The Effect of Forest Mask Quality in the Wall-to-Wall Estimation of Growing Stock Volume

Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing st...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 5; p. 1038
Main Authors Vangi, Elia, D’Amico, Giovanni, Francini, Saverio, Giannetti, Francesca, Lasserre, Bruno, Marchetti, Marco, McRoberts, Ronald E., Chirici, Gherardo
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2021
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs13051038

Cover

Abstract Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m3 ha−1). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator.
AbstractList Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m3 ha−1). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator.
Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m³ ha⁻¹). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator.
Author Giannetti, Francesca
Chirici, Gherardo
D’Amico, Giovanni
Lasserre, Bruno
Vangi, Elia
Marchetti, Marco
Francini, Saverio
McRoberts, Ronald E.
Author_xml – sequence: 1
  givenname: Elia
  orcidid: 0000-0002-9772-2258
  surname: Vangi
  fullname: Vangi, Elia
– sequence: 2
  givenname: Giovanni
  orcidid: 0000-0002-2341-3268
  surname: D’Amico
  fullname: D’Amico, Giovanni
– sequence: 3
  givenname: Saverio
  orcidid: 0000-0001-6991-0289
  surname: Francini
  fullname: Francini, Saverio
– sequence: 4
  givenname: Francesca
  orcidid: 0000-0002-4590-827X
  surname: Giannetti
  fullname: Giannetti, Francesca
– sequence: 5
  givenname: Bruno
  orcidid: 0000-0003-1150-8064
  surname: Lasserre
  fullname: Lasserre, Bruno
– sequence: 6
  givenname: Marco
  orcidid: 0000-0002-5275-5769
  surname: Marchetti
  fullname: Marchetti, Marco
– sequence: 7
  givenname: Ronald E.
  surname: McRoberts
  fullname: McRoberts, Ronald E.
– sequence: 8
  givenname: Gherardo
  orcidid: 0000-0002-0669-5726
  surname: Chirici
  fullname: Chirici, Gherardo
BookMark eNptkclKBDEQhoMouF58ghxFaM3SnUyOIqMOKCKOyy2k0xWNZjqaZBDf3h5HVMS61MJXfxVVm2i1jz0gtEvJAeeKHKZMOWko4aMVtMGIZFXNFFv9Fa-jnZyfyGCcU0XqDXQ_fQQ8dg5swdHhk5ggF3xh8jO-mpvgyzv2PS4DdGdCqEqsFh6Pc_EzU3zsF12nKb75_gFfl2if8W0M8xlsozVnQoadL7-Fbk7G0-Oz6vzydHJ8dF5ZLkSppKWWdm09opRJK1pCGTMKnGsdY7wbMmtoaxvadp0SSjhpVSsYsUCEkMD4FposdbtonvRLGtZK7zoarz8LMT1ok4q3AbRyjigwjemA10RKVXMAAqpxreCilYPW3lLrJcXX-XAIPfPZQgimhzjPmjUNVSMuxQLdX6I2xZwTuO_RlOjFN_TPNwaY_IGtL5_XK8n48F_LBzoIjSM
CitedBy_id crossref_primary_10_3390_rs15020402
crossref_primary_10_1016_j_fecs_2022_100050
crossref_primary_10_1007_s12145_022_00915_3
crossref_primary_10_1016_j_jag_2024_103935
crossref_primary_10_1080_22797254_2023_2301657
crossref_primary_10_1016_j_dib_2022_108297
crossref_primary_10_3390_f13121989
crossref_primary_10_1016_j_envsoft_2024_106268
crossref_primary_10_3390_rs15143457
crossref_primary_10_1080_22797254_2024_2334717
crossref_primary_10_3390_rs15061638
crossref_primary_10_3390_rs16071281
crossref_primary_10_3390_f15071120
crossref_primary_10_1016_j_envsoft_2022_105580
crossref_primary_10_3390_s22052015
crossref_primary_10_1007_s10342_023_01620_6
crossref_primary_10_3390_rs15040923
Cites_doi 10.1007/s13595-016-0590-1
10.1080/01431160903022894
10.1139/cjfr-2016-0064
10.1016/j.rse.2012.05.014
10.1080/22797254.2018.1434424
10.3390/f6124386
10.1016/j.rse.2007.03.032
10.1016/j.rse.2008.03.004
10.1016/j.rse.2019.02.015
10.1016/j.rse.2016.06.004
10.1016/j.rse.2006.09.034
10.3832/ifor0625-005
10.1016/j.rse.2013.09.006
10.1080/02827581.2017.1416666
10.1016/j.rse.2004.09.005
10.1016/j.rse.2015.02.011
10.1080/02827580410019553
10.3390/rs12203360
10.1007/978-94-017-8663-8
10.1016/j.foreco.2013.07.004
10.1109/WHISPERS.2016.8071665
10.3390/rs70810017
10.1016/j.isprsjprs.2016.01.011
10.1109/JSTARS.2012.2227299
10.1016/j.foreco.2015.10.018
10.3832/ifor1133-007
10.3354/cr01121
10.3390/rs10050691
10.1016/j.envsci.2012.04.010
10.1007/978-1-4612-4378-6
10.1016/j.rse.2015.02.026
10.1016/j.rse.2019.111515
10.1016/j.rse.2015.08.029
10.1016/j.rse.2018.05.016
10.1016/j.ecolind.2020.106513
10.1016/j.rse.2017.04.004
10.1126/science.1244693
10.3390/rs4030762
10.1080/13658810500072020
10.1080/02827580701672147
10.5194/isprs-annals-III-7-227-2016
10.1109/LGRS.2005.857030
10.1080/01621459.1983.10477018
10.1016/j.rse.2017.03.026
10.1198/108571106X130548
10.1016/j.rse.2017.09.036
10.1016/j.rse.2019.111492
10.1093/forestry/cpw041
10.1016/j.eswa.2019.112866
10.1007/s40725-019-00087-2
10.1016/S2095-3119(15)61303-X
10.1080/07038992.2016.1207484
10.3390/rs9111118
10.1016/j.rse.2016.10.022
10.1016/j.rse.2009.12.013
10.1126/science.320.5879.1011a
10.1117/12.462423
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs13051038
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_9ff09ea5ade34077943ee0e95fb636b7
10_3390_rs13051038
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-7c1c1db481127c6b0122a9effbf223d122ca1bc51bdd9696f7c9b620ce0667e23
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:27:14 EDT 2025
Fri Sep 05 14:48:46 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Tue Jul 01 01:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-7c1c1db481127c6b0122a9effbf223d122ca1bc51bdd9696f7c9b620ce0667e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0669-5726
0000-0001-6991-0289
0000-0002-4590-827X
0000-0002-9772-2258
0000-0003-1150-8064
0000-0002-5275-5769
0000-0002-2341-3268
OpenAccessLink https://doaj.org/article/9ff09ea5ade34077943ee0e95fb636b7
PQID 2551983767
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_9ff09ea5ade34077943ee0e95fb636b7
proquest_miscellaneous_2551983767
crossref_primary_10_3390_rs13051038
crossref_citationtrail_10_3390_rs13051038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hansen (ref_36) 2013; 342
Puletti (ref_16) 2017; 14
Gobakken (ref_24) 2008; 112
ref_58
ref_56
Hansen (ref_6) 1983; 78
ref_51
Hollaus (ref_10) 2009; 30
Fritz (ref_49) 2005; 19
Vizzarri (ref_79) 2015; 8
McRoberts (ref_23) 2016; 46
Devarriya (ref_74) 2020; 140
ref_19
McRoberts (ref_72) 2015; 163
ref_15
ref_59
Liaw (ref_73) 2002; 5
Dalponte (ref_39) 2014; 140
Holm (ref_30) 2017; 197
Giri (ref_50) 2005; 94
Moser (ref_77) 2016; 90
ref_61
(ref_80) 2007; 22
Immitzer (ref_32) 2016; 359
Kangas (ref_13) 2018; 33
Eysn (ref_38) 2012; 4
Saarela (ref_29) 2016; 73
Giannetti (ref_26) 2018; 213
Reutebuch (ref_76) 2012; 124
Nilsson (ref_31) 2017; 194
ref_68
ref_22
Barrett (ref_28) 2016; 174
Belgiu (ref_34) 2016; 114
ref_21
ref_20
ref_64
ref_63
Karlson (ref_33) 2015; 7
McRoberts (ref_7) 2007; 110
Waser (ref_11) 2006; 8
White (ref_14) 2016; 42
Neumann (ref_52) 2007; 9
Giannetti (ref_18) 2020; 117
Fattorini (ref_60) 2006; 11
Masek (ref_66) 2006; 3
McRoberts (ref_62) 2018; 207
Waser (ref_12) 2015; 6
ref_71
ref_70
Bartsch (ref_78) 2020; 237
Salberg (ref_41) 2018; 51
Hollaus (ref_37) 2016; III-7
ref_35
Gobakken (ref_8) 2004; 19
Maselli (ref_69) 2012; 54
Foga (ref_67) 2017; 194
ref_75
Seebach (ref_53) 2011; 84
Olofsson (ref_44) 2020; 236
McRoberts (ref_4) 2013; 6
Barbati (ref_57) 2014; 321
Woodcock (ref_42) 2008; 320
Chirici (ref_17) 2020; 84
Li (ref_55) 2017; 16
Corona (ref_65) 2012; 5
Tomppo (ref_9) 2008; 112
Wulder (ref_43) 2019; 225
Goodbody (ref_27) 2019; 5
Saatchi (ref_54) 2016; 183
McRoberts (ref_25) 2010; 114
ref_47
Schepaschenko (ref_1) 2015; 162
ref_46
Seebach (ref_48) 2012; 22
ref_45
ref_40
Wittke (ref_5) 2019; 76
ref_3
ref_2
References_xml – volume: 73
  start-page: 895
  year: 2016
  ident: ref_29
  article-title: Hierarchical model-based inference for forest inventory utilizing three sources of information
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-016-0590-1
– volume: 30
  start-page: 5159
  year: 2009
  ident: ref_10
  article-title: Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903022894
– volume: 46
  start-page: 924
  year: 2016
  ident: ref_23
