2021; 223 Rathor (10.1016/j.nexus.2025.100448_bib0013) 2020; 44 Al-Falahi (10.1016/j.nexus.2025.100448_bib0029) 2017; 143 Das (10.1016/j.nexus.2025.100448_bib0001) 2024; 202 Lin (10.1016/j.nexus.2025.100448_bib0047) 2023; 11 Ngoo (10.1016/j.nexus.2025.100448_bib0020) 2024 Meng (10.1016/j.nexus.2025.100448_bib0034) 2024 Tayab (10.1016/j.nexus.2025.100448_bib0008) 2024; 91 Fan (10.1016/j.nexus.2025.100448_bib0048) 2021; 14 Yin (10.1016/j.nexus.2025.100448_bib0040) 2021; 104 Khawaja (10.1016/j.nexus.2025.100448_bib0035) 2023; 251 Ying (10.1016/j.nexus.2025.100448_bib0039) 2023; 384 Gao (10.1016/j.nexus.2025.100448_bib0032) 2021; 9 Bakdi (10.1016/j.nexus.2025.100448_bib0059) 2021; 125 Duan (10.1016/j.nexus.2025.100448_bib0021) 2022; 10 Abualigah (10.1016/j.nexus.2025.100448_bib0030) 2022; 15 Wang (10.1016/j.nexus.2025.100448_bib0056) 2021; 9 Thirunavukkarasu (10.1016/j.nexus.2025.100448_bib0003) 2022; 43 Sarker (10.1016/j.nexus.2025.100448_bib0036) 2021; 2 Chen (10.1016/j.nexus.2025.100448_bib0053) 2022; 10 Rizvi (10.1016/j.nexus.2025.100448_bib0041) 2022; 36 Floudas (10.1016/j.nexus.2025.100448_bib0016) 2005; 29 Kim (10.1016/j.nexus.2025.100448_bib0044) 2023; 332 Teferi (10.1016/j.nexus.2025.100448_bib0012) 2024; 23 Wang (10.1016/j.nexus.2025.100448_bib0017) 2023; 23 10.1016/j.nexus.2025.100448_bib0061 Cheng (10.1016/j.nexus.2025.100448_bib0042) 2022; 99 10.1016/j.nexus.2025.100448_bib0062 Guichi (10.1016/j.nexus.2025.100448_bib0060) 2018; 170 10.1016/j.nexus.2025.100448_bib0063 García-Miguel (10.1016/j.nexus.2025.100448_bib0007) 2024; 157 Mirjalili (10.1016/j.nexus.2025.100448_bib0031) 2023; 10 Akter (10.1016/j.nexus.2025.100448_bib0002) 2024; 51 Suresh (10.1016/j.nexus.2025.100448_bib0018) 2023; 134 Guo (10.1016/j.nexus.2025.100448_bib0050) 2020; 8 Zhang (10.1016/j.nexus.2025.100448_bib0052) 2025 Bengio (10.1016/j.nexus.2025.100448_bib0023) 2021; 290 Yıldız (10.1016/j.nexus.2025.100448_bib0019) 2023; 271 Sumiea (10.1016/j.nexus.2025.100448_bib0026) 2024 Cui (10.1016/j.nexus.2025.100448_bib0028) 2017; 125 Hosseini (10.1016/j.nexus.2025.100448_bib0043) 2024; 53 10.1016/j.nexus.2025.100448_bib0057 10.1016/j.nexus.2025.100448_bib0058 |
| References_xml | – volume: 384 year: 2023 ident: bib0039 article-title: Deep learning for renewable energy forecasting: a taxonomy, and systematic literature review publication-title: J. Clean. Prod. – reference: , 2024: IEEE, pp. 1–5. – volume: 94 year: 2024 ident: bib0005 article-title: Optimization of energy storage systems for integration of renewable energy sources—a bibliometric analysis publication-title: J. Energy Storage – volume: 9 start-page: 825 year: 2021 ident: bib0032 article-title: Machine learning based optimization model for energy management of energy storage system for large industrial park publication-title: Processes – volume: 157 year: 2024 ident: bib0007 article-title: Impact of risk measures and degradation cost on the optimal arbitrage schedule for battery energy storage systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 10 start-page: 29393 year: 2022 end-page: 29405 ident: bib0021 article-title: CAPSO: chaos adaptive particle swarm optimization algorithm publication-title: IEEe Access. – volume: 219 year: 2023 ident: bib0010 article-title: Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method publication-title: Renew. Energy – volume: 289 year: 2021 ident: bib0037 article-title: A novel optimization method combining metaheuristics and machine learning for daily optimal operations in building energy and storage systems publication-title: Appl. Energy – volume: 143 start-page: 252 year: 2017 end-page: 274 ident: bib0029 article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system publication-title: Energy Convers. Manage – volume: 223 year: 2021 ident: bib0025 article-title: Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems publication-title: Knowl. Based. Syst. – reference: H. Hu, M. Hernandez, Y.G. Kim, K.J. Ahmed, K. Tsukamoto, and M.J. Lee, "DDPG-based wireless resource allocation for time-constrained applications," in – volume: 9 year: 2024 ident: bib0055 article-title: Deep deterministic policy gradient for adaptive power system stabilization and voltage regulation," publication-title: Electron. Energy – volume: 99 year: 2022 ident: bib0042 article-title: Hybrid deep learning techniques for providing incentive price in electricity market publication-title: Comput. Electr. Eng. – volume: 44 start-page: 4067 year: 2020 end-page: 4109 ident: bib0013 article-title: Energy management system for smart grid: an overview and key issues publication-title: Int. J. Energy Res. – volume: 202 year: 2024 ident: bib0001 article-title: Review of multi-criteria decision-making for sustainable decentralized hybrid energy systems publication-title: Renew. Sustain. Energy Rev. – volume: 82 start-page: 145 year: 2023 end-page: 153 ident: bib0054 article-title: Novel deep deterministic policy gradient technique for automated micro-grid energy management in rural and islanded areas publication-title: Alex. Eng. J. – volume: 170 start-page: 974 year: 2018 end-page: 987 ident: bib0060 article-title: A new method for intermediate power point tracking for PV generator under partially shaded conditions in hybrid system publication-title: Sol. Energy – volume: 23 year: 2023 ident: bib0017 article-title: Opportunities and challenges of quantum computing for engineering optimization publication-title: J. Comput. Inf. Sci. Eng. – reference: Lazard, "2024 Lazard’s levelized cost of storage analysis – version v17.0. Accessed June 2024. – volume: 29 start-page: 1185 year: 2005 end-page: 1202 ident: bib0016 article-title: Global optimization in the 21st century: advances and challenges publication-title: Comput. Chem. Eng. – volume: 97 year: 2024 ident: bib0006 article-title: Optimization methods of distributed hybrid power systems with battery storage system: a systematic review publication-title: J. Energy Storage – volume: 2 start-page: 160 year: 2021 ident: bib0036 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN. Comput. Sci. – volume: 52 year: 2022 ident: bib0046 article-title: A novel hierarchical predictive energy management strategy for plug-in hybrid electric bus combined with deep deterministic policy gradient publication-title: J. Energy Storage – year: 2024 ident: bib0034 article-title: An online reinforcement learning-based energy management strategy for microgrids with centralized control publication-title: IEEe Trans. Ind. Appl. – volume: 223 year: 2021 ident: bib0014 article-title: A novel microgrid support management system based on stochastic mixed-integer linear programming publication-title: Energy – volume: 53 year: 2024 ident: bib0043 article-title: Meta-heuristics and deep learning for energy applications: review and open research challenges (2018–2023) publication-title: Energy Strategy Rev. – volume: 125 start-page: 681 year: 2017 end-page: 704 ident: bib0028 article-title: Multi-objective optimization methods and application in energy saving publication-title: Energy – reference: , 2024: IEEE, pp. 1–6. – volume: 332 year: 2023 ident: bib0044 article-title: A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid publication-title: Appl. Energy – volume: 125 year: 2023 ident: bib0049 article-title: Twin-delayed deep deterministic policy gradient algorithm for the energy management of microgrids publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 165837 year: 2020 end-page: 165848 ident: bib0050 article-title: Transfer deep reinforcement learning-enabled energy management strategy for hybrid tracked vehicle publication-title: IEEe Access. – reference: PVGIS. "Photovoltaic Geographical Information System." European Commission. (accessed). – volume: 91 year: 2024 ident: bib0008 article-title: Optimum battery sizing, scheduling and demand management for microgrids using slime mould algorithm publication-title: J. Energy Storage – volume: 122 year: 2020 ident: bib0038 article-title: A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: a case study of Korea publication-title: Renew. Sustain. Energy Rev. – volume: 36 year: 2022 ident: bib0041 article-title: Optimal energy management in a microgrid under uncertainties using novel hybrid metaheuristic algorithm publication-title: Sustain. Comput. – volume: 188 year: 2019 ident: bib0015 article-title: A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: the case study of the “El Espino” community publication-title: Energy – volume: 10 year: 2022 ident: bib0053 article-title: A modified long short-term memory-deep deterministic policy gradient-based scheduling method for active distribution networks publication-title: Front. Energy Res. – volume: 9 start-page: 5992 year: 2023 end-page: 6005 ident: bib0011 article-title: Multi-objective genetic algorithm based energy management system considering optimal utilization of grid and degradation of battery storage in microgrid publication-title: Energy Rep – reference: E. Buraimoh et al., "Distributed deep deterministic policy gradient agents for real-time energy management of DC microgrid," in – reference: J. Song, B. Zhang, and J. Lia, "Deep reinforcement learning empowered particle swarm optimization for aerial base station deployment," in – reference: , 2023: IEEE, pp. 1–3. – volume: 290 start-page: 405 year: 2021 end-page: 421 ident: bib0023 article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon publication-title: Eur. J. Oper. Res. – volume: 104 year: 2021 ident: bib0040 article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems publication-title: Eng. Appl. Artif. Intell. – volume: 15 start-page: 578 year: 2022 ident: bib0030 article-title: Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: a survey of advanced machine learning and deep learning techniques publication-title: Energies. – volume: 9 start-page: 343 year: 2021 ident: bib0056 article-title: PMSM speed control based on particle swarm optimization and deep deterministic policy gradient under load disturbance publication-title: Machines – volume: 43 year: 2022 ident: bib0003 article-title: Role of optimization techniques in microgrid energy management systems—a review publication-title: Energy Strategy Rev. – volume: 11 start-page: 96 year: 2023 ident: bib0047 article-title: A deep reinforcement learning method for economic power dispatch of microgrid in OPAL-RT environment publication-title: Technologies – volume: 89 year: 2023 ident: bib0004 article-title: Model predictive control of a building renewable energy system based on a long short-term hybrid model publication-title: Sustain. Cities. Soc. – year: 2024 ident: bib0026 article-title: Deep deterministic policy gradient algorithm: a systematic review publication-title: Heliyon. – volume: 251 start-page: 249 year: 2023 end-page: 260 ident: bib0035 article-title: Design of cost-based sizing and energy management framework for standalone microgrid using reinforcement learning publication-title: Sol. Energy – volume: 23 year: 2024 ident: bib0012 article-title: Impact of large-scale renewable energy integration on the grid voltage stability publication-title: Results. Eng. – volume: 14 start-page: 584 year: 2021 ident: bib0048 article-title: Optimal scheduling of microgrid based on deep deterministic policy gradient and transfer learning publication-title: Energies. – start-page: 611 year: 2025 end-page: 619 ident: bib0052 article-title: Multi-agent deep deterministic policy gradient-based bidding strategy in electricity market publication-title: Frontier Academic Forum of Electrical Engineering – year: 2024 ident: bib0020 article-title: A survey of mat-heuristics for combinatorial optimisation problems: variants, trends and opportunities publication-title: Appl. Soft. Comput. – volume: 271 year: 2023 ident: bib0019 article-title: A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems publication-title: Knowl. Based. Syst. – volume: 119 year: 2023 ident: bib0033 article-title: Review on optimization techniques and role of Artificial intelligence in home energy management systems publication-title: Eng. Appl. Artif. Intell. – reference: W.a.A.K. Cole. Cost Projections for Utility-Scale Battery Storage: 2023 Update. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-85332. – volume: 84 year: 2024 ident: bib0009 article-title: A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy publication-title: J. Energy Storage – volume: 51 year: 2024 ident: bib0002 article-title: A review on microgrid optimization with meta-heuristic techniques: scopes, trends and recommendation publication-title: Energy Strategy Rev. – volume: 134 year: 2023 ident: bib0018 article-title: Microgrid energy management using metaheuristic optimization algorithms publication-title: Appl. Soft. Comput. – volume: 145 start-page: 2271 year: 2020 end-page: 2285 ident: bib0027 article-title: Challenges and solution technologies for the integration of variable renewable energy sources—a review publication-title: Renew. Energy – volume: 46 start-page: 101 year: 2021 ident: bib0022 article-title: A hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimization publication-title: Sādhanā – reference: . – volume: 125 year: 2021 ident: bib0059 article-title: Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence publication-title: Int. J. Electr. Power Energy Syst. – volume: 10 start-page: 8 year: 2023 ident: bib0031 article-title: A comparative study of machine learning and deep learning methods for energy balance prediction in a hybrid building-renewable energy system publication-title: Sustain. Energy Res – volume: 2024 year: 2024 ident: bib0045 article-title: Optimization of home Energy Management Systems in smart cities using bacterial foraging algorithm and deep reinforcement learning for Enhanced renewable Energy Integration publication-title: Int. Trans. Electr. Energy Syst. – volume: 10 year: 2018 ident: bib0024 article-title: A review of algorithms for control and optimization for energy management of hybrid renewable energy systems publication-title: J. Renew. Sustain. Energy – year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0026 article-title: Deep deterministic policy gradient algorithm: a systematic review publication-title: Heliyon. doi: 10.1016/j.heliyon.2024.e30697 – ident: 10.1016/j.nexus.2025.100448_bib0062 – volume: 122 year: 2020 ident: 10.1016/j.nexus.2025.100448_bib0038 article-title: A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: a case study of Korea publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109725 – volume: 125 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0049 article-title: Twin-delayed deep deterministic policy gradient algorithm for the energy management of microgrids publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106693 – volume: 14 start-page: 584 issue: 3 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0048 article-title: Optimal scheduling of microgrid based on deep deterministic policy gradient and transfer learning publication-title: Energies. doi: 10.3390/en14030584 – volume: 219 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0010 article-title: Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119379 – ident: 10.1016/j.nexus.2025.100448_bib0057 doi: 10.1109/APSCON56343.2023.10101173 – volume: 84 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0009 article-title: A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy publication-title: J. Energy Storage doi: 10.1016/j.est.2024.111010 – volume: 97 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0006 article-title: Optimization methods of distributed hybrid power systems with battery storage system: a systematic review publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112909 – year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0020 article-title: A survey of mat-heuristics for combinatorial optimisation problems: variants, trends and opportunities publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2024.111947 – volume: 134 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0018 article-title: Microgrid energy management using metaheuristic optimization algorithms publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2022.109981 – volume: 91 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0008 article-title: Optimum battery sizing, scheduling and demand management for microgrids using slime mould algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112034 – volume: 10 start-page: 8 issue: 1 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0031 article-title: A comparative study of machine learning and deep learning methods for energy balance prediction in a hybrid building-renewable energy system publication-title: Sustain. Energy Res doi: 10.1186/s40807-023-00078-9 – volume: 2 start-page: 160 issue: 3 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0036 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN. Comput. Sci. doi: 10.1007/s42979-021-00592-x – volume: 51 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0002 article-title: A review on microgrid optimization with meta-heuristic techniques: scopes, trends and recommendation publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2024.101298 – volume: 271 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0019 article-title: A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems publication-title: Knowl. Based. Syst. doi: 10.1016/j.knosys.2023.110554 – volume: 9 start-page: 343 issue: 12 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0056 article-title: PMSM speed control based on particle swarm optimization and deep deterministic policy gradient under load disturbance publication-title: Machines doi: 10.3390/machines9120343 – volume: 332 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0044 article-title: A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120525 – volume: 384 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0039 article-title: Deep learning for renewable energy forecasting: a taxonomy, and systematic literature review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135414 – volume: 15 start-page: 578 issue: 2 year: 2022 ident: 10.1016/j.nexus.2025.100448_bib0030 article-title: Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: a survey of advanced machine learning and deep learning techniques publication-title: Energies. doi: 10.3390/en15020578 – ident: 10.1016/j.nexus.2025.100448_bib0063 – volume: 36 year: 2022 ident: 10.1016/j.nexus.2025.100448_bib0041 article-title: Optimal energy management in a microgrid under uncertainties using novel hybrid metaheuristic algorithm publication-title: Sustain. Comput. – volume: 29 start-page: 1185 issue: 6 year: 2005 ident: 10.1016/j.nexus.2025.100448_bib0016 article-title: Global optimization in the 21st century: advances and challenges publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2005.02.006 – volume: 11 start-page: 96 issue: 4 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0047 article-title: A deep reinforcement learning method for economic power dispatch of microgrid in OPAL-RT environment publication-title: Technologies doi: 10.3390/technologies11040096 – volume: 46 start-page: 101 issue: 2 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0022 article-title: A hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimization publication-title: Sādhanā doi: 10.1007/s12046-021-01626-z – volume: 99 year: 2022 ident: 10.1016/j.nexus.2025.100448_bib0042 article-title: Hybrid deep learning techniques for providing incentive price in electricity market publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.107808 – volume: 8 start-page: 165837 year: 2020 ident: 10.1016/j.nexus.2025.100448_bib0050 article-title: Transfer deep reinforcement learning-enabled energy management strategy for hybrid tracked vehicle publication-title: IEEe Access. doi: 10.1109/ACCESS.2020.3022944 – volume: 44 start-page: 4067 issue: 6 year: 2020 ident: 10.1016/j.nexus.2025.100448_bib0013 article-title: Energy management system for smart grid: an overview and key issues publication-title: Int. J. Energy Res. doi: 10.1002/er.4883 – volume: 10 year: 2022 ident: 10.1016/j.nexus.2025.100448_bib0053 article-title: A modified long short-term memory-deep deterministic policy gradient-based scheduling method for active distribution networks publication-title: Front. Energy Res. – volume: 119 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0033 article-title: Review on optimization techniques and role of Artificial intelligence in home energy management systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105721 – volume: 104 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0040 article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104326 – volume: 10 issue: 5 year: 2018 ident: 10.1016/j.nexus.2025.100448_bib0024 article-title: A review of algorithms for control and optimization for energy management of hybrid renewable energy systems publication-title: J. Renew. Sustain. Energy – volume: 89 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0004 article-title: Model predictive control of a building renewable energy system based on a long short-term hybrid model publication-title: Sustain. Cities. Soc. doi: 10.1016/j.scs.2022.104317 – volume: 43 year: 2022 ident: 10.1016/j.nexus.2025.100448_bib0003 article-title: Role of optimization techniques in microgrid energy management systems—a review publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2022.100899 – start-page: 611 year: 2025 ident: 10.1016/j.nexus.2025.100448_bib0052 article-title: Multi-agent deep deterministic policy gradient-based bidding strategy in electricity market – volume: 125 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0059 article-title: Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106457 – volume: 2024 issue: 1 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0045 article-title: Optimization of home Energy Management Systems in smart cities using bacterial foraging algorithm and deep reinforcement learning for Enhanced renewable Energy Integration publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1155/2024/2194986 – ident: 10.1016/j.nexus.2025.100448_bib0051 doi: 10.1109/ICDCM60322.2024.10665114 – year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0034 article-title: An online reinforcement learning-based energy management strategy for microgrids with centralized control publication-title: IEEe Trans. Ind. Appl. – ident: 10.1016/j.nexus.2025.100448_bib0058 doi: 10.1109/WCNC57260.2024.10570841 – ident: 10.1016/j.nexus.2025.100448_bib0061 – volume: 52 year: 2022 ident: 10.1016/j.nexus.2025.100448_bib0046 article-title: A novel hierarchical predictive energy management strategy for plug-in hybrid electric bus combined with deep deterministic policy gradient publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104787 – volume: 170 start-page: 974 year: 2018 ident: 10.1016/j.nexus.2025.100448_bib0060 article-title: A new method for intermediate power point tracking for PV generator under partially shaded conditions in hybrid system publication-title: Sol. Energy doi: 10.1016/j.solener.2018.06.027 – volume: 23 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0012 article-title: Impact of large-scale renewable energy integration on the grid voltage stability publication-title: Results. Eng. doi: 10.1016/j.rineng.2024.102398 – volume: 223 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0014 article-title: A novel microgrid support management system based on stochastic mixed-integer linear programming publication-title: Energy doi: 10.1016/j.energy.2021.120030 – volume: 9 start-page: 5992 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0011 article-title: Multi-objective genetic algorithm based energy management system considering optimal utilization of grid and degradation of battery storage in microgrid publication-title: Energy Rep doi: 10.1016/j.egyr.2023.05.067 – volume: 223 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0025 article-title: Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems publication-title: Knowl. Based. Syst. doi: 10.1016/j.knosys.2021.107044 – volume: 82 start-page: 145 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0054 article-title: Novel deep deterministic policy gradient technique for automated micro-grid energy management in rural and islanded areas publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.09.066 – volume: 9 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0055 article-title: Deep deterministic policy gradient for adaptive power system stabilization and voltage regulation," e-Prime-advances in Electrical engineering publication-title: Electron. Energy – volume: 143 start-page: 252 year: 2017 ident: 10.1016/j.nexus.2025.100448_bib0029 article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2017.04.019 – volume: 157 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0007 article-title: Impact of risk measures and degradation cost on the optimal arbitrage schedule for battery energy storage systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 9 start-page: 825 issue: 5 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0032 article-title: Machine learning based optimization model for energy management of energy storage system for large industrial park publication-title: Processes doi: 10.3390/pr9050825 – volume: 125 start-page: 681 year: 2017 ident: 10.1016/j.nexus.2025.100448_bib0028 article-title: Multi-objective optimization methods and application in energy saving publication-title: Energy doi: 10.1016/j.energy.2017.02.174 – volume: 53 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0043 article-title: Meta-heuristics and deep learning for energy applications: review and open research challenges (2018–2023) publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2024.101409 – volume: 289 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0037 article-title: A novel optimization method combining metaheuristics and machine learning for daily optimal operations in building energy and storage systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116716 – volume: 202 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0001 article-title: Review of multi-criteria decision-making for sustainable decentralized hybrid energy systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2024.114676 – volume: 94 year: 2024 ident: 10.1016/j.nexus.2025.100448_bib0005 article-title: Optimization of energy storage systems for integration of renewable energy sources—a bibliometric analysis publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112497 – volume: 23 issue: 6 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0017 article-title: Opportunities and challenges of quantum computing for engineering optimization publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4062969 – volume: 10 start-page: 29393 year: 2022 ident: 10.1016/j.nexus.2025.100448_bib0021 article-title: CAPSO: chaos adaptive particle swarm optimization algorithm publication-title: IEEe Access. doi: 10.1109/ACCESS.2022.3158666 – volume: 145 start-page: 2271 year: 2020 ident: 10.1016/j.nexus.2025.100448_bib0027 article-title: Challenges and solution technologies for the integration of variable renewable energy sources—a review publication-title: Renew. Energy doi: 10.1016/j.renene.2019.06.147 – volume: 290 start-page: 405 issue: 2 year: 2021 ident: 10.1016/j.nexus.2025.100448_bib0023 article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2020.07.063 – volume: 188 year: 2019 ident: 10.1016/j.nexus.2025.100448_bib0015 article-title: A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: the case study of the “El Espino” community publication-title: Energy doi: 10.1016/j.energy.2019.116073 – volume: 251 start-page: 249 year: 2023 ident: 10.1016/j.nexus.2025.100448_bib0035 article-title: Design of cost-based sizing and energy management framework for standalone microgrid using reinforcement learning publication-title: Sol. Energy doi: 10.1016/j.solener.2023.01.027 |
| SSID | ssj0002811315 |
| Score | 2.2959015 |
| Snippet | •Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration... Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 100448 |
| SubjectTerms | Battery scheduling Energy management system Grid efficiency Hybrid energy Particle swarm optimization Policy gradient |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwGG0MF70YjRrxV3rw6HRla7ceVUQ0UUmUhFvTX0MIToIQ5b_3a7cRuKgHr9vaNe_r9t7W73tF6JTy2IKsjQJmdBLEcQaPFDMsoBTor5EQGfry6IdH1u7G9z3aW9rqy-WEFfbABXAXPEulpsRS6azJeKKAUjK35sp1xJm27u0bpnzpY2rofxkREhFa2Qz5hK7cfs2cQXeDnnubtHSFirxj_wojrc_ysZx_ytFoiXFaW2izlIr4shjiNlqz-Q4a3FX-DgY3m53boPP8hK0v4MNvi1QWXBg0f2CQpHD21S_zY-W9NOdYz109ZB_L3GDrLSRck_5kYDBMw1FZmbmLuq2bl-t2UG6XEOiIsWmQWG4zoDwFEkgrTmUmbdjQzKZJZEEKZIRqIqNYAnLMkFCGibFawQeDBJliTLSHavl7bvcRbsgEhIKWcWZAYSkiVQIB5aGClhIUVR2dVciJceGKIap0saHwQAsHtCiArqMrh-7iUmdp7Q9AoEUZaPFboOuIVbERpTooWB-6Gvx892ARyb-M9uA_RnuINlyXRVLZEapNJzN7DPJlqk78TP0GnL_tUw priority: 102 providerName: Directory of Open Access Journals |
| Title | Integrated DDPG-PSO energy management systems for enhanced battery cycling and efficient grid utilization |
| URI | https://dx.doi.org/10.1016/j.nexus.2025.100448 https://doi.org/10.1016/j.nexus.2025.100448 https://doaj.org/article/9f8ac51e5a954897b426f03879c396ce |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2772-4271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002811315 issn: 2772-4271 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2772-4271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002811315 issn: 2772-4271 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctaAcmHgJEESAPjLjKy04zljdILZWgUpkivwKFEqqSCMrAZ-fsJBVFCMGSIbEdyz7rfonv_kZon0aBBqz1CVMyJEGQwJJiihFKwf15ocsdmx7d6bLzfnA5oINSZ9vkwszt39s4rFS_5UZX26NNq27WWkR1RgG8a6je7_bat-b4OGBEEkDTla7QzzXnfI-V6J9zQUt5OubTVz4afXExpytF7vaLVSY0kSWPzTwTTfn-Tbfxj71fRcslauJ2YRtraEGn62h4UelDKHx83DsjvesrrG0CIH6ahcLgQuD5BQPSwtN7GyaAhdXinGI5NfmUd5inCmsrQWGq3E2GCoMZj8rMzg3UPz25OTon5XELRPqMZSTUkU7AZQpAKCkiyhOuHU8y3Qp9DSiRuFS63A94BOWV63AnVFoK-ODggDlK-Zuolj6negthj4cAGpIHiQJCEy4XIRhE5AioyYHIGuigmoh4XKhqxFW42UNsxyw2YxYXY9ZAh2ayZkWNJLa9AWMdlyssjpIWl9TVlBsNuygUwB6J2ZyH7kZM6gZi1VTHJV0U1ABNDX9_O5kZxl96u_3P8juolk1yvQtwk4k9-1MArp2Pk73SwD8BlE_58w |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbhYMnf0SNGDU9eLRkY2vHjigimogkSoKnpb-GKE4CI4p_va_dRsQYg9et7ZrX17zP0ve-ReiUhr4GrPUIUzIgvh_DlmKKEUoh_NUClzu2PPq2w9o9_6ZP-7nOtqmFWTq_t3lYif6YGV3tGq1adbP6OiozCuBdQuVep9t4NNfHASMSH4YudIV-77kUe6xE_1II2pglYz5_56PRtxDT2spqt6dWmdBklrxUZ6moys8fuo0rzn4bbeaoiRuZb-ygNZ3souF1oQ-hcLPZvSLd-zusbQEgfl2kwuBM4HmKAWnh7ZNNE8DCanHOsZybesoB5onC2kpQmC6DyVBhcONRXtm5h3qty4eLNsmvWyDSYywlgQ51DCFTAEJJEVIec-3UJNP1wNOAErFLpcs9n4fQXrkOdwKlpYAfDg6Yo5S3j0rJW6IPEK7xAEBDcj9WQGjC5SIAhwgdAT05EFkFnRULEY0zVY2oSDd7jqzNImOzKLNZBZ2bxVo0NZLY9gHYOsp3WBTGdS6pqyk3GnZhIIA9YnM4D9MNmdQVxIqljnK6yKgBhhr-_XWycIxVZnv4z_ZHqJROZvoY4CYVJ7lTfwHt_vfN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+DDPG-PSO+energy+management+systems+for+enhanced+battery+cycling+and+efficient+grid+utilization&rft.jtitle=Energy+nexus&rft.au=Ibrahim%2C+Oladimeji&rft.au=Aziz%2C+Mohd+Junaidi+Abdul&rft.au=Ayop%2C+Razman&rft.au=Low%2C+Wen+Yao&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=2772-4271&rft.eissn=2772-4271&rft.volume=18&rft_id=info:doi/10.1016%2Fj.nexus.2025.100448&rft.externalDocID=S2772427125000890 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4271&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4271&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4271&client=summon |