A data clustering algorithm for stratified data partitioning in artificial neural network
The statistical properties of training, validation and test data play an important role in assuring optimal performance in artificial neural networks (ANNs). Researchers have proposed optimized data partitioning (ODP) and stratified data partitioning (SDP) methods to partition of input data into tra...
Saved in:
| Published in | Expert systems with applications Vol. 39; no. 8; pp. 7004 - 7014 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.06.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2012.01.047 |
Cover
| Abstract | The statistical properties of training, validation and test data play an important role in assuring optimal performance in artificial neural networks (ANNs). Researchers have proposed optimized data partitioning (ODP) and stratified data partitioning (SDP) methods to partition of input data into training, validation and test datasets. ODP methods based on genetic algorithm (GA) are computationally expensive as the random search space can be in the power of twenty or more for an average sized dataset. For SDP methods, clustering algorithms such as self organizing map (SOM) and fuzzy clustering (FC) are used to form strata. It is assumed that data points in any individual stratum are in close statistical agreement. Reported clustering algorithms are designed to form natural clusters. In the case of large multivariate datasets, some of these natural clusters can be big enough such that the furthest data vectors are statistically far away from the mean. Further, these algorithms are computationally expensive as well. We propose a custom design clustering algorithm (CDCA) to overcome these shortcomings. Comparisons are made using three benchmark case studies, one each from classification, function approximation and prediction domains. The proposed CDCA data partitioning method is evaluated in comparison with SOM, FC and GA based data partitioning methods. It is found that the CDCA data partitioning method not only perform well but also reduces the average CPU time. |
|---|---|
| AbstractList | The statistical properties of training, validation and test data play an important role in assuring optimal performance in artificial neural networks (ANNs). Researchers have proposed optimized data partitioning (ODP) and stratified data partitioning (SDP) methods to partition of input data into training, validation and test datasets. ODP methods based on genetic algorithm (GA) are computationally expensive as the random search space can be in the power of twenty or more for an average sized dataset. For SDP methods, clustering algorithms such as self organizing map (SOM) and fuzzy clustering (FC) are used to form strata. It is assumed that data points in any individual stratum are in close statistical agreement. Reported clustering algorithms are designed to form natural clusters. In the case of large multivariate datasets, some of these natural clusters can be big enough such that the furthest data vectors are statistically far away from the mean. Further, these algorithms are computationally expensive as well. We propose a custom design clustering algorithm (CDCA) to overcome these shortcomings. Comparisons are made using three benchmark case studies, one each from classification, function approximation and prediction domains. The proposed CDCA data partitioning method is evaluated in comparison with SOM, FC and GA based data partitioning methods. It is found that the CDCA data partitioning method not only perform well but also reduces the average CPU time. |