  article-title: Methods for evaluating the utilities of local and global maps for increasing the precision of estimates of subtropical forest area
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2016-0064
– volume: 124
  start-page: 479
  year: 2012
  ident: ref_76
  article-title: Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.05.014
– volume: 51
  start-page: 336
  year: 2018
  ident: ref_41
  article-title: Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1434424
– volume: 6
  start-page: 4510
  year: 2015
  ident: ref_12
  article-title: Wall-to-Wall Forest Mapping Based on Digital Surface Models from Image-Based Point Clouds and a NFI Forest Definition
  publication-title: Forests
  doi: 10.3390/f6124386
– volume: 112
  start-page: 1982
  year: 2008
  ident: ref_9
  article-title: Combining national forest inventory field plots and remote sensing data for forest databases
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.03.032
– volume: 112
  start-page: 3079
  year: 2008
  ident: ref_24
  article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.03.004
– volume: 225
  start-page: 127
  year: 2019
  ident: ref_43
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 183
  start-page: 265
  year: 2016
  ident: ref_54
  article-title: Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.06.004
– volume: 110
  start-page: 412
  year: 2007
  ident: ref_7
  article-title: Remote sensing support for national forest inventories
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.034
– ident: ref_61
– volume: 5
  start-page: 204
  year: 2012
  ident: ref_65
  article-title: Land use inventory as framework for environmental accounting: An application in Italy
  publication-title: Iforest Biogeosci. For.
  doi: 10.3832/ifor0625-005
– ident: ref_71
– ident: ref_58
– volume: 140
  start-page: 306
  year: 2014
  ident: ref_39
  article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.006
– volume: 8
  start-page: 196
  year: 2006
  ident: ref_11
  article-title: Comparison of large-area land cover products with national forest inventories and CORINE land cover in the European Alps
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 33
  start-page: 397
  year: 2018
  ident: ref_13
  article-title: Remote sensing and forest inventories in Nordic countries–roadmap for the future
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827581.2017.1416666
– volume: 94
  start-page: 123
  year: 2005
  ident: ref_50
  article-title: A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.09.005
– volume: 162
  start-page: 208
  year: 2015
  ident: ref_1
  article-title: Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.011
– volume: 19
  start-page: 482
  year: 2004
  ident: ref_8
  article-title: Laser scanning of forest resources: The nordic experience
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827580410019553
– ident: ref_56
  doi: 10.3390/rs12203360
– ident: ref_15
  doi: 10.1007/978-94-017-8663-8
– volume: 321
  start-page: 145
  year: 2014
  ident: ref_57
  article-title: European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2013.07.004
– ident: ref_45
– ident: ref_40
  doi: 10.1109/WHISPERS.2016.8071665
– ident: ref_59
– volume: 7
  start-page: 10017
  year: 2015
  ident: ref_33
  article-title: Mapping tree canopy cover and above-ground biomass in Sudano-Sahelian woodlands using landsat 8 and random forest
  publication-title: Remote Sens.
  doi: 10.3390/rs70810017
– volume: 76
  start-page: 167
  year: 2019
  ident: ref_5
  article-title: Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_34
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: Isprs J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 14
  start-page: 135
  year: 2017
  ident: ref_16
  article-title: CFOR: A spatial decision support system dedicated to forest management in Calabria
  publication-title: For. Riv. Selvic. Ed Ecol. For.
– ident: ref_3
– volume: 6
  start-page: 27
  year: 2013
  ident: ref_4
  article-title: Accuracy and Precision for Remote Sensing Applications of Nonlinear Model-Based Inference
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2227299
– volume: 359
  start-page: 232
  year: 2016
  ident: ref_32
  article-title: Use of WorldView-2 stereo imagery and National Forest Inventory data for wall-to-wall mapping of growing stock
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.10.018
– ident: ref_47
– volume: 8
  start-page: 59
  year: 2015
  ident: ref_79
  article-title: Comparing multisource harmonized forest types mapping: A case study from central Italy
  publication-title: Iforest-Biogeosci. For.
  doi: 10.3832/ifor1133-007
– volume: 54
  start-page: 271
  year: 2012
  ident: ref_69
  article-title: Modeling primary production using a 1 km daily meteorological data set
  publication-title: Clim. Res.
  doi: 10.3354/cr01121
– ident: ref_68
  doi: 10.3390/rs10050691
– volume: 22
  start-page: 13
  year: 2012
  ident: ref_48
  article-title: Choice of forest map has implications for policy analysis: A case study on the EU biofuel target
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2012.04.010
– ident: ref_20
  doi: 10.1007/978-1-4612-4378-6
– volume: 163
  start-page: 13
  year: 2015
  ident: ref_72
  article-title: Optimizing the k-Nearest Neighbors technique for estimating forest above-ground biomass using airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.026
– volume: 237
  start-page: 111515
  year: 2020
  ident: ref_78
  article-title: Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111515
– volume: 174
  start-page: 279
  year: 2016
  ident: ref_28
  article-title: A questionnaire-based review of the operational use of remotely sensed data by national forest inventories
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.029
– volume: 213
  start-page: 195
  year: 2018
  ident: ref_26
  article-title: A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.016
– ident: ref_63
– volume: 117
  start-page: 106513
  year: 2020
  ident: ref_18
  article-title: Modelling Forest structural indices in mixed temperate forests: Comparison of UAV photogrammetric DTM-independent variables and ALS variables
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106513
– volume: 197
  start-page: 85
  year: 2017
  ident: ref_30
  article-title: Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.004
– volume: 342
  start-page: 850
  year: 2013
  ident: ref_36
  article-title: High-Resolution Global Maps of 21st-Century Forest Cover Change
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 4
  start-page: 762
  year: 2012
  ident: ref_38
  article-title: Forest Delineation Based on Airborne LIDAR Data
  publication-title: Remote Sens.
  doi: 10.3390/rs4030762
– ident: ref_21
– volume: 19
  start-page: 787
  year: 2005
  ident: ref_49
  article-title: Comparison of land cover maps using fuzzy agreement
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810500072020
– volume: 22
  start-page: 433
  year: 2007
  ident: ref_80
  article-title: Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accom-plished in Scandinavia
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827580701672147
– volume: 84
  start-page: 101959
  year: 2020
  ident: ref_17
  article-title: Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: III-7
  start-page: 227
  year: 2016
  ident: ref_37
  article-title: Forest area derivation from sentinel-1 data
  publication-title: Isprs Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-annals-III-7-227-2016
– volume: 3
  start-page: 68
  year: 2006
  ident: ref_66
  article-title: A Land-sat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.857030
– volume: 78
  start-page: 776
  year: 1983
  ident: ref_6
  article-title: An evaluation of model dependent and probability-sampling inferences in sample surveys
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10477018
– volume: 9
  start-page: 425
  year: 2007
  ident: ref_52
  article-title: Comparative assessment of CORINE2000 and GLC2000: Spatial analysis of land cover data for Europe
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 194
  start-page: 379
  year: 2017
  ident: ref_67
  article-title: Cloud detection algorithm comparison and validation for operational Landsat data products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.026
– volume: 11
  start-page: 296
  year: 2006
  ident: ref_60
  article-title: A three-phase sampling strategy for large-scale multiresource forest inventories
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/108571106X130548
– ident: ref_75
– volume: 207
  start-page: 42
  year: 2018
  ident: ref_62
  article-title: The effects of global positioning system receiver accuracy on airborne laser scanning-assisted estimates of aboveground biomass
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.036
– ident: ref_2
– volume: 236
  start-page: 111492
  year: 2020
  ident: ref_44
  article-title: Mitigating the effects of omission errors on area and area change estimates
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111492
– ident: ref_46
– volume: 90
  start-page: 112
  year: 2016
  ident: ref_77
  article-title: Methods for variable selection in LiDAR-assisted forest inventories
  publication-title: Forestry
  doi: 10.1093/forestry/cpw041
– volume: 140
  start-page: 112866
  year: 2020
  ident: ref_74
  article-title: Unbalanced breast cancer data classification using novel fitness functions in genetic programming
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112866
– volume: 5
  start-page: 55
  year: 2019
  ident: ref_27
  article-title: Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-019-00087-2
– volume: 16
  start-page: 286
  year: 2017
  ident: ref_55
  article-title: Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(15)61303-X
– volume: 84
  start-page: 285
  year: 2011
  ident: ref_53
  article-title: Comparative analysis of harmonized forest area estimates for European countries
  publication-title: Forests
– volume: 42
  start-page: 619
  year: 2016
  ident: ref_14
  article-title: Remote Sensing Technologies for Enhancing Forest Inventories: A Review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1207484
– ident: ref_64
– ident: ref_51
  doi: 10.3390/rs9111118
– ident: ref_70
– ident: ref_19
– volume: 5
  start-page: 983
  year: 2002
  ident: ref_73
  article-title: Classification and regression by randomForest
  publication-title: Nucleic Acids Res.
– ident: ref_22
– volume: 194
  start-page: 447
  year: 2017
  ident: ref_31
  article-title: A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.022
– volume: 114
  start-page: 1017
  year: 2010
  ident: ref_25
  article-title: Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.013
– volume: 320
  start-page: 1011a
  year: 2008
  ident: ref_42
  article-title: Free Access to Landsat Imagery
  publication-title: Science
  doi: 10.1126/science.320.5879.1011a
– ident: ref_35
  doi: 10.1117/12.462423
SSID ssj0000331904
Score 2.3819473
Snippet Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1038
SubjectTerms data collection
forest land
forest mask
forests
growing stock volume
image analysis
Italy
land cover
national forests
prediction
remote sensing
spatial estimation
sustainable forestry
Title The Effect of Forest Mask Quality in the Wall-to-Wall Estimation of Growing Stock Volume
URI https://www.proquest.com/docview/2551983767
https://doaj.org/article/9ff09ea5ade34077943ee0e95fb636b7
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbK9gAXBC2I5bFyBZceLOI4cezjQndBVXeFSkF7i_wUVVEWseHAv2cmyQIVSL30ZCVylGhmPDNfPP6GkCOwAhtT51nhpWCZNzlTykqmTS5jpgueGtzRnUzl-VX2fZbPXrX6wpqwlh64FdyxjjHRweTGBwHgA_nMQkiCzqOVQtrmHHmik1dgqvHBAkwryVo-UgG4_vh-Ad4a6ePUXxGoIep_44eb4DLeIOtdVkiH7ddskg-h-kRWuwblN4-fyQzUSVumYTqPFBtqLmo6MYs_tGXBeKS_KwrJHMU_46yeMxzpCBZwezYRnzoDyA2Ril7W4ATpdeOXtsjVePTr9Jx1TRGYE1LWrHDccW8zBYlS4aTFrTGjQ4wg8lR4uHKGW5dz6z0y38TCaSvTxAUsZw2p2Ca9al6FHUIzCeiFmyIvRMisEcok0keuIjZ9UZb3ydeloErXMYZj44rbEpADCrV8EWqfHD7PvWt5Mt6ddYLyfp6B3NbNDdB42Wm8_JfG--TLUlslrAXc4DBVmD8sSoBHXCvkp9n9Hy_aI2spVrA0FWf7pFffP4QDSEFqOyAranw2IB-H3yY_LmE8GU0vfg4aG3wCRpjc2g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Forest+Mask+Quality+in+the+Wall-to-Wall+Estimation+of+Growing+Stock+Volume&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vangi%2C+Elia&rft.au=D%E2%80%99Amico%2C+Giovanni&rft.au=Francini%2C+Saverio&rft.au=Giannetti%2C+Francesca&rft.date=2021-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=5&rft.spage=1038&rft_id=info:doi/10.3390%2Frs13051038&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13051038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon