Integrated DDPG-PSO energy management systems for enhanced battery cycling and efficient grid utilization

•Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration and exploitation stages.•Leverage DDPG's RL capabilities to achieve a robust EMS algorithm for energy environment with stochas...

Full description

Saved in:
Bibliographic Details
Published inEnergy nexus Vol. 18; p. 100448
Main Authors Ibrahim, Oladimeji, Aziz, Mohd Junaidi Abdul, Ayop, Razman, Low, Wen Yao, Yahaya, Nor Zaihar, Dahiru, Ahmed Tijjani, Amosa, Temitope Ibrahim, Ayinla, Shehu Lukman
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2772-4271
2772-4271
DOI10.1016/j.nexus.2025.100448

Cover

Abstract •Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration and exploitation stages.•Leverage DDPG's RL capabilities to achieve a robust EMS algorithm for energy environment with stochastic renewable resources and increased system complexity in mid and long-term energy optimization problems.•Utilizing the PSO to optimize actor network parameters in the DDPG framework, resulting in optimal shallow battery scheduling compared to DDPG's deep cycling for extending the battery's lifespan.•Introducing flexibility in specifying actions has enhanced the effectiveness of the DDPG-PSO EMS, enabling it to significantly reduce grid capacity requirements and utilization compared to standalone DDPG and other metaheuristic methods. Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic Policy Gradient (DDPG) with Particle Swarm Optimization (PSO) to enhance exploration and exploitation in the optimization process, aiming to improve energy resource utilization and reduce costs in hybrid energy systems. The integrated DDPG-PSO approach leverages DDPG's reinforcement learning and PSO's global search capabilities to enhance optimization solution quality. The PSO optimizes the DDPG actor-network parameters, providing a strong initial policy. DDPG then fine-tunes these parameters by interacting with the energy system, making decisions on battery scheduling and grid usage to maximize cost rewards. The results show that the integrated DDPG-PSO EMS outperforms the traditional DDPG in terms of battery scheduling and grid utilization efficiency. Cost evaluations under critical peak tariffs indicate that both EMS algorithms achieved a 34 % cost saving compared to a grid-only system. Under differential grid tariffs, the proposed DDPG-PSO approach achieved a 28 % cost reduction, outperforming the standalone DDPG, which achieved a 25 % saving. Notably, the DDPG-PSO effectively reduced overall grid dependency, yielding a total operational cost of $665.19, compared to $780.70 for the DDPG. resenting a 14.8 % reduction. The battery charge/discharge profiles further highlight the advantages of the DDPG-PSO strategy. It demonstrated more stable and efficient energy flow behavior, characterized by shallow cycling and partial discharges sustained over several hours. In contrast, the DDPG exhibited more aggressive deep cycling, fluctuating frequently between minimum and maximum charge levels. This improved energy flow management by DDPG-PSO not only reduces wear on the battery system but also promotes long-term sustainability and reliability in hybrid energy management.
AbstractList Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic Policy Gradient (DDPG) with Particle Swarm Optimization (PSO) to enhance exploration and exploitation in the optimization process, aiming to improve energy resource utilization and reduce costs in hybrid energy systems. The integrated DDPG-PSO approach leverages DDPG's reinforcement learning and PSO's global search capabilities to enhance optimization solution quality. The PSO optimizes the DDPG actor-network parameters, providing a strong initial policy. DDPG then fine-tunes these parameters by interacting with the energy system, making decisions on battery scheduling and grid usage to maximize cost rewards. The results show that the integrated DDPG-PSO EMS outperforms the traditional DDPG in terms of battery scheduling and grid utilization efficiency. Cost evaluations under critical peak tariffs indicate that both EMS algorithms achieved a 34 % cost saving compared to a grid-only system. Under differential grid tariffs, the proposed DDPG-PSO approach achieved a 28 % cost reduction, outperforming the standalone DDPG, which achieved a 25 % saving. Notably, the DDPG-PSO effectively reduced overall grid dependency, yielding a total operational cost of $665.19, compared to $780.70 for the DDPG. resenting a 14.8 % reduction. The battery charge/discharge profiles further highlight the advantages of the DDPG-PSO strategy. It demonstrated more stable and efficient energy flow behavior, characterized by shallow cycling and partial discharges sustained over several hours. In contrast, the DDPG exhibited more aggressive deep cycling, fluctuating frequently between minimum and maximum charge levels. This improved energy flow management by DDPG-PSO not only reduces wear on the battery system but also promotes long-term sustainability and reliability in hybrid energy management.
•Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration and exploitation stages.•Leverage DDPG's RL capabilities to achieve a robust EMS algorithm for energy environment with stochastic renewable resources and increased system complexity in mid and long-term energy optimization problems.•Utilizing the PSO to optimize actor network parameters in the DDPG framework, resulting in optimal shallow battery scheduling compared to DDPG's deep cycling for extending the battery's lifespan.•Introducing flexibility in specifying actions has enhanced the effectiveness of the DDPG-PSO EMS, enabling it to significantly reduce grid capacity requirements and utilization compared to standalone DDPG and other metaheuristic methods. Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic Policy Gradient (DDPG) with Particle Swarm Optimization (PSO) to enhance exploration and exploitation in the optimization process, aiming to improve energy resource utilization and reduce costs in hybrid energy systems. The integrated DDPG-PSO approach leverages DDPG's reinforcement learning and PSO's global search capabilities to enhance optimization solution quality. The PSO optimizes the DDPG actor-network parameters, providing a strong initial policy. DDPG then fine-tunes these parameters by interacting with the energy system, making decisions on battery scheduling and grid usage to maximize cost rewards. The results show that the integrated DDPG-PSO EMS outperforms the traditional DDPG in terms of battery scheduling and grid utilization efficiency. Cost evaluations under critical peak tariffs indicate that both EMS algorithms achieved a 34 % cost saving compared to a grid-only system. Under differential grid tariffs, the proposed DDPG-PSO approach achieved a 28 % cost reduction, outperforming the standalone DDPG, which achieved a 25 % saving. Notably, the DDPG-PSO effectively reduced overall grid dependency, yielding a total operational cost of $665.19, compared to $780.70 for the DDPG. resenting a 14.8 % reduction. The battery charge/discharge profiles further highlight the advantages of the DDPG-PSO strategy. It demonstrated more stable and efficient energy flow behavior, characterized by shallow cycling and partial discharges sustained over several hours. In contrast, the DDPG exhibited more aggressive deep cycling, fluctuating frequently between minimum and maximum charge levels. This improved energy flow management by DDPG-PSO not only reduces wear on the battery system but also promotes long-term sustainability and reliability in hybrid energy management.
ArticleNumber 100448
Author Ibrahim, Oladimeji
Low, Wen Yao
Ayop, Razman
Yahaya, Nor Zaihar
Ayinla, Shehu Lukman
Amosa, Temitope Ibrahim
Aziz, Mohd Junaidi Abdul
Dahiru, Ahmed Tijjani
Author_xml – sequence: 1
  givenname: Oladimeji
  surname: Ibrahim
  fullname: Ibrahim, Oladimeji
  email: ibrahimoladimeji@utm.my
  organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
– sequence: 2
  givenname: Mohd Junaidi Abdul
  orcidid: 0000-0002-0476-5348
  surname: Aziz
  fullname: Aziz, Mohd Junaidi Abdul
  email: junaidi@utm.my
  organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
– sequence: 3
  givenname: Razman
  surname: Ayop
  fullname: Ayop, Razman
  email: razman.ayop@utm.my
  organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
– sequence: 4
  givenname: Wen Yao
  surname: Low
  fullname: Low, Wen Yao
  email: wylow2@live.utm.my
  organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
– sequence: 5
  givenname: Nor Zaihar
  surname: Yahaya
  fullname: Yahaya, Nor Zaihar
  email: norzaihar_yahaya@utp.edu.my
  organization: Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia
– sequence: 6
  givenname: Ahmed Tijjani
  surname: Dahiru
  fullname: Dahiru, Ahmed Tijjani
  email: tijjanidahiru.ahmad@utm.my
  organization: Power Electronics and Drive Research Group (PEDG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
– sequence: 7
  givenname: Temitope Ibrahim
  surname: Amosa
  fullname: Amosa, Temitope Ibrahim
  organization: Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 8
  givenname: Shehu Lukman
  surname: Ayinla
  fullname: Ayinla, Shehu Lukman
  email: ayinla.sl@unilorin.edu.ng
  organization: Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS 32610, Seri Iskandar, Perak, Malaysia
BookMark eNqNkMFO3DAQQC1EJSjlC7j4B7K14yRODhwQtLASEki0Z2tij4NXWQfZ3rbh6_ESVHFCnGyN5z1Z7ys59JNHQs44W3HGm--blcd_u7gqWVnnCauq9oAcl1KWRVVKfvjufkROY9wwxsqWc8HrY-LWPuEQIKGhV1f318X9wx1Fj2GY6RY8DLhFn2icY8JtpHYK-fURvM77PaSEYaZ61qPzAwVvKFrrtNsjQ3CG7pIb3TMkN_lv5IuFMeLp23lCfv_88evypri9u15fXtwWWjRNKiR2aBFNzyuh-64GC8hK3WArBTImLa81B1FBl_cNZ8CkQd3LuoVGdMaIE7JevGaCjXoKbgthVhM49TqYwqAgJKdHVJ1tQdcca-jqqu1kX5WNZaKV2d01GrOrWlw7_wTzXxjH_0LO1L6-2qjX-mpfXy31MyYWTIcpxoD2k9T5QmGu88dhUHFfMpd2AXXK33cf8i8M9qM6
Cites_doi 10.1016/j.heliyon.2024.e30697
10.1016/j.rser.2020.109725
10.1016/j.engappai.2023.106693
10.3390/en14030584
10.1016/j.renene.2023.119379
10.1109/APSCON56343.2023.10101173
10.1016/j.est.2024.111010
10.1016/j.est.2024.112909
10.1016/j.asoc.2024.111947
10.1016/j.asoc.2022.109981
10.1016/j.est.2024.112034
10.1186/s40807-023-00078-9
10.1007/s42979-021-00592-x
10.1016/j.esr.2024.101298
10.1016/j.knosys.2023.110554
10.3390/machines9120343
10.1016/j.apenergy.2022.120525
10.1016/j.jclepro.2022.135414
10.3390/en15020578
10.1016/j.compchemeng.2005.02.006
10.3390/technologies11040096
10.1007/s12046-021-01626-z
10.1016/j.compeleceng.2022.107808
10.1109/ACCESS.2020.3022944
10.1002/er.4883
10.1016/j.engappai.2022.105721
10.1016/j.engappai.2021.104326
10.1016/j.scs.2022.104317
10.1016/j.esr.2022.100899
10.1016/j.ijepes.2020.106457
10.1155/2024/2194986
10.1109/ICDCM60322.2024.10665114
10.1109/WCNC57260.2024.10570841
10.1016/j.est.2022.104787
10.1016/j.solener.2018.06.027
10.1016/j.rineng.2024.102398
10.1016/j.energy.2021.120030
10.1016/j.egyr.2023.05.067
10.1016/j.knosys.2021.107044
10.1016/j.aej.2023.09.066
10.1016/j.enconman.2017.04.019
10.3390/pr9050825
10.1016/j.energy.2017.02.174
10.1016/j.esr.2024.101409
10.1016/j.apenergy.2021.116716
10.1016/j.rser.2024.114676
10.1016/j.est.2024.112497
10.1115/1.4062969
10.1109/ACCESS.2022.3158666
10.1016/j.renene.2019.06.147
10.1016/j.ejor.2020.07.063
10.1016/j.energy.2019.116073
10.1016/j.solener.2023.01.027
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.nexus.2025.100448
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2772-4271
ExternalDocumentID oai_doaj_org_article_9f8ac51e5a954897b426f03879c396ce
10.1016/j.nexus.2025.100448
10_1016_j_nexus_2025_100448
S2772427125000890
GroupedDBID 0R~
6I.
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c366t-7e9efeedb143cb95afae02c6e873e007f15c1a34a9c36d10a07decb758a639dd3
IEDL.DBID UNPAY
ISSN 2772-4271
IngestDate Fri Oct 03 12:51:51 EDT 2025
Tue Aug 19 23:41:20 EDT 2025
Wed Oct 01 05:48:00 EDT 2025
Sat Aug 16 17:01:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Policy gradient
Grid efficiency
Hybrid energy
Particle swarm optimization
Energy management system
Battery scheduling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-7e9efeedb143cb95afae02c6e873e007f15c1a34a9c36d10a07decb758a639dd3
ORCID 0000-0002-0476-5348
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.nexus.2025.100448
ParticipantIDs doaj_primary_oai_doaj_org_article_9f8ac51e5a954897b426f03879c396ce
unpaywall_primary_10_1016_j_nexus_2025_100448
crossref_primary_10_1016_j_nexus_2025_100448
elsevier_sciencedirect_doi_10_1016_j_nexus_2025_100448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Energy nexus
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Akter (bib0002) 2024; 51
Abualigah (bib0030) 2022; 15
W.a.A.K. Cole. Cost Projections for Utility-Scale Battery Storage: 2023 Update. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-85332.
Bakdi, Bounoua, Guichi, Mekhilef (bib0059) 2021; 125
Fathollahi, Andresen (bib0055) 2024; 9
Floudas, Akrotirianakis, Caratzoulas, Meyer, Kallrath (bib0016) 2005; 29
García-Miguel, Alonso-Martinez, Gómez, Rodríguez-Amenedo (bib0007) 2024; 157
Seyyedabbasi, Aliyev, Kiani, Gulle, Basyildiz, Shah (bib0025) 2021; 223
Rizvi, Pratap, Singh (bib0041) 2022; 36
2024: IEEE, pp. 1–6.
Meng, Hussain, Luo, Wang, Jin (bib0034) 2024
Suresh, Janik, Jasinski, Guerrero, Leonowicz (bib0018) 2023; 134
Wang, Guo, Tsay, Perng (bib0056) 2021; 9
PVGIS. "Photovoltaic Geographical Information System." European Commission. (accessed).
Alatawi (bib0045) 2024; 2024
Lin, Chang, Huang, Su (bib0047) 2023; 11
Ngoo, Goh, Sabar, Hijazi, Kendall (bib0020) 2024
Babu, Roselyn, Sundaravadivel (bib0011) 2023; 9
Gomes, Melicio, Mendes (bib0014) 2021; 223
Teferi, Tella, Hampannavar (bib0012) 2024; 23
Cui, Geng, Zhu, Han (bib0028) 2017; 125
Khawaja, Qiqieh, Alzubi, Alzubi, Allahham, Giaouris (bib0035) 2023; 251
Guo (bib0050) 2020; 8
Das, Dutta, De, De (bib0001) 2024; 202
Barbosa, Junior, Rocha, de Souza Barbosa, Bolis (bib0006) 2024; 97
.
Roy, Das (bib0022) 2021; 46
Tightiz, Dang, Yoo (bib0054) 2023; 82
Yıldız (bib0019) 2023; 271
Nutakki, Mandava (bib0033) 2023; 119
Sarker (bib0036) 2021; 2
Saharia, Brahma, Sarmah (bib0024) 2018; 10
Hosseini (bib0043) 2024; 53
Tahir (bib0005) 2024; 94
Wang, Kim, Suresh (bib0017) 2023; 23
He, Huang, Meng, Zhao, Wang, Li (bib0046) 2022; 52
Zhang, Chen, Zhou, Han, Liu (bib0052) 2025
Sumiea (bib0026) 2024
H. Hu, M. Hernandez, Y.G. Kim, K.J. Ahmed, K. Tsukamoto, and M.J. Lee, "DDPG-based wireless resource allocation for time-constrained applications," in
Liu (bib0010) 2023; 219
Fan, Zhang, He, Liu, Hu, Zhang (bib0048) 2021; 14
E. Buraimoh et al., "Distributed deep deterministic policy gradient agents for real-time energy management of DC microgrid," in
2023: IEEE, pp. 1–3.
Balderrama, Lombardi, Riva, Canedo, Colombo, Quoilin (bib0015) 2019; 188
Chen, Wang, Sun, Zhang, Du, Zhao (bib0053) 2022; 10
Rathor, Saxena (bib0013) 2020; 44
Ikeda, Nagai (bib0037) 2021; 289
Domínguez-Barbero, García-González, Sanz-Bobi (bib0049) 2023; 125
Guichi, Talha, Berkouk, Mekhilef, Gassab (bib0060) 2018; 170
Gao, Matsunami, Miyata, Akashi (bib0004) 2023; 89
Al-Falahi, Jayasinghe, Enshaei (bib0029) 2017; 143
Yin, Li (bib0040) 2021; 104
Nam, Hwangbo, Yoo (bib0038) 2020; 122
Lazard, "2024 Lazard’s levelized cost of storage analysis – version v17.0. Accessed June 2024.
Duan, Chen, Chang, Ni, Kumar, Zhang (bib0021) 2022; 10
J. Song, B. Zhang, and J. Lia, "Deep reinforcement learning empowered particle swarm optimization for aerial base station deployment," in
Cheng, Li, Li (bib0042) 2022; 99
Gao, Li, Hong (bib0032) 2021; 9
Kim, Kim (bib0044) 2023; 332
Tayab, Hasan, Shah, Islam (bib0008) 2024; 91
Emrani, Berrada (bib0009) 2024; 84
Thirunavukkarasu, Seyedmahmoudian, Jamei, Horan, Mekhilef, Stojcevski (bib0003) 2022; 43
Bengio, Lodi, Prouvost (bib0023) 2021; 290
2024: IEEE, pp. 1–5.
Sinsel, Riemke, Hoffmann (bib0027) 2020; 145
Mirjalili, Aslani, Zahedi, Soleimani (bib0031) 2023; 10
Ying, Wang, Yu, Li, Yu, Liu (bib0039) 2023; 384
Sinsel (10.1016/j.nexus.2025.100448_bib0027) 2020; 145
Tightiz (10.1016/j.nexus.2025.100448_bib0054) 2023; 82
Liu (10.1016/j.nexus.2025.100448_bib0010) 2023; 219
10.1016/j.nexus.2025.100448_bib0051
Tahir (10.1016/j.nexus.2025.100448_bib0005) 2024; 94
Alatawi (10.1016/j.nexus.2025.100448_bib0045) 2024; 2024
Gomes (10.1016/j.nexus.2025.100448_bib0014) 2021; 223
Roy (10.1016/j.nexus.2025.100448_bib0022) 2021; 46
Gao (10.1016/j.nexus.2025.100448_bib0004) 2023; 89
Babu (10.1016/j.nexus.2025.100448_bib0011) 2023; 9
Nam (10.1016/j.nexus.2025.100448_bib0038) 2020; 122
He (10.1016/j.nexus.2025.100448_bib0046) 2022; 52
Barbosa (10.1016/j.nexus.2025.100448_bib0006) 2024; 97
Saharia (10.1016/j.nexus.2025.100448_bib0024) 2018; 10
Ikeda (10.1016/j.nexus.2025.100448_bib0037) 2021; 289
Emrani (10.1016/j.nexus.2025.100448_bib0009) 2024; 84
Nutakki (10.1016/j.nexus.2025.100448_bib0033) 2023; 119
Balderrama (10.1016/j.nexus.2025.100448_bib0015) 2019; 188
Domínguez-Barbero (10.1016/j.nexus.2025.100448_bib0049) 2023; 125
Fathollahi (10.1016/j.nexus.2025.100448_bib0055) 2024; 9
Seyyedabbasi (10.1016/j.nexus.2025.100448_bib0025) 2021; 223
Rathor (10.1016/j.nexus.2025.100448_bib0013) 2020; 44
Al-Falahi (10.1016/j.nexus.2025.100448_bib0029) 2017; 143
Das (10.1016/j.nexus.2025.100448_bib0001) 2024; 202
Lin (10.1016/j.nexus.2025.100448_bib0047) 2023; 11
Ngoo (10.1016/j.nexus.2025.100448_bib0020) 2024
Meng (10.1016/j.nexus.2025.100448_bib0034) 2024
Tayab (10.1016/j.nexus.2025.100448_bib0008) 2024; 91
Fan (10.1016/j.nexus.2025.100448_bib0048) 2021; 14
Yin (10.1016/j.nexus.2025.100448_bib0040) 2021; 104
Khawaja (10.1016/j.nexus.2025.100448_bib0035) 2023; 251
Ying (10.1016/j.nexus.2025.100448_bib0039) 2023; 384
Gao (10.1016/j.nexus.2025.100448_bib0032) 2021; 9
Bakdi (10.1016/j.nexus.2025.100448_bib0059) 2021; 125
Duan (10.1016/j.nexus.2025.100448_bib0021) 2022; 10
Abualigah (10.1016/j.nexus.2025.100448_bib0030) 2022; 15
Wang (10.1016/j.nexus.2025.100448_bib0056) 2021; 9
Thirunavukkarasu (10.1016/j.nexus.2025.100448_bib0003) 2022; 43
Sarker (10.1016/j.nexus.2025.100448_bib0036) 2021; 2
Chen (10.1016/j.nexus.2025.100448_bib0053) 2022; 10
Rizvi (10.1016/j.nexus.2025.100448_bib0041) 2022; 36
Floudas (10.1016/j.nexus.2025.100448_bib0016) 2005; 29
Kim (10.1016/j.nexus.2025.100448_bib0044) 2023; 332
Teferi (10.1016/j.nexus.2025.100448_bib0012) 2024; 23
Wang (10.1016/j.nexus.2025.100448_bib0017) 2023; 23
10.1016/j.nexus.2025.100448_bib0061
Cheng (10.1016/j.nexus.2025.100448_bib0042) 2022; 99
10.1016/j.nexus.2025.100448_bib0062
Guichi (10.1016/j.nexus.2025.100448_bib0060) 2018; 170
10.1016/j.nexus.2025.100448_bib0063
García-Miguel (10.1016/j.nexus.2025.100448_bib0007) 2024; 157
Mirjalili (10.1016/j.nexus.2025.100448_bib0031) 2023; 10
Akter (10.1016/j.nexus.2025.100448_bib0002) 2024; 51
Suresh (10.1016/j.nexus.2025.100448_bib0018) 2023; 134
Guo (10.1016/j.nexus.2025.100448_bib0050) 2020; 8
Zhang (10.1016/j.nexus.2025.100448_bib0052) 2025
Bengio (10.1016/j.nexus.2025.100448_bib0023) 2021; 290
Yıldız (10.1016/j.nexus.2025.100448_bib0019) 2023; 271
Sumiea (10.1016/j.nexus.2025.100448_bib0026) 2024
Cui (10.1016/j.nexus.2025.100448_bib0028) 2017; 125
Hosseini (10.1016/j.nexus.2025.100448_bib0043) 2024; 53
10.1016/j.nexus.2025.100448_bib0057
10.1016/j.nexus.2025.100448_bib0058
References_xml – volume: 384
  year: 2023
  ident: bib0039
  article-title: Deep learning for renewable energy forecasting: a taxonomy, and systematic literature review
  publication-title: J. Clean. Prod.
– reference: , 2024: IEEE, pp. 1–5.
– volume: 94
  year: 2024
  ident: bib0005
  article-title: Optimization of energy storage systems for integration of renewable energy sources—a bibliometric analysis
  publication-title: J. Energy Storage
– volume: 9
  start-page: 825
  year: 2021
  ident: bib0032
  article-title: Machine learning based optimization model for energy management of energy storage system for large industrial park
  publication-title: Processes
– volume: 157
  year: 2024
  ident: bib0007
  article-title: Impact of risk measures and degradation cost on the optimal arbitrage schedule for battery energy storage systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 10
  start-page: 29393
  year: 2022
  end-page: 29405
  ident: bib0021
  article-title: CAPSO: chaos adaptive particle swarm optimization algorithm
  publication-title: IEEe Access.
– volume: 219
  year: 2023
  ident: bib0010
  article-title: Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method
  publication-title: Renew. Energy
– volume: 289
  year: 2021
  ident: bib0037
  article-title: A novel optimization method combining metaheuristics and machine learning for daily optimal operations in building energy and storage systems
  publication-title: Appl. Energy
– volume: 143
  start-page: 252
  year: 2017
  end-page: 274
  ident: bib0029
  article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system
  publication-title: Energy Convers. Manage
– volume: 223
  year: 2021
  ident: bib0025
  article-title: Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems
  publication-title: Knowl. Based. Syst.
– reference: H. Hu, M. Hernandez, Y.G. Kim, K.J. Ahmed, K. Tsukamoto, and M.J. Lee, "DDPG-based wireless resource allocation for time-constrained applications," in
– volume: 9
  year: 2024
  ident: bib0055
  article-title: Deep deterministic policy gradient for adaptive power system stabilization and voltage regulation,"
  publication-title: Electron. Energy
– volume: 99
  year: 2022
  ident: bib0042
  article-title: Hybrid deep learning techniques for providing incentive price in electricity market
  publication-title: Comput. Electr. Eng.
– volume: 44
  start-page: 4067
  year: 2020
  end-page: 4109
  ident: bib0013
  article-title: Energy management system for smart grid: an overview and key issues
  publication-title: Int. J. Energy Res.
– volume: 202
  year: 2024
  ident: bib0001
  article-title: Review of multi-criteria decision-making for sustainable decentralized hybrid energy systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 82
  start-page: 145
  year: 2023
  end-page: 153
  ident: bib0054
  article-title: Novel deep deterministic policy gradient technique for automated micro-grid energy management in rural and islanded areas
  publication-title: Alex. Eng. J.
– volume: 170
  start-page: 974
  year: 2018
  end-page: 987
  ident: bib0060
  article-title: A new method for intermediate power point tracking for PV generator under partially shaded conditions in hybrid system
  publication-title: Sol. Energy
– volume: 23
  year: 2023
  ident: bib0017
  article-title: Opportunities and challenges of quantum computing for engineering optimization
  publication-title: J. Comput. Inf. Sci. Eng.
– reference: Lazard, "2024 Lazard’s levelized cost of storage analysis – version v17.0. Accessed June 2024.
– volume: 29
  start-page: 1185
  year: 2005
  end-page: 1202
  ident: bib0016
  article-title: Global optimization in the 21st century: advances and challenges
  publication-title: Comput. Chem. Eng.
– volume: 97
  year: 2024
  ident: bib0006
  article-title: Optimization methods of distributed hybrid power systems with battery storage system: a systematic review
  publication-title: J. Energy Storage
– volume: 2
  start-page: 160
  year: 2021
  ident: bib0036
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN. Comput. Sci.
– volume: 52
  year: 2022
  ident: bib0046
  article-title: A novel hierarchical predictive energy management strategy for plug-in hybrid electric bus combined with deep deterministic policy gradient
  publication-title: J. Energy Storage
– year: 2024
  ident: bib0034
  article-title: An online reinforcement learning-based energy management strategy for microgrids with centralized control
  publication-title: IEEe Trans. Ind. Appl.
– volume: 223
  year: 2021
  ident: bib0014
  article-title: A novel microgrid support management system based on stochastic mixed-integer linear programming
  publication-title: Energy
– volume: 53
  year: 2024
  ident: bib0043
  article-title: Meta-heuristics and deep learning for energy applications: review and open research challenges (2018–2023)
  publication-title: Energy Strategy Rev.
– volume: 125
  start-page: 681
  year: 2017
  end-page: 704
  ident: bib0028
  article-title: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
– reference: , 2024: IEEE, pp. 1–6.
– volume: 332
  year: 2023
  ident: bib0044
  article-title: A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid
  publication-title: Appl. Energy
– volume: 125
  year: 2023
  ident: bib0049
  article-title: Twin-delayed deep deterministic policy gradient algorithm for the energy management of microgrids
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 165837
  year: 2020
  end-page: 165848
  ident: bib0050
  article-title: Transfer deep reinforcement learning-enabled energy management strategy for hybrid tracked vehicle
  publication-title: IEEe Access.
– reference: PVGIS. "Photovoltaic Geographical Information System." European Commission. (accessed).
– volume: 91
  year: 2024
  ident: bib0008
  article-title: Optimum battery sizing, scheduling and demand management for microgrids using slime mould algorithm
  publication-title: J. Energy Storage
– volume: 122
  year: 2020
  ident: bib0038
  article-title: A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: a case study of Korea
  publication-title: Renew. Sustain. Energy Rev.
– volume: 36
  year: 2022
  ident: bib0041
  article-title: Optimal energy management in a microgrid under uncertainties using novel hybrid metaheuristic algorithm
  publication-title: Sustain. Comput.
– volume: 188
  year: 2019
  ident: bib0015
  article-title: A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: the case study of the “El Espino” community
  publication-title: Energy
– volume: 10
  year: 2022
  ident: bib0053
  article-title: A modified long short-term memory-deep deterministic policy gradient-based scheduling method for active distribution networks
  publication-title: Front. Energy Res.
– volume: 9
  start-page: 5992
  year: 2023
  end-page: 6005
  ident: bib0011
  article-title: Multi-objective genetic algorithm based energy management system considering optimal utilization of grid and degradation of battery storage in microgrid
  publication-title: Energy Rep
– reference: E. Buraimoh et al., "Distributed deep deterministic policy gradient agents for real-time energy management of DC microgrid," in
– reference: J. Song, B. Zhang, and J. Lia, "Deep reinforcement learning empowered particle swarm optimization for aerial base station deployment," in
– reference: , 2023: IEEE, pp. 1–3.
– volume: 290
  start-page: 405
  year: 2021
  end-page: 421
  ident: bib0023
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: Eur. J. Oper. Res.
– volume: 104
  year: 2021
  ident: bib0040
  article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 15
  start-page: 578
  year: 2022
  ident: bib0030
  article-title: Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: a survey of advanced machine learning and deep learning techniques
  publication-title: Energies.
– volume: 9
  start-page: 343
  year: 2021
  ident: bib0056
  article-title: PMSM speed control based on particle swarm optimization and deep deterministic policy gradient under load disturbance
  publication-title: Machines
– volume: 43
  year: 2022
  ident: bib0003
  article-title: Role of optimization techniques in microgrid energy management systems—a review
  publication-title: Energy Strategy Rev.
– volume: 11
  start-page: 96
  year: 2023
  ident: bib0047
  article-title: A deep reinforcement learning method for economic power dispatch of microgrid in OPAL-RT environment
  publication-title: Technologies
– volume: 89
  year: 2023
  ident: bib0004
  article-title: Model predictive control of a building renewable energy system based on a long short-term hybrid model
  publication-title: Sustain. Cities. Soc.
– year: 2024
  ident: bib0026
  article-title: Deep deterministic policy gradient algorithm: a systematic review
  publication-title: Heliyon.
– volume: 251
  start-page: 249
  year: 2023
  end-page: 260
  ident: bib0035
  article-title: Design of cost-based sizing and energy management framework for standalone microgrid using reinforcement learning
  publication-title: Sol. Energy
– volume: 23
  year: 2024
  ident: bib0012
  article-title: Impact of large-scale renewable energy integration on the grid voltage stability
  publication-title: Results. Eng.
– volume: 14
  start-page: 584
  year: 2021
  ident: bib0048
  article-title: Optimal scheduling of microgrid based on deep deterministic policy gradient and transfer learning
  publication-title: Energies.
– start-page: 611
  year: 2025
  end-page: 619
  ident: bib0052
  article-title: Multi-agent deep deterministic policy gradient-based bidding strategy in electricity market
  publication-title: Frontier Academic Forum of Electrical Engineering
– year: 2024
  ident: bib0020
  article-title: A survey of mat-heuristics for combinatorial optimisation problems: variants, trends and opportunities
  publication-title: Appl. Soft. Comput.
– volume: 271
  year: 2023
  ident: bib0019
  article-title: A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems
  publication-title: Knowl. Based. Syst.
– volume: 119
  year: 2023
  ident: bib0033
  article-title: Review on optimization techniques and role of Artificial intelligence in home energy management systems
  publication-title: Eng. Appl. Artif. Intell.
– reference: W.a.A.K. Cole. Cost Projections for Utility-Scale Battery Storage: 2023 Update. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-85332.
– volume: 84
  year: 2024
  ident: bib0009
  article-title: A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy
  publication-title: J. Energy Storage
– volume: 51
  year: 2024
  ident: bib0002
  article-title: A review on microgrid optimization with meta-heuristic techniques: scopes, trends and recommendation
  publication-title: Energy Strategy Rev.
– volume: 134
  year: 2023
  ident: bib0018
  article-title: Microgrid energy management using metaheuristic optimization algorithms
  publication-title: Appl. Soft. Comput.
– volume: 145
  start-page: 2271
  year: 2020
  end-page: 2285
  ident: bib0027
  article-title: Challenges and solution technologies for the integration of variable renewable energy sources—a review
  publication-title: Renew. Energy
– volume: 46
  start-page: 101
  year: 2021
  ident: bib0022
  article-title: A hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimization
  publication-title: Sādhanā
– reference: .
– volume: 125
  year: 2021
  ident: bib0059
  article-title: Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 10
  start-page: 8
  year: 2023
  ident: bib0031
  article-title: A comparative study of machine learning and deep learning methods for energy balance prediction in a hybrid building-renewable energy system
  publication-title: Sustain. Energy Res
– volume: 2024
  year: 2024
  ident: bib0045
  article-title: Optimization of home Energy Management Systems in smart cities using bacterial foraging algorithm and deep reinforcement learning for Enhanced renewable Energy Integration
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 10
  year: 2018
  ident: bib0024
  article-title: A review of algorithms for control and optimization for energy management of hybrid renewable energy systems
  publication-title: J. Renew. Sustain. Energy
– year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0026
  article-title: Deep deterministic policy gradient algorithm: a systematic review
  publication-title: Heliyon.
  doi: 10.1016/j.heliyon.2024.e30697
– ident: 10.1016/j.nexus.2025.100448_bib0062
– volume: 122
  year: 2020
  ident: 10.1016/j.nexus.2025.100448_bib0038
  article-title: A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: a case study of Korea
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109725
– volume: 125
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0049
  article-title: Twin-delayed deep deterministic policy gradient algorithm for the energy management of microgrids
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106693
– volume: 14
  start-page: 584
  issue: 3
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0048
  article-title: Optimal scheduling of microgrid based on deep deterministic policy gradient and transfer learning
  publication-title: Energies.
  doi: 10.3390/en14030584
– volume: 219
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0010
  article-title: Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.119379
– ident: 10.1016/j.nexus.2025.100448_bib0057
  doi: 10.1109/APSCON56343.2023.10101173
– volume: 84
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0009
  article-title: A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.111010
– volume: 97
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0006
  article-title: Optimization methods of distributed hybrid power systems with battery storage system: a systematic review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112909
– year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0020
  article-title: A survey of mat-heuristics for combinatorial optimisation problems: variants, trends and opportunities
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2024.111947
– volume: 134
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0018
  article-title: Microgrid energy management using metaheuristic optimization algorithms
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2022.109981
– volume: 91
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0008
  article-title: Optimum battery sizing, scheduling and demand management for microgrids using slime mould algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112034
– volume: 10
  start-page: 8
  issue: 1
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0031
  article-title: A comparative study of machine learning and deep learning methods for energy balance prediction in a hybrid building-renewable energy system
  publication-title: Sustain. Energy Res
  doi: 10.1186/s40807-023-00078-9
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0036
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN. Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 51
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0002
  article-title: A review on microgrid optimization with meta-heuristic techniques: scopes, trends and recommendation
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2024.101298
– volume: 271
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0019
  article-title: A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2023.110554
– volume: 9
  start-page: 343
  issue: 12
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0056
  article-title: PMSM speed control based on particle swarm optimization and deep deterministic policy gradient under load disturbance
  publication-title: Machines
  doi: 10.3390/machines9120343
– volume: 332
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0044
  article-title: A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120525
– volume: 384
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0039
  article-title: Deep learning for renewable energy forecasting: a taxonomy, and systematic literature review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.135414
– volume: 15
  start-page: 578
  issue: 2
  year: 2022
  ident: 10.1016/j.nexus.2025.100448_bib0030
  article-title: Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: a survey of advanced machine learning and deep learning techniques
  publication-title: Energies.
  doi: 10.3390/en15020578
– ident: 10.1016/j.nexus.2025.100448_bib0063
– volume: 36
  year: 2022
  ident: 10.1016/j.nexus.2025.100448_bib0041
  article-title: Optimal energy management in a microgrid under uncertainties using novel hybrid metaheuristic algorithm
  publication-title: Sustain. Comput.
– volume: 29
  start-page: 1185
  issue: 6
  year: 2005
  ident: 10.1016/j.nexus.2025.100448_bib0016
  article-title: Global optimization in the 21st century: advances and challenges
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2005.02.006
– volume: 11
  start-page: 96
  issue: 4
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0047
  article-title: A deep reinforcement learning method for economic power dispatch of microgrid in OPAL-RT environment
  publication-title: Technologies
  doi: 10.3390/technologies11040096
– volume: 46
  start-page: 101
  issue: 2
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0022
  article-title: A hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimization
  publication-title: Sādhanā
  doi: 10.1007/s12046-021-01626-z
– volume: 99
  year: 2022
  ident: 10.1016/j.nexus.2025.100448_bib0042
  article-title: Hybrid deep learning techniques for providing incentive price in electricity market
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.107808
– volume: 8
  start-page: 165837
  year: 2020
  ident: 10.1016/j.nexus.2025.100448_bib0050
  article-title: Transfer deep reinforcement learning-enabled energy management strategy for hybrid tracked vehicle
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2020.3022944
– volume: 44
  start-page: 4067
  issue: 6
  year: 2020
  ident: 10.1016/j.nexus.2025.100448_bib0013
  article-title: Energy management system for smart grid: an overview and key issues
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4883
– volume: 10
  year: 2022
  ident: 10.1016/j.nexus.2025.100448_bib0053
  article-title: A modified long short-term memory-deep deterministic policy gradient-based scheduling method for active distribution networks
  publication-title: Front. Energy Res.
– volume: 119
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0033
  article-title: Review on optimization techniques and role of Artificial intelligence in home energy management systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105721
– volume: 104
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0040
  article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104326
– volume: 10
  issue: 5
  year: 2018
  ident: 10.1016/j.nexus.2025.100448_bib0024
  article-title: A review of algorithms for control and optimization for energy management of hybrid renewable energy systems
  publication-title: J. Renew. Sustain. Energy
– volume: 89
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0004
  article-title: Model predictive control of a building renewable energy system based on a long short-term hybrid model
  publication-title: Sustain. Cities. Soc.
  doi: 10.1016/j.scs.2022.104317
– volume: 43
  year: 2022
  ident: 10.1016/j.nexus.2025.100448_bib0003
  article-title: Role of optimization techniques in microgrid energy management systems—a review
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2022.100899
– start-page: 611
  year: 2025
  ident: 10.1016/j.nexus.2025.100448_bib0052
  article-title: Multi-agent deep deterministic policy gradient-based bidding strategy in electricity market
– volume: 125
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0059
  article-title: Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106457
– volume: 2024
  issue: 1
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0045
  article-title: Optimization of home Energy Management Systems in smart cities using bacterial foraging algorithm and deep reinforcement learning for Enhanced renewable Energy Integration
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1155/2024/2194986
– ident: 10.1016/j.nexus.2025.100448_bib0051
  doi: 10.1109/ICDCM60322.2024.10665114
– year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0034
  article-title: An online reinforcement learning-based energy management strategy for microgrids with centralized control
  publication-title: IEEe Trans. Ind. Appl.
– ident: 10.1016/j.nexus.2025.100448_bib0058
  doi: 10.1109/WCNC57260.2024.10570841
– ident: 10.1016/j.nexus.2025.100448_bib0061
– volume: 52
  year: 2022
  ident: 10.1016/j.nexus.2025.100448_bib0046
  article-title: A novel hierarchical predictive energy management strategy for plug-in hybrid electric bus combined with deep deterministic policy gradient
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104787
– volume: 170
  start-page: 974
  year: 2018
  ident: 10.1016/j.nexus.2025.100448_bib0060
  article-title: A new method for intermediate power point tracking for PV generator under partially shaded conditions in hybrid system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.06.027
– volume: 23
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0012
  article-title: Impact of large-scale renewable energy integration on the grid voltage stability
  publication-title: Results. Eng.
  doi: 10.1016/j.rineng.2024.102398
– volume: 223
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0014
  article-title: A novel microgrid support management system based on stochastic mixed-integer linear programming
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120030
– volume: 9
  start-page: 5992
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0011
  article-title: Multi-objective genetic algorithm based energy management system considering optimal utilization of grid and degradation of battery storage in microgrid
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.05.067
– volume: 223
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0025
  article-title: Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2021.107044
– volume: 82
  start-page: 145
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0054
  article-title: Novel deep deterministic policy gradient technique for automated micro-grid energy management in rural and islanded areas
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.09.066
– volume: 9
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0055
  article-title: Deep deterministic policy gradient for adaptive power system stabilization and voltage regulation," e-Prime-advances in Electrical engineering
  publication-title: Electron. Energy
– volume: 143
  start-page: 252
  year: 2017
  ident: 10.1016/j.nexus.2025.100448_bib0029
  article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2017.04.019
– volume: 157
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0007
  article-title: Impact of risk measures and degradation cost on the optimal arbitrage schedule for battery energy storage systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 9
  start-page: 825
  issue: 5
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0032
  article-title: Machine learning based optimization model for energy management of energy storage system for large industrial park
  publication-title: Processes
  doi: 10.3390/pr9050825
– volume: 125
  start-page: 681
  year: 2017
  ident: 10.1016/j.nexus.2025.100448_bib0028
  article-title: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.174
– volume: 53
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0043
  article-title: Meta-heuristics and deep learning for energy applications: review and open research challenges (2018–2023)
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2024.101409
– volume: 289
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0037
  article-title: A novel optimization method combining metaheuristics and machine learning for daily optimal operations in building energy and storage systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116716
– volume: 202
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0001
  article-title: Review of multi-criteria decision-making for sustainable decentralized hybrid energy systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2024.114676
– volume: 94
  year: 2024
  ident: 10.1016/j.nexus.2025.100448_bib0005
  article-title: Optimization of energy storage systems for integration of renewable energy sources—a bibliometric analysis
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112497
– volume: 23
  issue: 6
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0017
  article-title: Opportunities and challenges of quantum computing for engineering optimization
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4062969
– volume: 10
  start-page: 29393
  year: 2022
  ident: 10.1016/j.nexus.2025.100448_bib0021
  article-title: CAPSO: chaos adaptive particle swarm optimization algorithm
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2022.3158666
– volume: 145
  start-page: 2271
  year: 2020
  ident: 10.1016/j.nexus.2025.100448_bib0027
  article-title: Challenges and solution technologies for the integration of variable renewable energy sources—a review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.147
– volume: 290
  start-page: 405
  issue: 2
  year: 2021
  ident: 10.1016/j.nexus.2025.100448_bib0023
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.07.063
– volume: 188
  year: 2019
  ident: 10.1016/j.nexus.2025.100448_bib0015
  article-title: A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: the case study of the “El Espino” community
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116073
– volume: 251
  start-page: 249
  year: 2023
  ident: 10.1016/j.nexus.2025.100448_bib0035
  article-title: Design of cost-based sizing and energy management framework for standalone microgrid using reinforcement learning
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.01.027
SSID ssj0002811315
Score 2.2959015
Snippet •Integrating the DDPG's RL capabilities in exploitation with PSO's global search efficiency to improve optimization solutions quality via superior exploration...
Effective energy management is crucial in hybrid energy systems for optimal resource utilization and cost savings. This study integrates Deep Deterministic...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 100448
SubjectTerms Battery scheduling
Energy management system
Grid efficiency
Hybrid energy
Particle swarm optimization
Policy gradient
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwGG0MF70YjRrxV3rw6HRla7ceVUQ0UUmUhFvTX0MIToIQ5b_3a7cRuKgHr9vaNe_r9t7W73tF6JTy2IKsjQJmdBLEcQaPFDMsoBTor5EQGfry6IdH1u7G9z3aW9rqy-WEFfbABXAXPEulpsRS6azJeKKAUjK35sp1xJm27u0bpnzpY2rofxkREhFa2Qz5hK7cfs2cQXeDnnubtHSFirxj_wojrc_ysZx_ytFoiXFaW2izlIr4shjiNlqz-Q4a3FX-DgY3m53boPP8hK0v4MNvi1QWXBg0f2CQpHD21S_zY-W9NOdYz109ZB_L3GDrLSRck_5kYDBMw1FZmbmLuq2bl-t2UG6XEOiIsWmQWG4zoDwFEkgrTmUmbdjQzKZJZEEKZIRqIqNYAnLMkFCGibFawQeDBJliTLSHavl7bvcRbsgEhIKWcWZAYSkiVQIB5aGClhIUVR2dVciJceGKIap0saHwQAsHtCiArqMrh-7iUmdp7Q9AoEUZaPFboOuIVbERpTooWB-6Gvx892ARyb-M9uA_RnuINlyXRVLZEapNJzN7DPJlqk78TP0GnL_tUw
  priority: 102
  providerName: Directory of Open Access Journals
Title Integrated DDPG-PSO energy management systems for enhanced battery cycling and efficient grid utilization
URI https://dx.doi.org/10.1016/j.nexus.2025.100448
https://doi.org/10.1016/j.nexus.2025.100448
https://doaj.org/article/9f8ac51e5a954897b426f03879c396ce
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2772-4271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811315
  issn: 2772-4271
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2772-4271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811315
  issn: 2772-4271
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctaAcmHgJEESAPjLjKy04zljdILZWgUpkivwKFEqqSCMrAZ-fsJBVFCMGSIbEdyz7rfonv_kZon0aBBqz1CVMyJEGQwJJiihFKwf15ocsdmx7d6bLzfnA5oINSZ9vkwszt39s4rFS_5UZX26NNq27WWkR1RgG8a6je7_bat-b4OGBEEkDTla7QzzXnfI-V6J9zQUt5OubTVz4afXExpytF7vaLVSY0kSWPzTwTTfn-Tbfxj71fRcslauJ2YRtraEGn62h4UelDKHx83DsjvesrrG0CIH6ahcLgQuD5BQPSwtN7GyaAhdXinGI5NfmUd5inCmsrQWGq3E2GCoMZj8rMzg3UPz25OTon5XELRPqMZSTUkU7AZQpAKCkiyhOuHU8y3Qp9DSiRuFS63A94BOWV63AnVFoK-ODggDlK-Zuolj6negthj4cAGpIHiQJCEy4XIRhE5AioyYHIGuigmoh4XKhqxFW42UNsxyw2YxYXY9ZAh2ayZkWNJLa9AWMdlyssjpIWl9TVlBsNuygUwB6J2ZyH7kZM6gZi1VTHJV0U1ABNDX9_O5kZxl96u_3P8juolk1yvQtwk4k9-1MArp2Pk73SwD8BlE_58w
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbhYMnf0SNGDU9eLRkY2vHjigimogkSoKnpb-GKE4CI4p_va_dRsQYg9et7ZrX17zP0ve-ReiUhr4GrPUIUzIgvh_DlmKKEUoh_NUClzu2PPq2w9o9_6ZP-7nOtqmFWTq_t3lYif6YGV3tGq1adbP6OiozCuBdQuVep9t4NNfHASMSH4YudIV-77kUe6xE_1II2pglYz5_56PRtxDT2spqt6dWmdBklrxUZ6moys8fuo0rzn4bbeaoiRuZb-ygNZ3souF1oQ-hcLPZvSLd-zusbQEgfl2kwuBM4HmKAWnh7ZNNE8DCanHOsZybesoB5onC2kpQmC6DyVBhcONRXtm5h3qty4eLNsmvWyDSYywlgQ51DCFTAEJJEVIec-3UJNP1wNOAErFLpcs9n4fQXrkOdwKlpYAfDg6Yo5S3j0rJW6IPEK7xAEBDcj9WQGjC5SIAhwgdAT05EFkFnRULEY0zVY2oSDd7jqzNImOzKLNZBZ2bxVo0NZLY9gHYOsp3WBTGdS6pqyk3GnZhIIA9YnM4D9MNmdQVxIqljnK6yKgBhhr-_XWycIxVZnv4z_ZHqJROZvoY4CYVJ7lTfwHt_vfN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+DDPG-PSO+energy+management+systems+for+enhanced+battery+cycling+and+efficient+grid+utilization&rft.jtitle=Energy+nexus&rft.au=Ibrahim%2C+Oladimeji&rft.au=Aziz%2C+Mohd+Junaidi+Abdul&rft.au=Ayop%2C+Razman&rft.au=Low%2C+Wen+Yao&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=2772-4271&rft.eissn=2772-4271&rft.volume=18&rft_id=info:doi/10.1016%2Fj.nexus.2025.100448&rft.externalDocID=S2772427125000890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4271&client=summon