| Author | Zuo, Ming J. Sahoo, Ajit K. Tiwari, M.K. |
| Author_xml | – sequence: 1 givenname: Ajit K. surname: Sahoo fullname: Sahoo, Ajit K. email: sahoo@ualberta.ca organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Canada – sequence: 2 givenname: Ming J. surname: Zuo fullname: Zuo, Ming J. email: ming.zuo@ualberta.ca organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Canada – sequence: 3 givenname: M.K. surname: Tiwari fullname: Tiwari, M.K. email: mkt09@hotmail.com organization: Department of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur, India |
| BookMark | eNqFkD1PwzAQQC0EEqXwB5gysiTYsWMnEgtCfElILDAwWa5zhitpXGwXxL_HoUwMMJ1svXfSvQOyO_oRCDlmtGKUydNlBfHDVDVldUVZRYXaITPWKl5K1fFdMqNdo0rBlNgnBzEuKWWKUjUjT-dFb5Ip7LCJCQKOz4UZnn3A9LIqnA9FTMEkdAj9FlybkDChHycUx2J6OrRohmKETfge6cOH10Oy58wQ4ehnzsnj1eXDxU15d399e3F-V1ouZSqVkow3ojGqaxxzRtD8YY3tHCyg7wVznILteMsWcgFctlZwCdx0oukMB8Xn5GS7dx382wZi0iuMFobBjOA3UedDGaONaOX_KK3rNi8WTUbbLWqDjzGA0xaTme7OPXDIqJ7C66WewuspvKZM5_BZrX-p64ArEz7_ls62EuRU7whBR4swWugxgE269_iX_gV3hZ-j |
| CitedBy_id | crossref_primary_10_1016_j_cageo_2018_02_003 crossref_primary_10_4028_www_scientific_net_AEF_6_7_924 crossref_primary_10_1007_s10845_017_1337_z crossref_primary_10_1016_j_cie_2023_109502 crossref_primary_10_1016_j_eswa_2016_02_009 crossref_primary_10_17097_ataunizfd_365231 crossref_primary_10_1007_s00500_014_1288_7 crossref_primary_10_4028_www_scientific_net_AMR_798_799_680 crossref_primary_10_1016_j_estger_2014_02_005 crossref_primary_10_1016_j_energy_2019_116589 crossref_primary_10_1016_j_jhydrol_2020_125605 crossref_primary_10_1016_j_envpol_2022_120720 crossref_primary_10_1002_2012WR012713 crossref_primary_10_12989_cac_2015_15_1_089 crossref_primary_10_1177_09544070211064472 crossref_primary_10_1016_j_ssci_2019_04_026 crossref_primary_10_1007_s00521_016_2534_y crossref_primary_10_1007_s13201_017_0541_5 crossref_primary_10_1016_j_isatra_2020_02_018 crossref_primary_10_1007_s00500_024_09765_1 crossref_primary_10_1177_0954406213511032 crossref_primary_10_3390_math10142538 |
| Cites_doi | 10.1016/j.eswa.2007.08.009 10.1016/S1007-0214(05)70060-2 10.1016/j.patcog.2009.09.013 10.1109/CCECE.2008.4564844 10.1023/B:NARR.0000046920.95725.1b 10.1109/41.847906 10.1029/2001WR000266 10.1016/j.neunet.2009.11.009 10.1016/j.eswa.2009.08.013 10.1016/S0043-1354(00)00067-1 10.1109/TCOM.1980.1094577 10.1016/0377-0427(87)90125-7 10.1016/j.infsof.2009.08.005 10.1016/0378-7206(93)90064-Z 10.1109/ICPR.1992.201716 10.1016/j.enconman.2007.08.007 10.1016/S1364-8152(99)00007-9 10.1080/02626669609491511 10.1016/j.patcog.2009.09.003 10.1109/COGINF.2004.1327476 10.1016/0169-7439(93)E0065-C 10.1541/ieejeiss.129.302 10.1061/(ASCE)0887-3801(2004)18:2(105) 10.1109/5326.704579 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd |
| Copyright_xml | – notice: 2012 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2012.01.047 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 7014 |
| ExternalDocumentID | 10_1016_j_eswa_2012_01_047 S0957417412000607 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACLOT ACNTT ACRPL ACVFH ADCNI ADJOM ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c366t-77613545a795f1fa40761cac9febedd41f30ec9381b6be368c436e3a9459a3e73 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Wed Oct 01 08:25:43 EDT 2025 Sat Sep 27 21:06:38 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Wed Oct 01 03:51:35 EDT 2025 Fri Feb 23 02:26:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Data partitioning Fuzzy clustering Self organizing map Genetic algorithm Data clustering Artificial neural network Custom design clustering algorithm |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-77613545a795f1fa40761cac9febedd41f30ec9381b6be368c436e3a9459a3e73 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1022894545 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1701105486 proquest_miscellaneous_1022894545 crossref_citationtrail_10_1016_j_eswa_2012_01_047 crossref_primary_10_1016_j_eswa_2012_01_047 elsevier_sciencedirect_doi_10_1016_j_eswa_2012_01_047 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-15 |
| PublicationDateYYYYMMDD | 2012-06-15 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | He, Huang, Zeng, Lu (b0045) 2008; 35 Tokar, Johnson (b0165) 1999; 4 Stein (b0155) 1993; 8 Samanta, Bandopadhyay, Ganguli, Dutta (b0130) 2004; 13 Kohonen (b0065) 2001; Vol. 30 MacQueen (b0070) 1967 Stein (b0150) 1993; 8 Joo, Choi, Park (b0050) 2000; 34 Maier, Dandy (b0075) 2000; 15 Rousseeuw (b0115) 1987; 20 Linde, Buzo, Gray (b0055) 1980; 28 M.Sc. thesis, Department of Mechanical Engineering, University of Alberta, Spring. Irvine, CA: Dept. Inform. Comput. Sci., Univ. California. Duran, Odell (b0030) 1974 (pp. 1041–1045). Sahoo, A. K. (2011). Bowden, Maier, Dandy (b0015) 2002; 38 Sahoo, A. K., Zhang, Y., & Zuo, M. J. (2008). Yu, Wang, Lai (b0195) 2007 Zhang, Sun (b0200) 2008; 49 Kaufman, Rousseeuw (b0060) 1990 Tarassenko, L. (1998). Cochran (b0025) 1977 Hagan, Demuth, Beale (b0040) 1996 Nguyen, H. H., & Chan, C. W. (2004). A comparison of data preprocessing strategies for neural network modeling of oil production prediction. In Shahin, Maier, Jaksa (b0140) 2004; 18 May, Maier, Dandy (b0080) 2010; 23 Yen, Lin (b0185) 2000; 47 Chen, Sugi, Shirakawa, Zou, Nakamura (b0020) 2009; 129 . Samanta, Bandopadhyay, Ganguli (b0135) 2004; 11 Twomey, Smith (b0175) 1998; 28 Minns, Hall (b0085) 1996; 41 Bezdec (b0005) 1981 Nedeljkovic, V., & Milosavljevic, M. (1992). On the influence of the training set data preprocessing on neural networks training. In Nguyen, Torre (b0100) 2010; 43 Sjoberg (b0145) 1992 Tong, Liu (b0170) 2005; 10 Xu, Zhang, Yang (b0180) 2010; 43 Yoon, Bae (b0190) 2010; 52 Fletcher, Goss (b0035) 1993; 24 Blake, C. L. & Merz, C. J. (1998). Noord (b0105) 1994; 23 Neural Computing Applications Forum. Park, Shin, Jang (b0110) 2010; 37 Linde (10.1016/j.eswa.2012.01.047_b0055) 1980; 28 Bowden (10.1016/j.eswa.2012.01.047_b0015) 2002; 38 Stein (10.1016/j.eswa.2012.01.047_b0155) 1993; 8 Zhang (10.1016/j.eswa.2012.01.047_b0200) 2008; 49 Kaufman (10.1016/j.eswa.2012.01.047_b0060) 1990 May (10.1016/j.eswa.2012.01.047_b0080) 2010; 23 Tokar (10.1016/j.eswa.2012.01.047_b0165) 1999; 4 Yoon (10.1016/j.eswa.2012.01.047_b0190) 2010; 52 Fletcher (10.1016/j.eswa.2012.01.047_b0035) 1993; 24 MacQueen (10.1016/j.eswa.2012.01.047_b0070) 1967 10.1016/j.eswa.2012.01.047_b0160 Xu (10.1016/j.eswa.2012.01.047_b0180) 2010; 43 10.1016/j.eswa.2012.01.047_b0010 Tong (10.1016/j.eswa.2012.01.047_b0170) 2005; 10 Sjoberg (10.1016/j.eswa.2012.01.047_b0145) 1992 He (10.1016/j.eswa.2012.01.047_b0045) 2008; 35 Kohonen (10.1016/j.eswa.2012.01.047_b0065) 2001; Vol. 30 Joo (10.1016/j.eswa.2012.01.047_b0050) 2000; 34 Noord (10.1016/j.eswa.2012.01.047_b0105) 1994; 23 Samanta (10.1016/j.eswa.2012.01.047_b0135) 2004; 11 Yen (10.1016/j.eswa.2012.01.047_b0185) 2000; 47 Maier (10.1016/j.eswa.2012.01.047_b0075) 2000; 15 Bezdec (10.1016/j.eswa.2012.01.047_b0005) 1981 Minns (10.1016/j.eswa.2012.01.047_b0085) 1996; 41 Park (10.1016/j.eswa.2012.01.047_b0110) 2010; 37 Samanta (10.1016/j.eswa.2012.01.047_b0130) 2004; 13 Shahin (10.1016/j.eswa.2012.01.047_b0140) 2004; 18 10.1016/j.eswa.2012.01.047_b0090 Cochran (10.1016/j.eswa.2012.01.047_b0025) 1977 Chen (10.1016/j.eswa.2012.01.047_b0020) 2009; 129 10.1016/j.eswa.2012.01.047_b0095 10.1016/j.eswa.2012.01.047_b0120 Yu (10.1016/j.eswa.2012.01.047_b0195) 2007 Nguyen (10.1016/j.eswa.2012.01.047_b0100) 2010; 43 Rousseeuw (10.1016/j.eswa.2012.01.047_b0115) 1987; 20 Hagan (10.1016/j.eswa.2012.01.047_b0040) 1996 10.1016/j.eswa.2012.01.047_b0125 Twomey (10.1016/j.eswa.2012.01.047_b0175) 1998; 28 Stein (10.1016/j.eswa.2012.01.047_b0150) 1993; 8 Duran (10.1016/j.eswa.2012.01.047_b0030) 1974 |
| References_xml | – volume: 8 start-page: 32 year: 1993 end-page: 37 ident: b0155 article-title: Preprocessing data for neural networks publication-title: AI Expert – reference: Nedeljkovic, V., & Milosavljevic, M. (1992). On the influence of the training set data preprocessing on neural networks training. In – volume: 47 start-page: 650 year: 2000 end-page: 667 ident: b0185 article-title: Wavelet packet feature extraction for vibration monitoring publication-title: IEEE Transactions on Industrial Electronics – volume: 23 start-page: 65 year: 1994 end-page: 70 ident: b0105 article-title: The influence of data preprocessing on the robustness and parsimony of multivariate calibration models publication-title: Chemometrics and Intelligent Laboratory Systems – reference: Blake, C. L. & Merz, C. J. (1998). – volume: 11 start-page: 69 year: 2004 end-page: 76 ident: b0135 article-title: Data segmentation and genetic algorithms for sparse data division in nome placer gold grade estimation using neural network and geostatistics publication-title: Exploration and Mining Geology – reference: Sahoo, A. K. (2011). – volume: 37 start-page: 2654 year: 2010 end-page: 2660 ident: b0110 article-title: A novel efficient technique for extracting valid feature information publication-title: Expert Systems with Applications – volume: 28 start-page: 417 year: 1998 end-page: 430 ident: b0175 article-title: Bias and variance of validation methods for function approximation neural networks under conditions of sparse data publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews – year: 1996 ident: b0040 article-title: Neural network design – year: 1974 ident: b0030 article-title: Cluster Analysis – year: 1977 ident: b0025 article-title: Sampling Techniques – volume: 13 start-page: 189 year: 2004 end-page: 200 ident: b0130 article-title: Sparse data division using data segmentation and Kohonen network for neural network and geostatistical ore grade modeling in nome offshore placer deposit publication-title: Natural Resources Research – volume: 35 start-page: 1301 year: 2008 end-page: 1310 ident: b0045 article-title: Wavelet-based multi resolution analysis for data cleaning and its application to water quality management systems publication-title: Expert Systems with Applications – volume: 38 start-page: 2-1 year: 2002 end-page: 2-11 ident: b0015 article-title: Optimal division of data for neural network models in water resources applications publication-title: Water Resources Research – reference: Sahoo, A. K., Zhang, Y., & Zuo, M. J. (2008). – volume: 18 start-page: 105 year: 2004 end-page: 114 ident: b0140 article-title: Data division for developing neural networks applied to geotechnical engineering publication-title: Journal of Computing in Civil Engineering – reference: . Neural Computing Applications Forum. – volume: 28 start-page: 84 year: 1980 end-page: 95 ident: b0055 article-title: An algorithm for vector quantizer design publication-title: IEEE Transactions on Communications – volume: 8 start-page: 42 year: 1993 end-page: 47 ident: b0150 article-title: Selecting data for neural networks publication-title: AI Expert – volume: 52 start-page: 137 year: 2010 end-page: 151 ident: b0190 article-title: A pattern-based outlier detection method identifying abnormal attributes in software project data publication-title: Information and Software Technology – year: 1981 ident: b0005 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: b0075 article-title: Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications publication-title: Environmental Model Software – year: 1990 ident: b0060 article-title: Finding groups in data. An introduction to cluster analysis – volume: Vol. 30 year: 2001 ident: b0065 article-title: Self organizing maps publication-title: Springer series in information sciences – reference: . Irvine, CA: Dept. Inform. Comput. Sci., Univ. California. – volume: 4 start-page: 232 year: 1999 end-page: 239 ident: b0165 article-title: Rainfall–runoff modeling using artificial neural network publication-title: Journal of Hydraulic Engineering – volume: 10 start-page: 233 year: 2005 end-page: 239 ident: b0170 article-title: Samples selection for artificial neural network training in preliminary structural design publication-title: Tsinghua Science and Technology – year: 2007 ident: b0195 article-title: Foreign-exchange-rate forecasting with artificial neural networks – reference: Nguyen, H. H., & Chan, C. W. (2004). A comparison of data preprocessing strategies for neural network modeling of oil production prediction. In – reference: (pp. 1041–1045). – reference: . – reference: . M.Sc. thesis, Department of Mechanical Engineering, University of Alberta, Spring. – volume: 41 start-page: 399 year: 1996 end-page: 417 ident: b0085 article-title: Artificial neural networks as rainfall–runoff models publication-title: Hydrological Sciences Journal – start-page: 31 year: 1992 end-page: 35 ident: b0145 article-title: Regularization as a substitute for preprocessing of data in neural network training publication-title: Artificial Intelligence in Real-Time Control – volume: 43 start-page: 584 year: 2010 end-page: 591 ident: b0100 article-title: Optimal feature selection for support vector machines publication-title: Pattern Recognition – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: b0115 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: Computational and Applied Mathematics – volume: 49 start-page: 564 year: 2008 end-page: 569 ident: b0200 article-title: Dynamic intelligent cleaning model of dirty electric load data publication-title: Energy Conversion and Management – volume: 43 start-page: 1106 year: 2010 end-page: 1115 ident: b0180 article-title: A feature extraction method for use with bimodal biometrics publication-title: Pattern Recognition – volume: 129 start-page: 302 year: 2009 end-page: 307 ident: b0020 article-title: Feature extraction for mental fatigue and relaxation states based on systematic evaluation considering individual difference publication-title: IEEJ Transactions on Electronics, Information and Systems – volume: 23 start-page: 283 year: 2010 end-page: 294 ident: b0080 article-title: Data splitting for artificial neural networks using SOM-based stratified sampling publication-title: Neural Networks – volume: 24 start-page: 159 year: 1993 end-page: 167 ident: b0035 article-title: Forecasting with neural networks: An application using bankruptcy data publication-title: Information & Management – volume: 34 start-page: 3295 year: 2000 end-page: 3302 ident: b0050 article-title: The effects of data preprocessing in the determination of coagulant dosing rate publication-title: Water Research – start-page: 281 year: 1967 end-page: 297 ident: b0070 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of 5th Berkeley symposium on mathematical statistics and probability – reference: Tarassenko, L. (1998). – volume: 35 start-page: 1301 issue: 3 year: 2008 ident: 10.1016/j.eswa.2012.01.047_b0045 article-title: Wavelet-based multi resolution analysis for data cleaning and its application to water quality management systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.08.009 – volume: 10 start-page: 233 issue: 2 year: 2005 ident: 10.1016/j.eswa.2012.01.047_b0170 article-title: Samples selection for artificial neural network training in preliminary structural design publication-title: Tsinghua Science and Technology doi: 10.1016/S1007-0214(05)70060-2 – year: 1996 ident: 10.1016/j.eswa.2012.01.047_b0040 – volume: 43 start-page: 1106 issue: 3 year: 2010 ident: 10.1016/j.eswa.2012.01.047_b0180 article-title: A feature extraction method for use with bimodal biometrics publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.09.013 – year: 1977 ident: 10.1016/j.eswa.2012.01.047_b0025 – ident: 10.1016/j.eswa.2012.01.047_b0120 doi: 10.1109/CCECE.2008.4564844 – start-page: 31 year: 1992 ident: 10.1016/j.eswa.2012.01.047_b0145 article-title: Regularization as a substitute for preprocessing of data in neural network training publication-title: Artificial Intelligence in Real-Time Control – year: 2007 ident: 10.1016/j.eswa.2012.01.047_b0195 – volume: 13 start-page: 189 issue: 3 year: 2004 ident: 10.1016/j.eswa.2012.01.047_b0130 article-title: Sparse data division using data segmentation and Kohonen network for neural network and geostatistical ore grade modeling in nome offshore placer deposit publication-title: Natural Resources Research doi: 10.1023/B:NARR.0000046920.95725.1b – volume: 47 start-page: 650 issue: 3 year: 2000 ident: 10.1016/j.eswa.2012.01.047_b0185 article-title: Wavelet packet feature extraction for vibration monitoring publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/41.847906 – volume: 38 start-page: 2-1 issue: 2 year: 2002 ident: 10.1016/j.eswa.2012.01.047_b0015 article-title: Optimal division of data for neural network models in water resources applications publication-title: Water Resources Research doi: 10.1029/2001WR000266 – ident: 10.1016/j.eswa.2012.01.047_b0010 – volume: 23 start-page: 283 issue: 2 year: 2010 ident: 10.1016/j.eswa.2012.01.047_b0080 article-title: Data splitting for artificial neural networks using SOM-based stratified sampling publication-title: Neural Networks doi: 10.1016/j.neunet.2009.11.009 – volume: 37 start-page: 2654 issue: 3 year: 2010 ident: 10.1016/j.eswa.2012.01.047_b0110 article-title: A novel efficient technique for extracting valid feature information publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.08.013 – ident: 10.1016/j.eswa.2012.01.047_b0125 – volume: 34 start-page: 3295 year: 2000 ident: 10.1016/j.eswa.2012.01.047_b0050 article-title: The effects of data preprocessing in the determination of coagulant dosing rate publication-title: Water Research doi: 10.1016/S0043-1354(00)00067-1 – volume: 28 start-page: 84 issue: 1 year: 1980 ident: 10.1016/j.eswa.2012.01.047_b0055 article-title: An algorithm for vector quantizer design publication-title: IEEE Transactions on Communications doi: 10.1109/TCOM.1980.1094577 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.eswa.2012.01.047_b0115 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: Computational and Applied Mathematics doi: 10.1016/0377-0427(87)90125-7 – volume: 4 start-page: 232 issue: 3 year: 1999 ident: 10.1016/j.eswa.2012.01.047_b0165 article-title: Rainfall–runoff modeling using artificial neural network publication-title: Journal of Hydraulic Engineering – year: 1974 ident: 10.1016/j.eswa.2012.01.047_b0030 – volume: 52 start-page: 137 issue: 2 year: 2010 ident: 10.1016/j.eswa.2012.01.047_b0190 article-title: A pattern-based outlier detection method identifying abnormal attributes in software project data publication-title: Information and Software Technology doi: 10.1016/j.infsof.2009.08.005 – volume: 8 start-page: 32 issue: 3 year: 1993 ident: 10.1016/j.eswa.2012.01.047_b0155 article-title: Preprocessing data for neural networks publication-title: AI Expert – volume: 24 start-page: 159 issue: 3 year: 1993 ident: 10.1016/j.eswa.2012.01.047_b0035 article-title: Forecasting with neural networks: An application using bankruptcy data publication-title: Information & Management doi: 10.1016/0378-7206(93)90064-Z – ident: 10.1016/j.eswa.2012.01.047_b0090 doi: 10.1109/ICPR.1992.201716 – volume: 11 start-page: 69 issue: 1–4 year: 2004 ident: 10.1016/j.eswa.2012.01.047_b0135 article-title: Data segmentation and genetic algorithms for sparse data division in nome placer gold grade estimation using neural network and geostatistics publication-title: Exploration and Mining Geology – volume: Vol. 30 year: 2001 ident: 10.1016/j.eswa.2012.01.047_b0065 article-title: Self organizing maps – volume: 49 start-page: 564 issue: 4 year: 2008 ident: 10.1016/j.eswa.2012.01.047_b0200 article-title: Dynamic intelligent cleaning model of dirty electric load data publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2007.08.007 – volume: 15 start-page: 101 year: 2000 ident: 10.1016/j.eswa.2012.01.047_b0075 article-title: Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications publication-title: Environmental Model Software doi: 10.1016/S1364-8152(99)00007-9 – ident: 10.1016/j.eswa.2012.01.047_b0160 – volume: 41 start-page: 399 issue: 3 year: 1996 ident: 10.1016/j.eswa.2012.01.047_b0085 article-title: Artificial neural networks as rainfall–runoff models publication-title: Hydrological Sciences Journal doi: 10.1080/02626669609491511 – volume: 43 start-page: 584 issue: 3 year: 2010 ident: 10.1016/j.eswa.2012.01.047_b0100 article-title: Optimal feature selection for support vector machines publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.09.003 – ident: 10.1016/j.eswa.2012.01.047_b0095 doi: 10.1109/COGINF.2004.1327476 – volume: 23 start-page: 65 year: 1994 ident: 10.1016/j.eswa.2012.01.047_b0105 article-title: The influence of data preprocessing on the robustness and parsimony of multivariate calibration models publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(93)E0065-C – volume: 8 start-page: 42 issue: 2 year: 1993 ident: 10.1016/j.eswa.2012.01.047_b0150 article-title: Selecting data for neural networks publication-title: AI Expert – volume: 129 start-page: 302 issue: 2 year: 2009 ident: 10.1016/j.eswa.2012.01.047_b0020 article-title: Feature extraction for mental fatigue and relaxation states based on systematic evaluation considering individual difference publication-title: IEEJ Transactions on Electronics, Information and Systems doi: 10.1541/ieejeiss.129.302 – year: 1990 ident: 10.1016/j.eswa.2012.01.047_b0060 – start-page: 281 year: 1967 ident: 10.1016/j.eswa.2012.01.047_b0070 article-title: Some methods for classification and analysis of multivariate observations – year: 1981 ident: 10.1016/j.eswa.2012.01.047_b0005 – volume: 18 start-page: 105 issue: 2 year: 2004 ident: 10.1016/j.eswa.2012.01.047_b0140 article-title: Data division for developing neural networks applied to geotechnical engineering publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)0887-3801(2004)18:2(105) – volume: 28 start-page: 417 issue: 3 year: 1998 ident: 10.1016/j.eswa.2012.01.047_b0175 article-title: Bias and variance of validation methods for function approximation neural networks under conditions of sparse data publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews doi: 10.1109/5326.704579 |
| SSID | ssj0017007 |
| Score | 2.1759527 |
| Snippet | The statistical properties of training, validation and test data play an important role in assuring optimal performance in artificial neural networks (ANNs).... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7004 |
| SubjectTerms | Algorithms Artificial neural network Clustering Clusters Custom design clustering algorithm Data clustering Data partitioning Fuzzy clustering Genetic algorithm Genetic algorithms Mathematical analysis ODP Partitioning Self organizing map Training |
| Title | A data clustering algorithm for stratified data partitioning in artificial neural network |
| URI | https://dx.doi.org/10.1016/j.eswa.2012.01.047 https://www.proquest.com/docview/1022894545 https://www.proquest.com/docview/1701105486 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvvjitzg_RgTfpFuzJP14HMMxFfeig_kU0jbRyeyG2_DNv927Nh0osgehUFIuTXNJ7i7p3e8IuWIax9JqL-Md44mwI70oSrVnZJIlFvQlK847HobBYCTuxnJcI70qFgbdKp3sL2V6Ia3dk7bjZns-mbQfwTgAdQhXEW1SRJQLaAzmdOtr7eaB8HNhibcXekjtAmdKHy-z-ETsITwPZC0fU6z8rZx-ielC9_T3yI4zGmm3_K59UjP5AdmtEjJQtz4PyXOXoscnTacrxD8ArUT19GUG-__XdwrWKS1Bci2YnSXhHLvqjmTpJKdYLCElKAJdFrfCTfyIjPo3T72B53IneCkPgiUYzaCnwTrSYSwts1rgeUWq09jCqGWZYJb7Jo1BXydBYngQpYIHhutYyFhzE_JjUs9nuTkh1GdWwjvjLIbNpBZGJyLBpOtMR5wnvm0QVjFNpQ5YHPNbTFXlQfamkNEKGa18poDRDXK9rjMvYTU2UstqLNSPyaFA7m-sd1kNnIJVg79CdG5mq4XCfW4EfRVyA02IthHs6ILTf7Z_RraxhJ5lTJ6T-vJjZS7AhlkmzWKSNslW9_Z-MPwGYiHxRw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYALb8R4Bokb6tYsSR9HNDGN1y6ABKcobRMoGt00NnHjt2O3KRII7YBUqWrrPuIktuPanwk5ZRr70mov413jibArvShKtWdkkiUW9CUr_R23w2DwIK4e5WOD9OpcGAyrdLK_kumltHZnOo6bnUmed-7AOAB1CFuZbYIZ5UtCdkNcgbU_v-M8EH8urAD3Qg_JXeZMFeRl3j8QfAgdgqztY42Vv7XTLzldKp_-Oll1ViM9rz5sgzRMsUnW6ooM1E3QLfJ0TjHkk6ajOQIggFqievQ8nuazlzcK5imtUHIt2J0V4QTb6nyyNC8oHlaYEhSRLstdGSe-TR76F_e9geeKJ3gpD4IZWM2gqME80mEsLbNaoMMi1WlsoduyTDDLfZPGoLCTIDE8iFLBA8N1LGSsuQn5DmkW48LsEuozK-GZcRbDalILoxORYNV1piPOE9-2CKuZplKHLI4FLkaqDiF7VchohYxWPlPA6BY5-75nUuFqLKSWdV-oH6NDgeBfeN9J3XEKpg3-C9GFGc_fFS50I2irkAtoQjSOYEkX7P3z_cdkeXB_e6NuLofX-2QFr2CYGZMHpDmbzs0hGDSz5KgcsF_71_Lc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+clustering+algorithm+for+stratified+data+partitioning+in+artificial+neural+network&rft.jtitle=Expert+systems+with+applications&rft.au=Sahoo%2C+Ajit+K&rft.au=Zuo%2C+Ming+J&rft.au=Tiwari%2C+M+K&rft.date=2012-06-15&rft.issn=0957-4174&rft.volume=39&rft.issue=8&rft.spage=7004&rft.epage=7014&rft_id=info:doi/10.1016%2Fj.eswa.2012.01.047&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |