The Effect of Forest Mask Quality in the Wall-to-Wall Estimation of Growing Stock Volume
Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing st...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 5; p. 1038 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs13051038 |
Cover
Abstract | Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m3 ha−1). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator. |
---|---|
AbstractList | Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m3 ha−1). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator. Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m³ ha⁻¹). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator. |
Author | Giannetti, Francesca Chirici, Gherardo D’Amico, Giovanni Lasserre, Bruno Vangi, Elia Marchetti, Marco Francini, Saverio McRoberts, Ronald E. |
Author_xml | – sequence: 1 givenname: Elia orcidid: 0000-0002-9772-2258 surname: Vangi fullname: Vangi, Elia – sequence: 2 givenname: Giovanni orcidid: 0000-0002-2341-3268 surname: D’Amico fullname: D’Amico, Giovanni – sequence: 3 givenname: Saverio orcidid: 0000-0001-6991-0289 surname: Francini fullname: Francini, Saverio – sequence: 4 givenname: Francesca orcidid: 0000-0002-4590-827X surname: Giannetti fullname: Giannetti, Francesca – sequence: 5 givenname: Bruno orcidid: 0000-0003-1150-8064 surname: Lasserre fullname: Lasserre, Bruno – sequence: 6 givenname: Marco orcidid: 0000-0002-5275-5769 surname: Marchetti fullname: Marchetti, Marco – sequence: 7 givenname: Ronald E. surname: McRoberts fullname: McRoberts, Ronald E. – sequence: 8 givenname: Gherardo orcidid: 0000-0002-0669-5726 surname: Chirici fullname: Chirici, Gherardo |
BookMark | eNptkclKBDEQhoMouF58ghxFaM3SnUyOIqMOKCKOyy2k0xWNZjqaZBDf3h5HVMS61MJXfxVVm2i1jz0gtEvJAeeKHKZMOWko4aMVtMGIZFXNFFv9Fa-jnZyfyGCcU0XqDXQ_fQQ8dg5swdHhk5ggF3xh8jO-mpvgyzv2PS4DdGdCqEqsFh6Pc_EzU3zsF12nKb75_gFfl2if8W0M8xlsozVnQoadL7-Fbk7G0-Oz6vzydHJ8dF5ZLkSppKWWdm09opRJK1pCGTMKnGsdY7wbMmtoaxvadp0SSjhpVSsYsUCEkMD4FposdbtonvRLGtZK7zoarz8LMT1ok4q3AbRyjigwjemA10RKVXMAAqpxreCilYPW3lLrJcXX-XAIPfPZQgimhzjPmjUNVSMuxQLdX6I2xZwTuO_RlOjFN_TPNwaY_IGtL5_XK8n48F_LBzoIjSM |
CitedBy_id | crossref_primary_10_3390_rs15020402 crossref_primary_10_1016_j_fecs_2022_100050 crossref_primary_10_1007_s12145_022_00915_3 crossref_primary_10_1016_j_jag_2024_103935 crossref_primary_10_1080_22797254_2023_2301657 crossref_primary_10_1016_j_dib_2022_108297 crossref_primary_10_3390_f13121989 crossref_primary_10_1016_j_envsoft_2024_106268 crossref_primary_10_3390_rs15143457 crossref_primary_10_1080_22797254_2024_2334717 crossref_primary_10_3390_rs15061638 crossref_primary_10_3390_rs16071281 crossref_primary_10_3390_f15071120 crossref_primary_10_1016_j_envsoft_2022_105580 crossref_primary_10_3390_s22052015 crossref_primary_10_1007_s10342_023_01620_6 crossref_primary_10_3390_rs15040923 |
Cites_doi | 10.1007/s13595-016-0590-1 10.1080/01431160903022894 10.1139/cjfr-2016-0064 10.1016/j.rse.2012.05.014 10.1080/22797254.2018.1434424 10.3390/f6124386 10.1016/j.rse.2007.03.032 10.1016/j.rse.2008.03.004 10.1016/j.rse.2019.02.015 10.1016/j.rse.2016.06.004 10.1016/j.rse.2006.09.034 10.3832/ifor0625-005 10.1016/j.rse.2013.09.006 10.1080/02827581.2017.1416666 10.1016/j.rse.2004.09.005 10.1016/j.rse.2015.02.011 10.1080/02827580410019553 10.3390/rs12203360 10.1007/978-94-017-8663-8 10.1016/j.foreco.2013.07.004 10.1109/WHISPERS.2016.8071665 10.3390/rs70810017 10.1016/j.isprsjprs.2016.01.011 10.1109/JSTARS.2012.2227299 10.1016/j.foreco.2015.10.018 10.3832/ifor1133-007 10.3354/cr01121 10.3390/rs10050691 10.1016/j.envsci.2012.04.010 10.1007/978-1-4612-4378-6 10.1016/j.rse.2015.02.026 10.1016/j.rse.2019.111515 10.1016/j.rse.2015.08.029 10.1016/j.rse.2018.05.016 10.1016/j.ecolind.2020.106513 10.1016/j.rse.2017.04.004 10.1126/science.1244693 10.3390/rs4030762 10.1080/13658810500072020 10.1080/02827580701672147 10.5194/isprs-annals-III-7-227-2016 10.1109/LGRS.2005.857030 10.1080/01621459.1983.10477018 10.1016/j.rse.2017.03.026 10.1198/108571106X130548 10.1016/j.rse.2017.09.036 10.1016/j.rse.2019.111492 10.1093/forestry/cpw041 10.1016/j.eswa.2019.112866 10.1007/s40725-019-00087-2 10.1016/S2095-3119(15)61303-X 10.1080/07038992.2016.1207484 10.3390/rs9111118 10.1016/j.rse.2016.10.022 10.1016/j.rse.2009.12.013 10.1126/science.320.5879.1011a 10.1117/12.462423 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs13051038 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_9ff09ea5ade34077943ee0e95fb636b7 10_3390_rs13051038 |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7S9 L.6 PQGLB PUEGO |
ID | FETCH-LOGICAL-c366t-7c1c1db481127c6b0122a9effbf223d122ca1bc51bdd9696f7c9b620ce0667e23 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:27:14 EDT 2025 Fri Sep 05 14:48:46 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Tue Jul 01 01:58:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-7c1c1db481127c6b0122a9effbf223d122ca1bc51bdd9696f7c9b620ce0667e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0669-5726 0000-0001-6991-0289 0000-0002-4590-827X 0000-0002-9772-2258 0000-0003-1150-8064 0000-0002-5275-5769 0000-0002-2341-3268 |
OpenAccessLink | https://doaj.org/article/9ff09ea5ade34077943ee0e95fb636b7 |
PQID | 2551983767 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9ff09ea5ade34077943ee0e95fb636b7 proquest_miscellaneous_2551983767 crossref_primary_10_3390_rs13051038 crossref_citationtrail_10_3390_rs13051038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hansen (ref_36) 2013; 342 Puletti (ref_16) 2017; 14 Gobakken (ref_24) 2008; 112 ref_58 ref_56 Hansen (ref_6) 1983; 78 ref_51 Hollaus (ref_10) 2009; 30 Fritz (ref_49) 2005; 19 Vizzarri (ref_79) 2015; 8 McRoberts (ref_23) 2016; 46 Devarriya (ref_74) 2020; 140 ref_19 McRoberts (ref_72) 2015; 163 ref_15 ref_59 Liaw (ref_73) 2002; 5 Dalponte (ref_39) 2014; 140 Holm (ref_30) 2017; 197 Giri (ref_50) 2005; 94 Moser (ref_77) 2016; 90 ref_61 (ref_80) 2007; 22 Immitzer (ref_32) 2016; 359 Kangas (ref_13) 2018; 33 Eysn (ref_38) 2012; 4 Saarela (ref_29) 2016; 73 Giannetti (ref_26) 2018; 213 Reutebuch (ref_76) 2012; 124 Nilsson (ref_31) 2017; 194 ref_68 ref_22 Barrett (ref_28) 2016; 174 Belgiu (ref_34) 2016; 114 ref_21 ref_20 ref_64 ref_63 Karlson (ref_33) 2015; 7 McRoberts (ref_7) 2007; 110 Waser (ref_11) 2006; 8 White (ref_14) 2016; 42 Neumann (ref_52) 2007; 9 Giannetti (ref_18) 2020; 117 Fattorini (ref_60) 2006; 11 Masek (ref_66) 2006; 3 McRoberts (ref_62) 2018; 207 Waser (ref_12) 2015; 6 ref_71 ref_70 Bartsch (ref_78) 2020; 237 Salberg (ref_41) 2018; 51 Hollaus (ref_37) 2016; III-7 ref_35 Gobakken (ref_8) 2004; 19 Maselli (ref_69) 2012; 54 Foga (ref_67) 2017; 194 ref_75 Seebach (ref_53) 2011; 84 Olofsson (ref_44) 2020; 236 McRoberts (ref_4) 2013; 6 Barbati (ref_57) 2014; 321 Woodcock (ref_42) 2008; 320 Chirici (ref_17) 2020; 84 Li (ref_55) 2017; 16 Corona (ref_65) 2012; 5 Tomppo (ref_9) 2008; 112 Wulder (ref_43) 2019; 225 Goodbody (ref_27) 2019; 5 Saatchi (ref_54) 2016; 183 McRoberts (ref_25) 2010; 114 ref_47 Schepaschenko (ref_1) 2015; 162 ref_46 Seebach (ref_48) 2012; 22 ref_45 ref_40 Wittke (ref_5) 2019; 76 ref_3 ref_2 |
References_xml | – volume: 73 start-page: 895 year: 2016 ident: ref_29 article-title: Hierarchical model-based inference for forest inventory utilizing three sources of information publication-title: Ann. For. Sci. doi: 10.1007/s13595-016-0590-1 – volume: 30 start-page: 5159 year: 2009 ident: ref_10 article-title: Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903022894 – volume: 46 start-page: 924 year: 2016 ident: ref_23 article-title: Methods for evaluating the utilities of local and global maps for increasing the precision of estimates of subtropical forest area publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2016-0064 – volume: 124 start-page: 479 year: 2012 ident: ref_76 article-title: Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.014 – volume: 51 start-page: 336 year: 2018 ident: ref_41 article-title: Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1434424 – volume: 6 start-page: 4510 year: 2015 ident: ref_12 article-title: Wall-to-Wall Forest Mapping Based on Digital Surface Models from Image-Based Point Clouds and a NFI Forest Definition publication-title: Forests doi: 10.3390/f6124386 – volume: 112 start-page: 1982 year: 2008 ident: ref_9 article-title: Combining national forest inventory field plots and remote sensing data for forest databases publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.03.032 – volume: 112 start-page: 3079 year: 2008 ident: ref_24 article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.03.004 – volume: 225 start-page: 127 year: 2019 ident: ref_43 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 183 start-page: 265 year: 2016 ident: ref_54 article-title: Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.06.004 – volume: 110 start-page: 412 year: 2007 ident: ref_7 article-title: Remote sensing support for national forest inventories publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.034 – ident: ref_61 – volume: 5 start-page: 204 year: 2012 ident: ref_65 article-title: Land use inventory as framework for environmental accounting: An application in Italy publication-title: Iforest Biogeosci. For. doi: 10.3832/ifor0625-005 – ident: ref_71 – ident: ref_58 – volume: 140 start-page: 306 year: 2014 ident: ref_39 article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.09.006 – volume: 8 start-page: 196 year: 2006 ident: ref_11 article-title: Comparison of large-area land cover products with national forest inventories and CORINE land cover in the European Alps publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 33 start-page: 397 year: 2018 ident: ref_13 article-title: Remote sensing and forest inventories in Nordic countries–roadmap for the future publication-title: Scand. J. For. Res. doi: 10.1080/02827581.2017.1416666 – volume: 94 start-page: 123 year: 2005 ident: ref_50 article-title: A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.09.005 – volume: 162 start-page: 208 year: 2015 ident: ref_1 article-title: Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.011 – volume: 19 start-page: 482 year: 2004 ident: ref_8 article-title: Laser scanning of forest resources: The nordic experience publication-title: Scand. J. For. Res. doi: 10.1080/02827580410019553 – ident: ref_56 doi: 10.3390/rs12203360 – ident: ref_15 doi: 10.1007/978-94-017-8663-8 – volume: 321 start-page: 145 year: 2014 ident: ref_57 article-title: European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2013.07.004 – ident: ref_45 – ident: ref_40 doi: 10.1109/WHISPERS.2016.8071665 – ident: ref_59 – volume: 7 start-page: 10017 year: 2015 ident: ref_33 article-title: Mapping tree canopy cover and above-ground biomass in Sudano-Sahelian woodlands using landsat 8 and random forest publication-title: Remote Sens. doi: 10.3390/rs70810017 – volume: 76 start-page: 167 year: 2019 ident: ref_5 article-title: Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 114 start-page: 24 year: 2016 ident: ref_34 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: Isprs J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 14 start-page: 135 year: 2017 ident: ref_16 article-title: CFOR: A spatial decision support system dedicated to forest management in Calabria publication-title: For. Riv. Selvic. Ed Ecol. For. – ident: ref_3 – volume: 6 start-page: 27 year: 2013 ident: ref_4 article-title: Accuracy and Precision for Remote Sensing Applications of Nonlinear Model-Based Inference publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2227299 – volume: 359 start-page: 232 year: 2016 ident: ref_32 article-title: Use of WorldView-2 stereo imagery and National Forest Inventory data for wall-to-wall mapping of growing stock publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.10.018 – ident: ref_47 – volume: 8 start-page: 59 year: 2015 ident: ref_79 article-title: Comparing multisource harmonized forest types mapping: A case study from central Italy publication-title: Iforest-Biogeosci. For. doi: 10.3832/ifor1133-007 – volume: 54 start-page: 271 year: 2012 ident: ref_69 article-title: Modeling primary production using a 1 km daily meteorological data set publication-title: Clim. Res. doi: 10.3354/cr01121 – ident: ref_68 doi: 10.3390/rs10050691 – volume: 22 start-page: 13 year: 2012 ident: ref_48 article-title: Choice of forest map has implications for policy analysis: A case study on the EU biofuel target publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2012.04.010 – ident: ref_20 doi: 10.1007/978-1-4612-4378-6 – volume: 163 start-page: 13 year: 2015 ident: ref_72 article-title: Optimizing the k-Nearest Neighbors technique for estimating forest above-ground biomass using airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.026 – volume: 237 start-page: 111515 year: 2020 ident: ref_78 article-title: Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111515 – volume: 174 start-page: 279 year: 2016 ident: ref_28 article-title: A questionnaire-based review of the operational use of remotely sensed data by national forest inventories publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.029 – volume: 213 start-page: 195 year: 2018 ident: ref_26 article-title: A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.016 – ident: ref_63 – volume: 117 start-page: 106513 year: 2020 ident: ref_18 article-title: Modelling Forest structural indices in mixed temperate forests: Comparison of UAV photogrammetric DTM-independent variables and ALS variables publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106513 – volume: 197 start-page: 85 year: 2017 ident: ref_30 article-title: Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.004 – volume: 342 start-page: 850 year: 2013 ident: ref_36 article-title: High-Resolution Global Maps of 21st-Century Forest Cover Change publication-title: Science doi: 10.1126/science.1244693 – volume: 4 start-page: 762 year: 2012 ident: ref_38 article-title: Forest Delineation Based on Airborne LIDAR Data publication-title: Remote Sens. doi: 10.3390/rs4030762 – ident: ref_21 – volume: 19 start-page: 787 year: 2005 ident: ref_49 article-title: Comparison of land cover maps using fuzzy agreement publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810500072020 – volume: 22 start-page: 433 year: 2007 ident: ref_80 article-title: Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accom-plished in Scandinavia publication-title: Scand. J. For. Res. doi: 10.1080/02827580701672147 – volume: 84 start-page: 101959 year: 2020 ident: ref_17 article-title: Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: III-7 start-page: 227 year: 2016 ident: ref_37 article-title: Forest area derivation from sentinel-1 data publication-title: Isprs Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-annals-III-7-227-2016 – volume: 3 start-page: 68 year: 2006 ident: ref_66 article-title: A Land-sat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.857030 – volume: 78 start-page: 776 year: 1983 ident: ref_6 article-title: An evaluation of model dependent and probability-sampling inferences in sample surveys publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1983.10477018 – volume: 9 start-page: 425 year: 2007 ident: ref_52 article-title: Comparative assessment of CORINE2000 and GLC2000: Spatial analysis of land cover data for Europe publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 194 start-page: 379 year: 2017 ident: ref_67 article-title: Cloud detection algorithm comparison and validation for operational Landsat data products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.026 – volume: 11 start-page: 296 year: 2006 ident: ref_60 article-title: A three-phase sampling strategy for large-scale multiresource forest inventories publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/108571106X130548 – ident: ref_75 – volume: 207 start-page: 42 year: 2018 ident: ref_62 article-title: The effects of global positioning system receiver accuracy on airborne laser scanning-assisted estimates of aboveground biomass publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.036 – ident: ref_2 – volume: 236 start-page: 111492 year: 2020 ident: ref_44 article-title: Mitigating the effects of omission errors on area and area change estimates publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111492 – ident: ref_46 – volume: 90 start-page: 112 year: 2016 ident: ref_77 article-title: Methods for variable selection in LiDAR-assisted forest inventories publication-title: Forestry doi: 10.1093/forestry/cpw041 – volume: 140 start-page: 112866 year: 2020 ident: ref_74 article-title: Unbalanced breast cancer data classification using novel fitness functions in genetic programming publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112866 – volume: 5 start-page: 55 year: 2019 ident: ref_27 article-title: Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions publication-title: Curr. For. Rep. doi: 10.1007/s40725-019-00087-2 – volume: 16 start-page: 286 year: 2017 ident: ref_55 article-title: Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(15)61303-X – volume: 84 start-page: 285 year: 2011 ident: ref_53 article-title: Comparative analysis of harmonized forest area estimates for European countries publication-title: Forests – volume: 42 start-page: 619 year: 2016 ident: ref_14 article-title: Remote Sensing Technologies for Enhancing Forest Inventories: A Review publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2016.1207484 – ident: ref_64 – ident: ref_51 doi: 10.3390/rs9111118 – ident: ref_70 – ident: ref_19 – volume: 5 start-page: 983 year: 2002 ident: ref_73 article-title: Classification and regression by randomForest publication-title: Nucleic Acids Res. – ident: ref_22 – volume: 194 start-page: 447 year: 2017 ident: ref_31 article-title: A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.022 – volume: 114 start-page: 1017 year: 2010 ident: ref_25 article-title: Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.013 – volume: 320 start-page: 1011a year: 2008 ident: ref_42 article-title: Free Access to Landsat Imagery publication-title: Science doi: 10.1126/science.320.5879.1011a – ident: ref_35 doi: 10.1117/12.462423 |
SSID | ssj0000331904 |
Score | 2.3819473 |
Snippet | Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1038 |
SubjectTerms | data collection forest land forest mask forests growing stock volume image analysis Italy land cover national forests prediction remote sensing spatial estimation sustainable forestry |
Title | The Effect of Forest Mask Quality in the Wall-to-Wall Estimation of Growing Stock Volume |
URI | https://www.proquest.com/docview/2551983767 https://doaj.org/article/9ff09ea5ade34077943ee0e95fb636b7 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbK9gAXBC2I5bFyBZceLOI4cezjQndBVXeFSkF7i_wUVVEWseHAv2cmyQIVSL30ZCVylGhmPDNfPP6GkCOwAhtT51nhpWCZNzlTykqmTS5jpgueGtzRnUzl-VX2fZbPXrX6wpqwlh64FdyxjjHRweTGBwHgA_nMQkiCzqOVQtrmHHmik1dgqvHBAkwryVo-UgG4_vh-Ad4a6ePUXxGoIep_44eb4DLeIOtdVkiH7ddskg-h-kRWuwblN4-fyQzUSVumYTqPFBtqLmo6MYs_tGXBeKS_KwrJHMU_46yeMxzpCBZwezYRnzoDyA2Ril7W4ATpdeOXtsjVePTr9Jx1TRGYE1LWrHDccW8zBYlS4aTFrTGjQ4wg8lR4uHKGW5dz6z0y38TCaSvTxAUsZw2p2Ca9al6FHUIzCeiFmyIvRMisEcok0keuIjZ9UZb3ydeloErXMYZj44rbEpADCrV8EWqfHD7PvWt5Mt6ddYLyfp6B3NbNDdB42Wm8_JfG--TLUlslrAXc4DBVmD8sSoBHXCvkp9n9Hy_aI2spVrA0FWf7pFffP4QDSEFqOyAranw2IB-H3yY_LmE8GU0vfg4aG3wCRpjc2g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Forest+Mask+Quality+in+the+Wall-to-Wall+Estimation+of+Growing+Stock+Volume&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vangi%2C+Elia&rft.au=D%E2%80%99Amico%2C+Giovanni&rft.au=Francini%2C+Saverio&rft.au=Giannetti%2C+Francesca&rft.date=2021-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=5&rft.spage=1038&rft_id=info:doi/10.3390%2Frs13051038&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13051038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |