A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model

•Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as post-processing step to correct unreasonable sleep stage transitions.•We have demonstrated that HMM refinement is effective for 1D-CNN, and HMM im...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 68; p. 102581
Main Authors Yang, Bufang, Zhu, Xilin, Liu, Yitian, Liu, Hongxing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2021.102581

Cover

Abstract •Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as post-processing step to correct unreasonable sleep stage transitions.•We have demonstrated that HMM refinement is effective for 1D-CNN, and HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages with p < 0.05.•Results demonstrate that our method outperformed most of the existing single-channel EEG based methods under subject-independent paradigm using Sleep-EDFx and DRM-SUB datasets. Sleep stage classification is an essential process for analyzing sleep and diagnosing sleep related disorders. Sleep staging by visual inspection of expert is a labor-intensive task and prone to subjective errors. In this paper, we proposed a single-channel EEG based automatic sleep stage classification model, called 1D-CNN-HMM. Our 1D-CNN-HMM combines deep one-dimensional convolutional neural network (1D-CNN) and hidden Markov model (HMM). We leveraged 1D-CNN for epoch-wise classification and HMM for subject-wise classification. The main idea of 1D-CNN-HMM model is to utilize the advantage of 1D-CNN that can automatically extract features from raw EEG, and HMM that can utilize sleep stage transition prior information of adjacent EEG epochs. To the best of author's knowledge, this is the first implementation of 1D-CNN connected with HMM in automatic sleep staging task. We used Sleep-EDFx dataset and DRM-SUB dataset, and performed subject-independent testing for model evaluation. Experimental results illustrated the overall accuracy and kappa coefficient of 1D-CNN-HMM could achieve 83.98% and 0.78 on Fpz-Oz channel EEG from Sleep-EDFx dataset, and achieve 81.68% and 0.74 on Cz-A1 channel EEG from DRM-SUB dataset. The overall accuracy and kappa coefficient of 1D-CNN-HMM outperformed other existing methods both on two datasets. In addition, the per-class performance of 1D-CNN-HMM is significantly higher than 1D-CNN on S1 and REM sleep stages with p<0.05. Our 1D-CNN-HMM outperformed other existing methods both on two datasets. Results also indicated that HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages.
AbstractList •Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as post-processing step to correct unreasonable sleep stage transitions.•We have demonstrated that HMM refinement is effective for 1D-CNN, and HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages with p < 0.05.•Results demonstrate that our method outperformed most of the existing single-channel EEG based methods under subject-independent paradigm using Sleep-EDFx and DRM-SUB datasets. Sleep stage classification is an essential process for analyzing sleep and diagnosing sleep related disorders. Sleep staging by visual inspection of expert is a labor-intensive task and prone to subjective errors. In this paper, we proposed a single-channel EEG based automatic sleep stage classification model, called 1D-CNN-HMM. Our 1D-CNN-HMM combines deep one-dimensional convolutional neural network (1D-CNN) and hidden Markov model (HMM). We leveraged 1D-CNN for epoch-wise classification and HMM for subject-wise classification. The main idea of 1D-CNN-HMM model is to utilize the advantage of 1D-CNN that can automatically extract features from raw EEG, and HMM that can utilize sleep stage transition prior information of adjacent EEG epochs. To the best of author's knowledge, this is the first implementation of 1D-CNN connected with HMM in automatic sleep staging task. We used Sleep-EDFx dataset and DRM-SUB dataset, and performed subject-independent testing for model evaluation. Experimental results illustrated the overall accuracy and kappa coefficient of 1D-CNN-HMM could achieve 83.98% and 0.78 on Fpz-Oz channel EEG from Sleep-EDFx dataset, and achieve 81.68% and 0.74 on Cz-A1 channel EEG from DRM-SUB dataset. The overall accuracy and kappa coefficient of 1D-CNN-HMM outperformed other existing methods both on two datasets. In addition, the per-class performance of 1D-CNN-HMM is significantly higher than 1D-CNN on S1 and REM sleep stages with p<0.05. Our 1D-CNN-HMM outperformed other existing methods both on two datasets. Results also indicated that HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages.
ArticleNumber 102581
Author Liu, Hongxing
Yang, Bufang
Zhu, Xilin
Liu, Yitian
Author_xml – sequence: 1
  givenname: Bufang
  orcidid: 0000-0003-0032-2539
  surname: Yang
  fullname: Yang, Bufang
– sequence: 2
  givenname: Xilin
  surname: Zhu
  fullname: Zhu, Xilin
– sequence: 3
  givenname: Yitian
  surname: Liu
  fullname: Liu, Yitian
– sequence: 4
  givenname: Hongxing
  surname: Liu
  fullname: Liu, Hongxing
  email: njhxliu@nju.edu.cn
BookMark eNp9kEtu2zAQhokgAfK8QFa8gFxSoikJyCYw3LRAgmzaNTEkRzYdijRI2kHP0stWtttNF17N8_sx89-SyxADEvLI2YwzLr9sZjpvzaxmNZ8a9bzjF-SGt0JWHWfd5b-c9eKa3Oa8YUx0LRc35PczzS6sPFZmDSGgp8vlC9WQ0VLYlThCcYZmj7ilucAKqfGQsxucmSYx0BHLOlrqcY8JVpMUtYfd6bzKuhFDnpbAUxPDPvpdOVUBd-kYymdMHxSCpWtnLQb6Bukj7ukYLfp7cjWAz_jwN96Rn1-XPxbfqtf3l--L59fKNFKWSqIFMaDWUiOHHgc9Z7XQHG0v-haE0ENrUPem100nOou2GVoJDWu0NHIQzR3pTromxZwTDsq4cvyuJHBecaYOJquNOpisDiark8kTWv-HbpMbIf06Dz2dIJye2jtMKhuHwaB1CU1RNrpz-B-4Gp2R
CitedBy_id crossref_primary_10_1016_j_bspc_2022_104150
crossref_primary_10_1016_j_bspc_2021_103061
crossref_primary_10_1016_j_bspc_2022_104275
crossref_primary_10_1109_JSEN_2024_3382040
crossref_primary_10_1109_JBHI_2023_3327470
crossref_primary_10_3390_bioengineering10050573
crossref_primary_10_3390_ijerph19095199
crossref_primary_10_1016_j_bspc_2022_104501
crossref_primary_10_1016_j_bspc_2021_102965
crossref_primary_10_1016_j_enganabound_2024_105989
crossref_primary_10_1109_TNSRE_2022_3216111
crossref_primary_10_3390_physiologia4010001
crossref_primary_10_32604_csse_2023_030603
crossref_primary_10_1007_s40747_023_01290_2
crossref_primary_10_1109_JBHI_2024_3512616
crossref_primary_10_1016_j_bspc_2023_105351
crossref_primary_10_1109_JBHI_2024_3403878
crossref_primary_10_4028_p_svwo5k
crossref_primary_10_1016_j_bspc_2024_106184
crossref_primary_10_1016_j_bspc_2023_105631
crossref_primary_10_3390_a17060229
crossref_primary_10_1016_j_bspc_2023_104588
crossref_primary_10_1016_j_bspc_2024_106422
crossref_primary_10_1109_TIM_2023_3346527
crossref_primary_10_1145_3699765
crossref_primary_10_1109_TNSRE_2022_3220372
crossref_primary_10_1109_ACCESS_2024_3496721
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1109_TNNLS_2022_3210384
crossref_primary_10_1088_1361_665X_ac726f
crossref_primary_10_1002_eng2_12827
crossref_primary_10_1109_TIM_2022_3154838
crossref_primary_10_1109_TNSRE_2023_3238852
crossref_primary_10_1186_s12911_024_02522_2
crossref_primary_10_1109_JBHI_2023_3339713
crossref_primary_10_1002_anse_202200062
crossref_primary_10_1016_j_bspc_2022_104299
crossref_primary_10_1016_j_bspc_2022_103486
crossref_primary_10_1109_TNSRE_2023_3246478
crossref_primary_10_3390_ijerph19106322
crossref_primary_10_1007_s13534_023_00301_y
crossref_primary_10_1109_JSEN_2022_3155345
crossref_primary_10_1007_s10489_022_04357_8
crossref_primary_10_1007_s42243_023_00929_1
crossref_primary_10_1080_10255842_2023_2301414
crossref_primary_10_1109_ACCESS_2023_3263477
crossref_primary_10_1088_1361_6579_acdb46
crossref_primary_10_1155_2022_6104736
crossref_primary_10_1016_j_bspc_2025_107553
crossref_primary_10_3390_diagnostics12102510
crossref_primary_10_1016_j_eswa_2021_115759
crossref_primary_10_1088_1741_2552_aca2de
crossref_primary_10_1016_j_bspc_2023_105572
crossref_primary_10_1016_j_eswa_2022_119288
crossref_primary_10_1109_JBHI_2023_3332503
crossref_primary_10_1016_j_bbe_2021_11_003
crossref_primary_10_1007_s11517_024_03096_x
crossref_primary_10_1016_j_compbiomed_2022_106044
crossref_primary_10_3390_diagnostics13142358
Cites_doi 10.1109/10.867928
10.1016/j.jneumeth.2019.108320
10.1016/j.eswa.2018.12.023
10.1109/JBHI.2017.2668993
10.1186/1475-925X-11-52
10.1016/j.neucom.2016.04.049
10.1109/ACCESS.2019.2944801
10.3390/ijerph17114152
10.1016/j.neucom.2012.11.003
10.1016/j.compbiomed.2019.01.013
10.3390/s20174677
10.1016/j.conb.2006.10.006
10.1371/journal.pbio.0060106
10.1016/j.inffus.2019.06.024
10.1109/JBHI.2014.2303991
10.2147/IJGM.S11557
10.1109/TIM.2019.2937074
10.1016/j.eswa.2016.07.004
10.1007/s10439-015-1444-y
10.1016/j.cmpb.2016.12.015
10.1088/1741-2552/ab3bb4
10.1016/j.jneumeth.2019.108312
10.1109/TBME.2018.2872652
10.1016/j.ipm.2009.03.002
10.1109/ICCV.2015.123
10.1109/5.18626
10.1016/j.bspc.2020.102037
10.1109/TNSRE.2017.2721116
10.1109/TNSRE.2017.2733220
10.1109/TIT.1967.1054010
10.1016/j.bspc.2015.09.002
10.1109/ACCESS.2020.2999915
10.1016/j.jneumeth.2011.12.022
10.1109/JBHI.2016.2550104
10.1109/ACCESS.2020.3011293
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102581
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102581
S1746809421001786
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-6eda4febb6be1a9efb5024b1ed9497a44bf7ceb9c9b3848ded3f76a303b6c6f43
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:08:34 EDT 2025
Wed Oct 29 21:26:48 EDT 2025
Fri Feb 23 02:43:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subject-independent testing
Hidden Markov model
Sleep stage classification
Electroencephalogram
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-6eda4febb6be1a9efb5024b1ed9497a44bf7ceb9c9b3848ded3f76a303b6c6f43
ORCID 0000-0003-0032-2539
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_102581
crossref_primary_10_1016_j_bspc_2021_102581
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102581
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Phan, Andreotti, Cooray, Chen, De Vos (bib0205) 2018; 66
Hsieh, Chu, Huang (bib0160) 2014
Mignot (bib0005) 2008; 6
Tsinalis, Matthews, Guo (bib0215) 2015; 44
Iber, Ancoli-Israel, Chesson, Quan (bib0030) 2007
He, Zhang, Ren, Sun (bib0195) 2015
Tsinalis, Matthews, Guo, Zafeiriou (bib0210) 2016
Wilcoxon (bib0230) 1944; 1
Pan, Kuo, Zeng, Liang (bib0095) 2012; 11
Farahat, Reichert, Sweeney-Reed, Hinrichs (bib0140) 2019; 16
Ellenbogen, Payne, Stickgold (bib0020) 2006; 16
Jianga, Lu, Ma, Wang (bib0120) 2019; 121
Ioffe, Szegedy (bib0145) 2015
Wolpert (bib0025) 1969; 26
Zhu, Li, Wen (bib0065) 2014; 18
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0200) 2014; 15
Hsu, Yane, Wane, Hsu (bib0245) 2013; 104
Viterbi (bib0170) 1967; 13
Dong, Supratak, Pan, Wu, Matthews, Guo (bib0010) 2018; 26
Kemp, Bastiaan, Zwinderman, Aeilko (bib0125) 2000; 47
Phan, Andreotti, Cooray, Chen, Vos (bib0225) 2018
Fallmann, Chen (bib0180) 2019; 7
Yao, Wang, Fan, Liu, Li (bib0175) 2020; 53
Shen, Ran, Xu, Guez, Guo (bib0240) 2020; 20
Supratak, Dong, Wu, Guo (bib0110) 2017; 25
Mousavi, Rezaii, Sheykhivand, Farzamnia, Razavi (bib0070) 2019; 324
Phan, Andreotti, Cooray, Chen, De Vos (bib0220) 2018
Hassan, Bhuiyan (bib0055) 2017; 140
Celler, Le, Argha, Ambikairajah (bib0155) 2020; 69
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0135) 2015
Li, Cui, Tao, Chen, Zhang, Zhang (bib0035) 2018; 22
Ghimatgar, Kazemi, Helfroush, Aarabi (bib0090) 2019; 324
Michielli, Acharya, Molinari (bib0105) 2019; 106
Fonseca, den Teuling, Long, Aarts (bib0040) 2017; 21
Hassan, Bhuiyan (bib0050) 2016; 219
Laurens, Hinton (bib0235) 2008; 9
Seo, Back, Lee, Park, Kim, Lee (bib0115) 2020; 61
Chadza, Kyriakopoulos, Lambotharan (bib0165) 2020; 8
Kingma, Ba (bib0190) 2014
Sokolovsky, Guerrero, Paisarnsrisomsuk, Ruiz, Alvarez (bib0075) 2019
Yang, Liu (bib0085) 2020; 8
Diykh, Li (bib0060) 2016; 63
Rabiner (bib0150) 1989; 77
Hassan, Bhuiyan (bib0045) 2016; 24
Liang, Kuo, Hu, Cheng (bib0100) 2012; 205
Peker (bib0250) 2016; 207
Sokolova, Lapalme (bib0185) 2009; 45
Zhu, Luo, Yu (bib0080) 2020; 17
Brand, Kirov (bib0015) 2011; 4
Devuyst (bib0130) 2005
Fallmann (10.1016/j.bspc.2021.102581_bib0180) 2019; 7
Wilcoxon (10.1016/j.bspc.2021.102581_bib0230) 1944; 1
Sokolovsky (10.1016/j.bspc.2021.102581_bib0075) 2019
Diykh (10.1016/j.bspc.2021.102581_bib0060) 2016; 63
Phan (10.1016/j.bspc.2021.102581_bib0225) 2018
Hassan (10.1016/j.bspc.2021.102581_bib0045) 2016; 24
Hassan (10.1016/j.bspc.2021.102581_bib0055) 2017; 140
Zhu (10.1016/j.bspc.2021.102581_bib0080) 2020; 17
Chadza (10.1016/j.bspc.2021.102581_bib0165) 2020; 8
He (10.1016/j.bspc.2021.102581_bib0195) 2015
Wolpert (10.1016/j.bspc.2021.102581_bib0025) 1969; 26
Viterbi (10.1016/j.bspc.2021.102581_bib0170) 1967; 13
Jianga (10.1016/j.bspc.2021.102581_bib0120) 2019; 121
Li (10.1016/j.bspc.2021.102581_bib0035) 2018; 22
Fonseca (10.1016/j.bspc.2021.102581_bib0040) 2017; 21
Yao (10.1016/j.bspc.2021.102581_bib0175) 2020; 53
Tsinalis (10.1016/j.bspc.2021.102581_bib0210) 2016
Brand (10.1016/j.bspc.2021.102581_bib0015) 2011; 4
Devuyst (10.1016/j.bspc.2021.102581_bib0130) 2005
Hassan (10.1016/j.bspc.2021.102581_bib0050) 2016; 219
Mousavi (10.1016/j.bspc.2021.102581_bib0070) 2019; 324
Sokolova (10.1016/j.bspc.2021.102581_bib0185) 2009; 45
Tsinalis (10.1016/j.bspc.2021.102581_bib0215) 2015; 44
Ellenbogen (10.1016/j.bspc.2021.102581_bib0020) 2006; 16
Liang (10.1016/j.bspc.2021.102581_bib0100) 2012; 205
Hsieh (10.1016/j.bspc.2021.102581_bib0160) 2014
Dong (10.1016/j.bspc.2021.102581_bib0010) 2018; 26
Seo (10.1016/j.bspc.2021.102581_bib0115) 2020; 61
Kemp (10.1016/j.bspc.2021.102581_bib0125) 2000; 47
Shen (10.1016/j.bspc.2021.102581_bib0240) 2020; 20
Pan (10.1016/j.bspc.2021.102581_bib0095) 2012; 11
Ioffe (10.1016/j.bspc.2021.102581_bib0145) 2015
Phan (10.1016/j.bspc.2021.102581_bib0220) 2018
Laurens (10.1016/j.bspc.2021.102581_bib0235) 2008; 9
Phan (10.1016/j.bspc.2021.102581_bib0205) 2018; 66
Hsu (10.1016/j.bspc.2021.102581_bib0245) 2013; 104
Yang (10.1016/j.bspc.2021.102581_bib0085) 2020; 8
Mignot (10.1016/j.bspc.2021.102581_bib0005) 2008; 6
Zhu (10.1016/j.bspc.2021.102581_bib0065) 2014; 18
Michielli (10.1016/j.bspc.2021.102581_bib0105) 2019; 106
Supratak (10.1016/j.bspc.2021.102581_bib0110) 2017; 25
Szegedy (10.1016/j.bspc.2021.102581_bib0135) 2015
Celler (10.1016/j.bspc.2021.102581_bib0155) 2020; 69
Kingma (10.1016/j.bspc.2021.102581_bib0190) 2014
Peker (10.1016/j.bspc.2021.102581_bib0250) 2016; 207
Farahat (10.1016/j.bspc.2021.102581_bib0140) 2019; 16
Iber (10.1016/j.bspc.2021.102581_bib0030) 2007
Ghimatgar (10.1016/j.bspc.2021.102581_bib0090) 2019; 324
Srivastava (10.1016/j.bspc.2021.102581_bib0200) 2014; 15
Rabiner (10.1016/j.bspc.2021.102581_bib0150) 1989; 77
References_xml – volume: 7
  start-page: 142421
  year: 2019
  end-page: 142440
  ident: bib0180
  article-title: Computational sleep behavior analysis: a survey
  publication-title: IEEE Access
– volume: 26
  start-page: 324
  year: 2018
  end-page: 333
  ident: bib0010
  article-title: Mixed neural network approach for temporal sleep stage classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 6
  start-page: 1
  year: 2008
  end-page: 9
  ident: bib0005
  article-title: Why we sleep: the temporal organization of recovery
  publication-title: PLOS Biol.
– volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0045
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
– volume: 104
  start-page: 105
  year: 2013
  end-page: 114
  ident: bib0245
  article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals
  publication-title: Neurocomputing
– start-page: 453
  year: 2018
  end-page: 456
  ident: bib0220
  article-title: Dnn filter bank improves 1-max pooling cnn for single-channel eeg automatic sleep stage classification
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0185
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inform. Process. Manag.
– year: 2005
  ident: bib0130
  article-title: The Dreams Databases and Assessment Algorithm [Data Set]
– volume: 13
  start-page: 260
  year: 1967
  end-page: 269
  ident: bib0170
  article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  publication-title: IEEE Trans. Informat. Theory
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0200
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 324
  start-page: 108320
  year: 2019
  ident: bib0090
  article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden Markov model
  publication-title: J. Neurosci. Methods
– volume: 26
  start-page: 644
  year: 1969
  ident: bib0025
  article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0235
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 104281
  year: 2020
  end-page: 104291
  ident: bib0085
  article-title: Automatic identification of insomnia based on single-channel eeg labelled with sleep stage annotations
  publication-title: IEEE Access
– year: 2014
  ident: bib0190
  article-title: Adam: a method for stochastic optimization
  publication-title: International Conference on Learning Representations
– volume: 324
  start-page: 108312
  year: 2019
  ident: bib0070
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel eeg signals
  publication-title: J. Neurosci. Methods
– volume: 61
  start-page: 102037
  year: 2020
  ident: bib0115
  article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel eeg
  publication-title: Biomed. Signal Process. Control
– volume: 17
  start-page: 4152
  year: 2020
  ident: bib0080
  article-title: Convolution-and attention-based neural network for automated sleep stage classification
  publication-title: Int. J. Environ. Res. Public Health
– volume: 140
  start-page: 201
  year: 2017
  end-page: 210
  ident: bib0055
  article-title: Automated identification of sleep states from eeg signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Methods Programs Biomed.
– year: 2007
  ident: bib0030
  article-title: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications
– volume: 53
  start-page: 174
  year: 2020
  end-page: 182
  ident: bib0175
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ecg using attention-based time-incremental convolutional neural network
  publication-title: Inform. Fusion
– volume: 11
  start-page: 52
  year: 2012
  ident: bib0095
  article-title: A transition-constrained discrete hidden Markov model for automatic sleep staging
  publication-title: Biomed. Eng. Online
– volume: 44
  start-page: 1587
  year: 2015
  end-page: 1597
  ident: bib0215
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
– volume: 16
  year: 2019
  ident: bib0140
  article-title: Convolutional neural networks for decoding of covert attention focus and saliency maps for eeg feature visualization
  publication-title: J. Neural Eng.
– volume: 20
  start-page: 4677
  year: 2020
  ident: bib0240
  article-title: An automatic sleep stage classification algorithm using improved model based essence features
  publication-title: Sensors
– start-page: 1
  year: 2019
  ident: bib0075
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics
– volume: 21
  start-page: 956
  year: 2017
  end-page: 966
  ident: bib0040
  article-title: Cardiorespiratory sleep stage detection using conditional random fields
  publication-title: IEEE J. Biomed. Health Informatics
– volume: 121
  start-page: 188
  year: 2019
  end-page: 203
  ident: bib0120
  article-title: Robust sleep stage classification with single-channel eeg signals using multimodal decomposition and hmm-based refinement
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 3631
  year: 2020
  end-page: 3641
  ident: bib0155
  article-title: Gmm-hmm-based blood pressure estimation using time-domain features
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0135
  article-title: Going Deeper With Convolutions
– start-page: 1452
  year: 2018
  end-page: 1455
  ident: bib0225
  article-title: Automatic sleep stage classification using single-channel eeg: Learning sequential features with attention-based recurrent neural networks
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 63
  start-page: 241
  year: 2016
  end-page: 248
  ident: bib0060
  article-title: Complex networks approach for eeg signal sleep stages classification
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: bib0145
  article-title: Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift
– volume: 18
  start-page: 1813
  year: 2014
  end-page: 1821
  ident: bib0065
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal
  publication-title: IEEE J. Biomed. Health Informatics
– year: 2015
  ident: bib0195
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: IEEE International Conference on Computer Vision (ICCV 2015) 1502
– year: 2016
  ident: bib0210
  article-title: Automatic Sleep Stage Scoring With Single-Channel EEG Using Convolutional Neural Networks
– volume: 22
  start-page: 375
  year: 2018
  end-page: 385
  ident: bib0035
  article-title: Hyclasss: a hybrid classifier for automatic sleep stage scoring
  publication-title: IEEE J. Biomed. Health Informatics
– volume: 8
  start-page: 134480
  year: 2020
  end-page: 134497
  ident: bib0165
  article-title: Learning to learn sequential network attacks using hidden Markov models
  publication-title: IEEE Access
– volume: 207
  start-page: 165
  year: 2016
  end-page: 177
  ident: bib0250
  article-title: An efficient sleep scoring system based on eeg signal using complex-valued machine learning algorithms
  publication-title: Neurocomputing
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0150
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
– volume: 205
  start-page: 169
  year: 2012
  end-page: 176
  ident: bib0100
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Methods
– volume: 1
  year: 1944
  ident: bib0230
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– volume: 47
  start-page: 1185
  year: 2000
  end-page: 1194
  ident: bib0125
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 4
  start-page: 425
  year: 2011
  end-page: 442
  ident: bib0015
  article-title: Sleep and its importance in adolescence and in common adolescent somatic and psychiatric conditions
  publication-title: Int. J. Gen. Med.
– volume: 16
  start-page: 716
  year: 2006
  end-page: 722
  ident: bib0020
  article-title: The role of sleep in declarative memory consolidation: passive, permissive, active or none?
  publication-title: Curr. Opin. Neurobiol.
– volume: 106
  start-page: 71
  year: 2019
  end-page: 81
  ident: bib0105
  article-title: Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals
  publication-title: Comput. Biol. Med.
– volume: 25
  start-page: 1998
  year: 2017
  end-page: 2008
  ident: bib0110
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 66
  start-page: 1285
  year: 2018
  end-page: 1296
  ident: bib0205
  article-title: Joint classification and prediction cnn framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 662
  year: 2014
  end-page: 665
  ident: bib0160
  article-title: An hmm-based eye movement detection system using eeg brain–computer interface
  publication-title: Proceedings – IEEE International Symposium on Circuits and Systems
– volume: 219
  start-page: 76
  year: 2016
  end-page: 87
  ident: bib0050
  article-title: An automated method for sleep staging from eeg signals using normal inverse Gaussian parameters and adaptive boosting
  publication-title: Neurocomputing
– volume: 47
  start-page: 1185
  year: 2000
  ident: 10.1016/j.bspc.2021.102581_bib0125
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.bspc.2021.102581_bib0200
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 324
  start-page: 108320
  year: 2019
  ident: 10.1016/j.bspc.2021.102581_bib0090
  article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden Markov model
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108320
– start-page: 453
  year: 2018
  ident: 10.1016/j.bspc.2021.102581_bib0220
  article-title: Dnn filter bank improves 1-max pooling cnn for single-channel eeg automatic sleep stage classification
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 121
  start-page: 188
  issue: MAY
  year: 2019
  ident: 10.1016/j.bspc.2021.102581_bib0120
  article-title: Robust sleep stage classification with single-channel eeg signals using multimodal decomposition and hmm-based refinement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.023
– volume: 22
  start-page: 375
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.102581_bib0035
  article-title: Hyclasss: a hybrid classifier for automatic sleep stage scoring
  publication-title: IEEE J. Biomed. Health Informatics
  doi: 10.1109/JBHI.2017.2668993
– volume: 11
  start-page: 52
  year: 2012
  ident: 10.1016/j.bspc.2021.102581_bib0095
  article-title: A transition-constrained discrete hidden Markov model for automatic sleep staging
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-11-52
– volume: 207
  start-page: 165
  year: 2016
  ident: 10.1016/j.bspc.2021.102581_bib0250
  article-title: An efficient sleep scoring system based on eeg signal using complex-valued machine learning algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.049
– volume: 7
  start-page: 142421
  year: 2019
  ident: 10.1016/j.bspc.2021.102581_bib0180
  article-title: Computational sleep behavior analysis: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944801
– year: 2014
  ident: 10.1016/j.bspc.2021.102581_bib0190
  article-title: Adam: a method for stochastic optimization
  publication-title: International Conference on Learning Representations
– volume: 17
  start-page: 4152
  issue: 11
  year: 2020
  ident: 10.1016/j.bspc.2021.102581_bib0080
  article-title: Convolution-and attention-based neural network for automated sleep stage classification
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17114152
– start-page: 662
  year: 2014
  ident: 10.1016/j.bspc.2021.102581_bib0160
  article-title: An hmm-based eye movement detection system using eeg brain–computer interface
  publication-title: Proceedings – IEEE International Symposium on Circuits and Systems
– volume: 9
  start-page: 2579
  issue: 2605
  year: 2008
  ident: 10.1016/j.bspc.2021.102581_bib0235
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.bspc.2021.102581_bib0210
– volume: 104
  start-page: 105
  issue: Mar.15
  year: 2013
  ident: 10.1016/j.bspc.2021.102581_bib0245
  article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.003
– volume: 106
  start-page: 71
  year: 2019
  ident: 10.1016/j.bspc.2021.102581_bib0105
  article-title: Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 20
  start-page: 4677
  issue: 17
  year: 2020
  ident: 10.1016/j.bspc.2021.102581_bib0240
  article-title: An automatic sleep stage classification algorithm using improved model based essence features
  publication-title: Sensors
  doi: 10.3390/s20174677
– volume: 16
  start-page: 716
  issue: 6
  year: 2006
  ident: 10.1016/j.bspc.2021.102581_bib0020
  article-title: The role of sleep in declarative memory consolidation: passive, permissive, active or none?
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2006.10.006
– volume: 6
  start-page: 1
  year: 2008
  ident: 10.1016/j.bspc.2021.102581_bib0005
  article-title: Why we sleep: the temporal organization of recovery
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.0060106
– volume: 53
  start-page: 174
  year: 2020
  ident: 10.1016/j.bspc.2021.102581_bib0175
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ecg using attention-based time-incremental convolutional neural network
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2019.06.024
– volume: 18
  start-page: 1813
  issue: 6
  year: 2014
  ident: 10.1016/j.bspc.2021.102581_bib0065
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal
  publication-title: IEEE J. Biomed. Health Informatics
  doi: 10.1109/JBHI.2014.2303991
– volume: 4
  start-page: 425
  year: 2011
  ident: 10.1016/j.bspc.2021.102581_bib0015
  article-title: Sleep and its importance in adolescence and in common adolescent somatic and psychiatric conditions
  publication-title: Int. J. Gen. Med.
  doi: 10.2147/IJGM.S11557
– volume: 69
  start-page: 3631
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2021.102581_bib0155
  article-title: Gmm-hmm-based blood pressure estimation using time-domain features
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2937074
– volume: 63
  start-page: 241
  issue: November
  year: 2016
  ident: 10.1016/j.bspc.2021.102581_bib0060
  article-title: Complex networks approach for eeg signal sleep stages classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.07.004
– volume: 44
  start-page: 1587
  issue: 5
  year: 2015
  ident: 10.1016/j.bspc.2021.102581_bib0215
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1444-y
– year: 2007
  ident: 10.1016/j.bspc.2021.102581_bib0030
– year: 2015
  ident: 10.1016/j.bspc.2021.102581_bib0145
– volume: 140
  start-page: 201
  issue: Complete
  year: 2017
  ident: 10.1016/j.bspc.2021.102581_bib0055
  article-title: Automated identification of sleep states from eeg signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.12.015
– volume: 16
  year: 2019
  ident: 10.1016/j.bspc.2021.102581_bib0140
  article-title: Convolutional neural networks for decoding of covert attention focus and saliency maps for eeg feature visualization
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab3bb4
– volume: 324
  start-page: 108312
  year: 2019
  ident: 10.1016/j.bspc.2021.102581_bib0070
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel eeg signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108312
– volume: 66
  start-page: 1285
  year: 2018
  ident: 10.1016/j.bspc.2021.102581_bib0205
  article-title: Joint classification and prediction cnn framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2872652
– volume: 45
  start-page: 427
  year: 2009
  ident: 10.1016/j.bspc.2021.102581_bib0185
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inform. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– year: 2015
  ident: 10.1016/j.bspc.2021.102581_bib0195
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: IEEE International Conference on Computer Vision (ICCV 2015) 1502
  doi: 10.1109/ICCV.2015.123
– volume: 26
  start-page: 644
  issue: 2
  year: 1969
  ident: 10.1016/j.bspc.2021.102581_bib0025
  article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.bspc.2021.102581_bib0150
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– volume: 61
  start-page: 102037
  year: 2020
  ident: 10.1016/j.bspc.2021.102581_bib0115
  article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel eeg
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102037
– volume: 219
  start-page: 76
  issue: JAN.5
  year: 2016
  ident: 10.1016/j.bspc.2021.102581_bib0050
  article-title: An automated method for sleep staging from eeg signals using normal inverse Gaussian parameters and adaptive boosting
  publication-title: Neurocomputing
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 10.1016/j.bspc.2021.102581_bib0110
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– volume: 26
  start-page: 324
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.102581_bib0010
  article-title: Mixed neural network approach for temporal sleep stage classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2733220
– volume: 13
  start-page: 260
  issue: 2
  year: 1967
  ident: 10.1016/j.bspc.2021.102581_bib0170
  article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  publication-title: IEEE Trans. Informat. Theory
  doi: 10.1109/TIT.1967.1054010
– volume: 24
  start-page: 1
  issue: February
  year: 2016
  ident: 10.1016/j.bspc.2021.102581_bib0045
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.09.002
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102581_bib0075
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics
– volume: 8
  start-page: 104281
  year: 2020
  ident: 10.1016/j.bspc.2021.102581_bib0085
  article-title: Automatic identification of insomnia based on single-channel eeg labelled with sleep stage annotations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999915
– volume: 205
  start-page: 169
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2021.102581_bib0100
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.12.022
– volume: 1
  year: 1944
  ident: 10.1016/j.bspc.2021.102581_bib0230
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102581_bib0135
– start-page: 1452
  year: 2018
  ident: 10.1016/j.bspc.2021.102581_bib0225
  article-title: Automatic sleep stage classification using single-channel eeg: Learning sequential features with attention-based recurrent neural networks
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2005
  ident: 10.1016/j.bspc.2021.102581_bib0130
– volume: 21
  start-page: 956
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2021.102581_bib0040
  article-title: Cardiorespiratory sleep stage detection using conditional random fields
  publication-title: IEEE J. Biomed. Health Informatics
  doi: 10.1109/JBHI.2016.2550104
– volume: 8
  start-page: 134480
  year: 2020
  ident: 10.1016/j.bspc.2021.102581_bib0165
  article-title: Learning to learn sequential network attacks using hidden Markov models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011293
SSID ssj0048714
Score 2.4937139
Snippet •Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102581
SubjectTerms Convolutional neural network
Electroencephalogram
Hidden Markov model
Sleep stage classification
Subject-independent testing
Title A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model
URI https://dx.doi.org/10.1016/j.bspc.2021.102581
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF9EL-1B1LZo_WAO3sr2mWSzSY4Pefps0UsreAs72dmqhLxHfXr0H_GfdWaTJwrFQ09hwwwsO8N8wG9-o9QhdxEUkCs3jnRWG24ZdIkYdEhTTk65wybSF59f2Oml-XGVX62o4-UsjMAqh9jfx_QYrYc_o-E1R_Obm9EvrqVtyd1JmsQd80K7bUwhWwy-P77APLgej_zeIqxFehic6TFeeDcXGsM0EQaDvEz-nZxeJZyTDbU-VIow7i-zqVao21IfX_EHflJPY5BWvyUt87sdtTCZnIIkJg_ufjGLdKxw1xLNgavAPwSNFMuCDooGgX5_NLTEDh3XFYEX2VlH2gvtf0_ZAQJNH1yUT0KBGT8RQA6u83AtRCQdyODP7AHidp3P6vJk8vt4qodtC7rJrF1oS96ZQIgWKXEVWzDn_I0J-cpUhTMGQ9EQVk2FWWlKTz4LhXWcAtE2Npjsi1rt-H7bCrxrMheSpBC2L0ytC84j5XzOjzJ_hDsqWT5z3QxU5LIRo62XmLPbWkxTi2nq3jQ76tuLzrwn4nhXOl9ar37jTjVninf0vv6n3q76IKcex7unVhd_72mfq5UFHkR3PFBr47Of04tnMgXtbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHoBD1dKiQl9z6K0ySxLHSY4ILd22wAWQuEWeeAyLouyqLBz5I_2znXGyiEoVh54ix2PJ8ozmIX3zjVJfuIqggJy5saez2nDJoEvEoEOacnDKHTaRvvjk1E4uzI_L_HJFHS57YQRWOfj-3qdHbz38GQ2vOZpPp6MzzqVtydVJmsQZ83ZVvTB5WkgFtvfwiPPghDwSfIu0FvGhc6YHeeHtXHgM00QoDPIy-Xd0ehJxjl6pl0OqCAf9bV6rFeq21OYTAsE36vcBSK3fkpYG3o5aGI-_gUQmD-5uMYt8rHDbEs2B08ArgkayZYEHRY1AP0AaWmKLjvOKwIvsrCPthfe_5-wAwaYPNsor4cCMn4ggB9d5uBYmkg6k82d2D3G8zlt1cTQ-P5zoYdyCbjJrF9qSdyYQokVKXMUqzDmAY0K-MlXhjMFQNIRVU2FWmtKTz0JhHcdAtI0NJttWax3f750C75rMhSQphO4LU-uC80g5r_P9zO_jjkqWz1w3Axe5jMRo6yXo7KYW1dSimrpXzY76-nhm3jNxPCudL7VX_2VPNYeKZ87t_ue5z2p9cn5yXB9_P_35Xm3ITg_q_aDWFr_u6COnLgv8FE3zD7cg7wM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-channel+EEG+based+automatic+sleep+stage+classification+method+leveraging+deep+one-dimensional+convolutional+neural+network+and+hidden+Markov+model&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Bufang&rft.au=Zhu%2C+Xilin&rft.au=Liu%2C+Yitian&rft.au=Liu%2C+Hongxing&rft.date=2021-07-01&rft.issn=1746-8094&rft.volume=68&rft.spage=102581&rft_id=info:doi/10.1016%2Fj.bspc.2021.102581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon