A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model
•Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as post-processing step to correct unreasonable sleep stage transitions.•We have demonstrated that HMM refinement is effective for 1D-CNN, and HMM im...
        Saved in:
      
    
          | Published in | Biomedical signal processing and control Vol. 68; p. 102581 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.07.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1746-8094 1746-8108  | 
| DOI | 10.1016/j.bspc.2021.102581 | 
Cover
| Abstract | •Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as post-processing step to correct unreasonable sleep stage transitions.•We have demonstrated that HMM refinement is effective for 1D-CNN, and HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages with p < 0.05.•Results demonstrate that our method outperformed most of the existing single-channel EEG based methods under subject-independent paradigm using Sleep-EDFx and DRM-SUB datasets.
Sleep stage classification is an essential process for analyzing sleep and diagnosing sleep related disorders. Sleep staging by visual inspection of expert is a labor-intensive task and prone to subjective errors. In this paper, we proposed a single-channel EEG based automatic sleep stage classification model, called 1D-CNN-HMM. Our 1D-CNN-HMM combines deep one-dimensional convolutional neural network (1D-CNN) and hidden Markov model (HMM). We leveraged 1D-CNN for epoch-wise classification and HMM for subject-wise classification. The main idea of 1D-CNN-HMM model is to utilize the advantage of 1D-CNN that can automatically extract features from raw EEG, and HMM that can utilize sleep stage transition prior information of adjacent EEG epochs. To the best of author's knowledge, this is the first implementation of 1D-CNN connected with HMM in automatic sleep staging task. We used Sleep-EDFx dataset and DRM-SUB dataset, and performed subject-independent testing for model evaluation. Experimental results illustrated the overall accuracy and kappa coefficient of 1D-CNN-HMM could achieve 83.98% and 0.78 on Fpz-Oz channel EEG from Sleep-EDFx dataset, and achieve 81.68% and 0.74 on Cz-A1 channel EEG from DRM-SUB dataset. The overall accuracy and kappa coefficient of 1D-CNN-HMM outperformed other existing methods both on two datasets. In addition, the per-class performance of 1D-CNN-HMM is significantly higher than 1D-CNN on S1 and REM sleep stages with p<0.05. Our 1D-CNN-HMM outperformed other existing methods both on two datasets. Results also indicated that HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages. | 
    
|---|---|
| AbstractList | •Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as post-processing step to correct unreasonable sleep stage transitions.•We have demonstrated that HMM refinement is effective for 1D-CNN, and HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages with p < 0.05.•Results demonstrate that our method outperformed most of the existing single-channel EEG based methods under subject-independent paradigm using Sleep-EDFx and DRM-SUB datasets.
Sleep stage classification is an essential process for analyzing sleep and diagnosing sleep related disorders. Sleep staging by visual inspection of expert is a labor-intensive task and prone to subjective errors. In this paper, we proposed a single-channel EEG based automatic sleep stage classification model, called 1D-CNN-HMM. Our 1D-CNN-HMM combines deep one-dimensional convolutional neural network (1D-CNN) and hidden Markov model (HMM). We leveraged 1D-CNN for epoch-wise classification and HMM for subject-wise classification. The main idea of 1D-CNN-HMM model is to utilize the advantage of 1D-CNN that can automatically extract features from raw EEG, and HMM that can utilize sleep stage transition prior information of adjacent EEG epochs. To the best of author's knowledge, this is the first implementation of 1D-CNN connected with HMM in automatic sleep staging task. We used Sleep-EDFx dataset and DRM-SUB dataset, and performed subject-independent testing for model evaluation. Experimental results illustrated the overall accuracy and kappa coefficient of 1D-CNN-HMM could achieve 83.98% and 0.78 on Fpz-Oz channel EEG from Sleep-EDFx dataset, and achieve 81.68% and 0.74 on Cz-A1 channel EEG from DRM-SUB dataset. The overall accuracy and kappa coefficient of 1D-CNN-HMM outperformed other existing methods both on two datasets. In addition, the per-class performance of 1D-CNN-HMM is significantly higher than 1D-CNN on S1 and REM sleep stages with p<0.05. Our 1D-CNN-HMM outperformed other existing methods both on two datasets. Results also indicated that HMM improved the classification performance of 1D-CNN by improving the performance on S1 and REM stages. | 
    
| ArticleNumber | 102581 | 
    
| Author | Liu, Hongxing Yang, Bufang Zhu, Xilin Liu, Yitian  | 
    
| Author_xml | – sequence: 1 givenname: Bufang orcidid: 0000-0003-0032-2539 surname: Yang fullname: Yang, Bufang – sequence: 2 givenname: Xilin surname: Zhu fullname: Zhu, Xilin – sequence: 3 givenname: Yitian surname: Liu fullname: Liu, Yitian – sequence: 4 givenname: Hongxing surname: Liu fullname: Liu, Hongxing email: njhxliu@nju.edu.cn  | 
    
| BookMark | eNp9kEtu2zAQhokgAfK8QFa8gFxSoikJyCYw3LRAgmzaNTEkRzYdijRI2kHP0stWtttNF17N8_sx89-SyxADEvLI2YwzLr9sZjpvzaxmNZ8a9bzjF-SGt0JWHWfd5b-c9eKa3Oa8YUx0LRc35PczzS6sPFZmDSGgp8vlC9WQ0VLYlThCcYZmj7ilucAKqfGQsxucmSYx0BHLOlrqcY8JVpMUtYfd6bzKuhFDnpbAUxPDPvpdOVUBd-kYymdMHxSCpWtnLQb6Bukj7ukYLfp7cjWAz_jwN96Rn1-XPxbfqtf3l--L59fKNFKWSqIFMaDWUiOHHgc9Z7XQHG0v-haE0ENrUPem100nOou2GVoJDWu0NHIQzR3pTromxZwTDsq4cvyuJHBecaYOJquNOpisDiark8kTWv-HbpMbIf06Dz2dIJye2jtMKhuHwaB1CU1RNrpz-B-4Gp2R | 
    
| CitedBy_id | crossref_primary_10_1016_j_bspc_2022_104150 crossref_primary_10_1016_j_bspc_2021_103061 crossref_primary_10_1016_j_bspc_2022_104275 crossref_primary_10_1109_JSEN_2024_3382040 crossref_primary_10_1109_JBHI_2023_3327470 crossref_primary_10_3390_bioengineering10050573 crossref_primary_10_3390_ijerph19095199 crossref_primary_10_1016_j_bspc_2022_104501 crossref_primary_10_1016_j_bspc_2021_102965 crossref_primary_10_1016_j_enganabound_2024_105989 crossref_primary_10_1109_TNSRE_2022_3216111 crossref_primary_10_3390_physiologia4010001 crossref_primary_10_32604_csse_2023_030603 crossref_primary_10_1007_s40747_023_01290_2 crossref_primary_10_1109_JBHI_2024_3512616 crossref_primary_10_1016_j_bspc_2023_105351 crossref_primary_10_1109_JBHI_2024_3403878 crossref_primary_10_4028_p_svwo5k crossref_primary_10_1016_j_bspc_2024_106184 crossref_primary_10_1016_j_bspc_2023_105631 crossref_primary_10_3390_a17060229 crossref_primary_10_1016_j_bspc_2023_104588 crossref_primary_10_1016_j_bspc_2024_106422 crossref_primary_10_1109_TIM_2023_3346527 crossref_primary_10_1145_3699765 crossref_primary_10_1109_TNSRE_2022_3220372 crossref_primary_10_1109_ACCESS_2024_3496721 crossref_primary_10_1186_s40779_025_00598_z crossref_primary_10_1109_TNNLS_2022_3210384 crossref_primary_10_1088_1361_665X_ac726f crossref_primary_10_1002_eng2_12827 crossref_primary_10_1109_TIM_2022_3154838 crossref_primary_10_1109_TNSRE_2023_3238852 crossref_primary_10_1186_s12911_024_02522_2 crossref_primary_10_1109_JBHI_2023_3339713 crossref_primary_10_1002_anse_202200062 crossref_primary_10_1016_j_bspc_2022_104299 crossref_primary_10_1016_j_bspc_2022_103486 crossref_primary_10_1109_TNSRE_2023_3246478 crossref_primary_10_3390_ijerph19106322 crossref_primary_10_1007_s13534_023_00301_y crossref_primary_10_1109_JSEN_2022_3155345 crossref_primary_10_1007_s10489_022_04357_8 crossref_primary_10_1007_s42243_023_00929_1 crossref_primary_10_1080_10255842_2023_2301414 crossref_primary_10_1109_ACCESS_2023_3263477 crossref_primary_10_1088_1361_6579_acdb46 crossref_primary_10_1155_2022_6104736 crossref_primary_10_1016_j_bspc_2025_107553 crossref_primary_10_3390_diagnostics12102510 crossref_primary_10_1016_j_eswa_2021_115759 crossref_primary_10_1088_1741_2552_aca2de crossref_primary_10_1016_j_bspc_2023_105572 crossref_primary_10_1016_j_eswa_2022_119288 crossref_primary_10_1109_JBHI_2023_3332503 crossref_primary_10_1016_j_bbe_2021_11_003 crossref_primary_10_1007_s11517_024_03096_x crossref_primary_10_1016_j_compbiomed_2022_106044 crossref_primary_10_3390_diagnostics13142358  | 
    
| Cites_doi | 10.1109/10.867928 10.1016/j.jneumeth.2019.108320 10.1016/j.eswa.2018.12.023 10.1109/JBHI.2017.2668993 10.1186/1475-925X-11-52 10.1016/j.neucom.2016.04.049 10.1109/ACCESS.2019.2944801 10.3390/ijerph17114152 10.1016/j.neucom.2012.11.003 10.1016/j.compbiomed.2019.01.013 10.3390/s20174677 10.1016/j.conb.2006.10.006 10.1371/journal.pbio.0060106 10.1016/j.inffus.2019.06.024 10.1109/JBHI.2014.2303991 10.2147/IJGM.S11557 10.1109/TIM.2019.2937074 10.1016/j.eswa.2016.07.004 10.1007/s10439-015-1444-y 10.1016/j.cmpb.2016.12.015 10.1088/1741-2552/ab3bb4 10.1016/j.jneumeth.2019.108312 10.1109/TBME.2018.2872652 10.1016/j.ipm.2009.03.002 10.1109/ICCV.2015.123 10.1109/5.18626 10.1016/j.bspc.2020.102037 10.1109/TNSRE.2017.2721116 10.1109/TNSRE.2017.2733220 10.1109/TIT.1967.1054010 10.1016/j.bspc.2015.09.002 10.1109/ACCESS.2020.2999915 10.1016/j.jneumeth.2011.12.022 10.1109/JBHI.2016.2550104 10.1109/ACCESS.2020.3011293  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.bspc.2021.102581 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1746-8108 | 
    
| ExternalDocumentID | 10_1016_j_bspc_2021_102581 S1746809421001786  | 
    
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c366t-6eda4febb6be1a9efb5024b1ed9497a44bf7ceb9c9b3848ded3f76a303b6c6f43 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1746-8094 | 
    
| IngestDate | Thu Apr 24 23:08:34 EDT 2025 Wed Oct 29 21:26:48 EDT 2025 Fri Feb 23 02:43:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Subject-independent testing Hidden Markov model Sleep stage classification Electroencephalogram Convolutional neural network  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c366t-6eda4febb6be1a9efb5024b1ed9497a44bf7ceb9c9b3848ded3f76a303b6c6f43 | 
    
| ORCID | 0000-0003-0032-2539 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_102581 crossref_primary_10_1016_j_bspc_2021_102581 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102581  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2021 2021-07-00  | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Biomedical signal processing and control | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Phan, Andreotti, Cooray, Chen, De Vos (bib0205) 2018; 66 Hsieh, Chu, Huang (bib0160) 2014 Mignot (bib0005) 2008; 6 Tsinalis, Matthews, Guo (bib0215) 2015; 44 Iber, Ancoli-Israel, Chesson, Quan (bib0030) 2007 He, Zhang, Ren, Sun (bib0195) 2015 Tsinalis, Matthews, Guo, Zafeiriou (bib0210) 2016 Wilcoxon (bib0230) 1944; 1 Pan, Kuo, Zeng, Liang (bib0095) 2012; 11 Farahat, Reichert, Sweeney-Reed, Hinrichs (bib0140) 2019; 16 Ellenbogen, Payne, Stickgold (bib0020) 2006; 16 Jianga, Lu, Ma, Wang (bib0120) 2019; 121 Ioffe, Szegedy (bib0145) 2015 Wolpert (bib0025) 1969; 26 Zhu, Li, Wen (bib0065) 2014; 18 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0200) 2014; 15 Hsu, Yane, Wane, Hsu (bib0245) 2013; 104 Viterbi (bib0170) 1967; 13 Dong, Supratak, Pan, Wu, Matthews, Guo (bib0010) 2018; 26 Kemp, Bastiaan, Zwinderman, Aeilko (bib0125) 2000; 47 Phan, Andreotti, Cooray, Chen, Vos (bib0225) 2018 Fallmann, Chen (bib0180) 2019; 7 Yao, Wang, Fan, Liu, Li (bib0175) 2020; 53 Shen, Ran, Xu, Guez, Guo (bib0240) 2020; 20 Supratak, Dong, Wu, Guo (bib0110) 2017; 25 Mousavi, Rezaii, Sheykhivand, Farzamnia, Razavi (bib0070) 2019; 324 Phan, Andreotti, Cooray, Chen, De Vos (bib0220) 2018 Hassan, Bhuiyan (bib0055) 2017; 140 Celler, Le, Argha, Ambikairajah (bib0155) 2020; 69 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0135) 2015 Li, Cui, Tao, Chen, Zhang, Zhang (bib0035) 2018; 22 Ghimatgar, Kazemi, Helfroush, Aarabi (bib0090) 2019; 324 Michielli, Acharya, Molinari (bib0105) 2019; 106 Fonseca, den Teuling, Long, Aarts (bib0040) 2017; 21 Hassan, Bhuiyan (bib0050) 2016; 219 Laurens, Hinton (bib0235) 2008; 9 Seo, Back, Lee, Park, Kim, Lee (bib0115) 2020; 61 Chadza, Kyriakopoulos, Lambotharan (bib0165) 2020; 8 Kingma, Ba (bib0190) 2014 Sokolovsky, Guerrero, Paisarnsrisomsuk, Ruiz, Alvarez (bib0075) 2019 Yang, Liu (bib0085) 2020; 8 Diykh, Li (bib0060) 2016; 63 Rabiner (bib0150) 1989; 77 Hassan, Bhuiyan (bib0045) 2016; 24 Liang, Kuo, Hu, Cheng (bib0100) 2012; 205 Peker (bib0250) 2016; 207 Sokolova, Lapalme (bib0185) 2009; 45 Zhu, Luo, Yu (bib0080) 2020; 17 Brand, Kirov (bib0015) 2011; 4 Devuyst (bib0130) 2005 Fallmann (10.1016/j.bspc.2021.102581_bib0180) 2019; 7 Wilcoxon (10.1016/j.bspc.2021.102581_bib0230) 1944; 1 Sokolovsky (10.1016/j.bspc.2021.102581_bib0075) 2019 Diykh (10.1016/j.bspc.2021.102581_bib0060) 2016; 63 Phan (10.1016/j.bspc.2021.102581_bib0225) 2018 Hassan (10.1016/j.bspc.2021.102581_bib0045) 2016; 24 Hassan (10.1016/j.bspc.2021.102581_bib0055) 2017; 140 Zhu (10.1016/j.bspc.2021.102581_bib0080) 2020; 17 Chadza (10.1016/j.bspc.2021.102581_bib0165) 2020; 8 He (10.1016/j.bspc.2021.102581_bib0195) 2015 Wolpert (10.1016/j.bspc.2021.102581_bib0025) 1969; 26 Viterbi (10.1016/j.bspc.2021.102581_bib0170) 1967; 13 Jianga (10.1016/j.bspc.2021.102581_bib0120) 2019; 121 Li (10.1016/j.bspc.2021.102581_bib0035) 2018; 22 Fonseca (10.1016/j.bspc.2021.102581_bib0040) 2017; 21 Yao (10.1016/j.bspc.2021.102581_bib0175) 2020; 53 Tsinalis (10.1016/j.bspc.2021.102581_bib0210) 2016 Brand (10.1016/j.bspc.2021.102581_bib0015) 2011; 4 Devuyst (10.1016/j.bspc.2021.102581_bib0130) 2005 Hassan (10.1016/j.bspc.2021.102581_bib0050) 2016; 219 Mousavi (10.1016/j.bspc.2021.102581_bib0070) 2019; 324 Sokolova (10.1016/j.bspc.2021.102581_bib0185) 2009; 45 Tsinalis (10.1016/j.bspc.2021.102581_bib0215) 2015; 44 Ellenbogen (10.1016/j.bspc.2021.102581_bib0020) 2006; 16 Liang (10.1016/j.bspc.2021.102581_bib0100) 2012; 205 Hsieh (10.1016/j.bspc.2021.102581_bib0160) 2014 Dong (10.1016/j.bspc.2021.102581_bib0010) 2018; 26 Seo (10.1016/j.bspc.2021.102581_bib0115) 2020; 61 Kemp (10.1016/j.bspc.2021.102581_bib0125) 2000; 47 Shen (10.1016/j.bspc.2021.102581_bib0240) 2020; 20 Pan (10.1016/j.bspc.2021.102581_bib0095) 2012; 11 Ioffe (10.1016/j.bspc.2021.102581_bib0145) 2015 Phan (10.1016/j.bspc.2021.102581_bib0220) 2018 Laurens (10.1016/j.bspc.2021.102581_bib0235) 2008; 9 Phan (10.1016/j.bspc.2021.102581_bib0205) 2018; 66 Hsu (10.1016/j.bspc.2021.102581_bib0245) 2013; 104 Yang (10.1016/j.bspc.2021.102581_bib0085) 2020; 8 Mignot (10.1016/j.bspc.2021.102581_bib0005) 2008; 6 Zhu (10.1016/j.bspc.2021.102581_bib0065) 2014; 18 Michielli (10.1016/j.bspc.2021.102581_bib0105) 2019; 106 Supratak (10.1016/j.bspc.2021.102581_bib0110) 2017; 25 Szegedy (10.1016/j.bspc.2021.102581_bib0135) 2015 Celler (10.1016/j.bspc.2021.102581_bib0155) 2020; 69 Kingma (10.1016/j.bspc.2021.102581_bib0190) 2014 Peker (10.1016/j.bspc.2021.102581_bib0250) 2016; 207 Farahat (10.1016/j.bspc.2021.102581_bib0140) 2019; 16 Iber (10.1016/j.bspc.2021.102581_bib0030) 2007 Ghimatgar (10.1016/j.bspc.2021.102581_bib0090) 2019; 324 Srivastava (10.1016/j.bspc.2021.102581_bib0200) 2014; 15 Rabiner (10.1016/j.bspc.2021.102581_bib0150) 1989; 77  | 
    
| References_xml | – volume: 7 start-page: 142421 year: 2019 end-page: 142440 ident: bib0180 article-title: Computational sleep behavior analysis: a survey publication-title: IEEE Access – volume: 26 start-page: 324 year: 2018 end-page: 333 ident: bib0010 article-title: Mixed neural network approach for temporal sleep stage classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 6 start-page: 1 year: 2008 end-page: 9 ident: bib0005 article-title: Why we sleep: the temporal organization of recovery publication-title: PLOS Biol. – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: bib0045 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control – volume: 104 start-page: 105 year: 2013 end-page: 114 ident: bib0245 article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals publication-title: Neurocomputing – start-page: 453 year: 2018 end-page: 456 ident: bib0220 article-title: Dnn filter bank improves 1-max pooling cnn for single-channel eeg automatic sleep stage classification publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bib0185 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inform. Process. Manag. – year: 2005 ident: bib0130 article-title: The Dreams Databases and Assessment Algorithm [Data Set] – volume: 13 start-page: 260 year: 1967 end-page: 269 ident: bib0170 article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm publication-title: IEEE Trans. Informat. Theory – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0200 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 324 start-page: 108320 year: 2019 ident: bib0090 article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden Markov model publication-title: J. Neurosci. Methods – volume: 26 start-page: 644 year: 1969 ident: bib0025 article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib0235 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 104281 year: 2020 end-page: 104291 ident: bib0085 article-title: Automatic identification of insomnia based on single-channel eeg labelled with sleep stage annotations publication-title: IEEE Access – year: 2014 ident: bib0190 article-title: Adam: a method for stochastic optimization publication-title: International Conference on Learning Representations – volume: 324 start-page: 108312 year: 2019 ident: bib0070 article-title: Deep convolutional neural network for classification of sleep stages from single-channel eeg signals publication-title: J. Neurosci. Methods – volume: 61 start-page: 102037 year: 2020 ident: bib0115 article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel eeg publication-title: Biomed. Signal Process. Control – volume: 17 start-page: 4152 year: 2020 ident: bib0080 article-title: Convolution-and attention-based neural network for automated sleep stage classification publication-title: Int. J. Environ. Res. Public Health – volume: 140 start-page: 201 year: 2017 end-page: 210 ident: bib0055 article-title: Automated identification of sleep states from eeg signals by means of ensemble empirical mode decomposition and random under sampling boosting publication-title: Comput. Methods Programs Biomed. – year: 2007 ident: bib0030 article-title: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications – volume: 53 start-page: 174 year: 2020 end-page: 182 ident: bib0175 article-title: Multi-class arrhythmia detection from 12-lead varied-length ecg using attention-based time-incremental convolutional neural network publication-title: Inform. Fusion – volume: 11 start-page: 52 year: 2012 ident: bib0095 article-title: A transition-constrained discrete hidden Markov model for automatic sleep staging publication-title: Biomed. Eng. Online – volume: 44 start-page: 1587 year: 2015 end-page: 1597 ident: bib0215 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Ann. Biomed. Eng. – volume: 16 year: 2019 ident: bib0140 article-title: Convolutional neural networks for decoding of covert attention focus and saliency maps for eeg feature visualization publication-title: J. Neural Eng. – volume: 20 start-page: 4677 year: 2020 ident: bib0240 article-title: An automatic sleep stage classification algorithm using improved model based essence features publication-title: Sensors – start-page: 1 year: 2019 ident: bib0075 article-title: Deep learning for automated feature discovery and classification of sleep stages publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics – volume: 21 start-page: 956 year: 2017 end-page: 966 ident: bib0040 article-title: Cardiorespiratory sleep stage detection using conditional random fields publication-title: IEEE J. Biomed. Health Informatics – volume: 121 start-page: 188 year: 2019 end-page: 203 ident: bib0120 article-title: Robust sleep stage classification with single-channel eeg signals using multimodal decomposition and hmm-based refinement publication-title: Expert Syst. Appl. – volume: 69 start-page: 3631 year: 2020 end-page: 3641 ident: bib0155 article-title: Gmm-hmm-based blood pressure estimation using time-domain features publication-title: IEEE Trans. Instrum. Meas. – start-page: 1 year: 2015 end-page: 9 ident: bib0135 article-title: Going Deeper With Convolutions – start-page: 1452 year: 2018 end-page: 1455 ident: bib0225 article-title: Automatic sleep stage classification using single-channel eeg: Learning sequential features with attention-based recurrent neural networks publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 63 start-page: 241 year: 2016 end-page: 248 ident: bib0060 article-title: Complex networks approach for eeg signal sleep stages classification publication-title: Expert Syst. Appl. – year: 2015 ident: bib0145 article-title: Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift – volume: 18 start-page: 1813 year: 2014 end-page: 1821 ident: bib0065 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal publication-title: IEEE J. Biomed. Health Informatics – year: 2015 ident: bib0195 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification publication-title: IEEE International Conference on Computer Vision (ICCV 2015) 1502 – year: 2016 ident: bib0210 article-title: Automatic Sleep Stage Scoring With Single-Channel EEG Using Convolutional Neural Networks – volume: 22 start-page: 375 year: 2018 end-page: 385 ident: bib0035 article-title: Hyclasss: a hybrid classifier for automatic sleep stage scoring publication-title: IEEE J. Biomed. Health Informatics – volume: 8 start-page: 134480 year: 2020 end-page: 134497 ident: bib0165 article-title: Learning to learn sequential network attacks using hidden Markov models publication-title: IEEE Access – volume: 207 start-page: 165 year: 2016 end-page: 177 ident: bib0250 article-title: An efficient sleep scoring system based on eeg signal using complex-valued machine learning algorithms publication-title: Neurocomputing – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib0150 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE – volume: 205 start-page: 169 year: 2012 end-page: 176 ident: bib0100 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Methods – volume: 1 year: 1944 ident: bib0230 article-title: Individual comparisons by ranking methods publication-title: Biometrics – volume: 47 start-page: 1185 year: 2000 end-page: 1194 ident: bib0125 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg publication-title: IEEE Trans. Biomed. Eng. – volume: 4 start-page: 425 year: 2011 end-page: 442 ident: bib0015 article-title: Sleep and its importance in adolescence and in common adolescent somatic and psychiatric conditions publication-title: Int. J. Gen. Med. – volume: 16 start-page: 716 year: 2006 end-page: 722 ident: bib0020 article-title: The role of sleep in declarative memory consolidation: passive, permissive, active or none? publication-title: Curr. Opin. Neurobiol. – volume: 106 start-page: 71 year: 2019 end-page: 81 ident: bib0105 article-title: Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals publication-title: Comput. Biol. Med. – volume: 25 start-page: 1998 year: 2017 end-page: 2008 ident: bib0110 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 66 start-page: 1285 year: 2018 end-page: 1296 ident: bib0205 article-title: Joint classification and prediction cnn framework for automatic sleep stage classification publication-title: IEEE Trans. Biomed. Eng. – start-page: 662 year: 2014 end-page: 665 ident: bib0160 article-title: An hmm-based eye movement detection system using eeg brain–computer interface publication-title: Proceedings – IEEE International Symposium on Circuits and Systems – volume: 219 start-page: 76 year: 2016 end-page: 87 ident: bib0050 article-title: An automated method for sleep staging from eeg signals using normal inverse Gaussian parameters and adaptive boosting publication-title: Neurocomputing – volume: 47 start-page: 1185 year: 2000 ident: 10.1016/j.bspc.2021.102581_bib0125 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.867928 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.bspc.2021.102581_bib0200 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 324 start-page: 108320 year: 2019 ident: 10.1016/j.bspc.2021.102581_bib0090 article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden Markov model publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108320 – start-page: 453 year: 2018 ident: 10.1016/j.bspc.2021.102581_bib0220 article-title: Dnn filter bank improves 1-max pooling cnn for single-channel eeg automatic sleep stage classification publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 121 start-page: 188 issue: MAY year: 2019 ident: 10.1016/j.bspc.2021.102581_bib0120 article-title: Robust sleep stage classification with single-channel eeg signals using multimodal decomposition and hmm-based refinement publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.023 – volume: 22 start-page: 375 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.102581_bib0035 article-title: Hyclasss: a hybrid classifier for automatic sleep stage scoring publication-title: IEEE J. Biomed. Health Informatics doi: 10.1109/JBHI.2017.2668993 – volume: 11 start-page: 52 year: 2012 ident: 10.1016/j.bspc.2021.102581_bib0095 article-title: A transition-constrained discrete hidden Markov model for automatic sleep staging publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-11-52 – volume: 207 start-page: 165 year: 2016 ident: 10.1016/j.bspc.2021.102581_bib0250 article-title: An efficient sleep scoring system based on eeg signal using complex-valued machine learning algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.049 – volume: 7 start-page: 142421 year: 2019 ident: 10.1016/j.bspc.2021.102581_bib0180 article-title: Computational sleep behavior analysis: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944801 – year: 2014 ident: 10.1016/j.bspc.2021.102581_bib0190 article-title: Adam: a method for stochastic optimization publication-title: International Conference on Learning Representations – volume: 17 start-page: 4152 issue: 11 year: 2020 ident: 10.1016/j.bspc.2021.102581_bib0080 article-title: Convolution-and attention-based neural network for automated sleep stage classification publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17114152 – start-page: 662 year: 2014 ident: 10.1016/j.bspc.2021.102581_bib0160 article-title: An hmm-based eye movement detection system using eeg brain–computer interface publication-title: Proceedings – IEEE International Symposium on Circuits and Systems – volume: 9 start-page: 2579 issue: 2605 year: 2008 ident: 10.1016/j.bspc.2021.102581_bib0235 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.bspc.2021.102581_bib0210 – volume: 104 start-page: 105 issue: Mar.15 year: 2013 ident: 10.1016/j.bspc.2021.102581_bib0245 article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.003 – volume: 106 start-page: 71 year: 2019 ident: 10.1016/j.bspc.2021.102581_bib0105 article-title: Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.01.013 – volume: 20 start-page: 4677 issue: 17 year: 2020 ident: 10.1016/j.bspc.2021.102581_bib0240 article-title: An automatic sleep stage classification algorithm using improved model based essence features publication-title: Sensors doi: 10.3390/s20174677 – volume: 16 start-page: 716 issue: 6 year: 2006 ident: 10.1016/j.bspc.2021.102581_bib0020 article-title: The role of sleep in declarative memory consolidation: passive, permissive, active or none? publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2006.10.006 – volume: 6 start-page: 1 year: 2008 ident: 10.1016/j.bspc.2021.102581_bib0005 article-title: Why we sleep: the temporal organization of recovery publication-title: PLOS Biol. doi: 10.1371/journal.pbio.0060106 – volume: 53 start-page: 174 year: 2020 ident: 10.1016/j.bspc.2021.102581_bib0175 article-title: Multi-class arrhythmia detection from 12-lead varied-length ecg using attention-based time-incremental convolutional neural network publication-title: Inform. Fusion doi: 10.1016/j.inffus.2019.06.024 – volume: 18 start-page: 1813 issue: 6 year: 2014 ident: 10.1016/j.bspc.2021.102581_bib0065 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal publication-title: IEEE J. Biomed. Health Informatics doi: 10.1109/JBHI.2014.2303991 – volume: 4 start-page: 425 year: 2011 ident: 10.1016/j.bspc.2021.102581_bib0015 article-title: Sleep and its importance in adolescence and in common adolescent somatic and psychiatric conditions publication-title: Int. J. Gen. Med. doi: 10.2147/IJGM.S11557 – volume: 69 start-page: 3631 issue: 6 year: 2020 ident: 10.1016/j.bspc.2021.102581_bib0155 article-title: Gmm-hmm-based blood pressure estimation using time-domain features publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2937074 – volume: 63 start-page: 241 issue: November year: 2016 ident: 10.1016/j.bspc.2021.102581_bib0060 article-title: Complex networks approach for eeg signal sleep stages classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.07.004 – volume: 44 start-page: 1587 issue: 5 year: 2015 ident: 10.1016/j.bspc.2021.102581_bib0215 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1444-y – year: 2007 ident: 10.1016/j.bspc.2021.102581_bib0030 – year: 2015 ident: 10.1016/j.bspc.2021.102581_bib0145 – volume: 140 start-page: 201 issue: Complete year: 2017 ident: 10.1016/j.bspc.2021.102581_bib0055 article-title: Automated identification of sleep states from eeg signals by means of ensemble empirical mode decomposition and random under sampling boosting publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.12.015 – volume: 16 year: 2019 ident: 10.1016/j.bspc.2021.102581_bib0140 article-title: Convolutional neural networks for decoding of covert attention focus and saliency maps for eeg feature visualization publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab3bb4 – volume: 324 start-page: 108312 year: 2019 ident: 10.1016/j.bspc.2021.102581_bib0070 article-title: Deep convolutional neural network for classification of sleep stages from single-channel eeg signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108312 – volume: 66 start-page: 1285 year: 2018 ident: 10.1016/j.bspc.2021.102581_bib0205 article-title: Joint classification and prediction cnn framework for automatic sleep stage classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2872652 – volume: 45 start-page: 427 year: 2009 ident: 10.1016/j.bspc.2021.102581_bib0185 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inform. Process. Manag. doi: 10.1016/j.ipm.2009.03.002 – year: 2015 ident: 10.1016/j.bspc.2021.102581_bib0195 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification publication-title: IEEE International Conference on Computer Vision (ICCV 2015) 1502 doi: 10.1109/ICCV.2015.123 – volume: 26 start-page: 644 issue: 2 year: 1969 ident: 10.1016/j.bspc.2021.102581_bib0025 article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.bspc.2021.102581_bib0150 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE doi: 10.1109/5.18626 – volume: 61 start-page: 102037 year: 2020 ident: 10.1016/j.bspc.2021.102581_bib0115 article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel eeg publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102037 – volume: 219 start-page: 76 issue: JAN.5 year: 2016 ident: 10.1016/j.bspc.2021.102581_bib0050 article-title: An automated method for sleep staging from eeg signals using normal inverse Gaussian parameters and adaptive boosting publication-title: Neurocomputing – volume: 25 start-page: 1998 issue: 11 year: 2017 ident: 10.1016/j.bspc.2021.102581_bib0110 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2721116 – volume: 26 start-page: 324 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.102581_bib0010 article-title: Mixed neural network approach for temporal sleep stage classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2733220 – volume: 13 start-page: 260 issue: 2 year: 1967 ident: 10.1016/j.bspc.2021.102581_bib0170 article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm publication-title: IEEE Trans. Informat. Theory doi: 10.1109/TIT.1967.1054010 – volume: 24 start-page: 1 issue: February year: 2016 ident: 10.1016/j.bspc.2021.102581_bib0045 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.09.002 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2021.102581_bib0075 article-title: Deep learning for automated feature discovery and classification of sleep stages publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics – volume: 8 start-page: 104281 year: 2020 ident: 10.1016/j.bspc.2021.102581_bib0085 article-title: Automatic identification of insomnia based on single-channel eeg labelled with sleep stage annotations publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2999915 – volume: 205 start-page: 169 issue: 1 year: 2012 ident: 10.1016/j.bspc.2021.102581_bib0100 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.12.022 – volume: 1 year: 1944 ident: 10.1016/j.bspc.2021.102581_bib0230 article-title: Individual comparisons by ranking methods publication-title: Biometrics – start-page: 1 year: 2015 ident: 10.1016/j.bspc.2021.102581_bib0135 – start-page: 1452 year: 2018 ident: 10.1016/j.bspc.2021.102581_bib0225 article-title: Automatic sleep stage classification using single-channel eeg: Learning sequential features with attention-based recurrent neural networks publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – year: 2005 ident: 10.1016/j.bspc.2021.102581_bib0130 – volume: 21 start-page: 956 issue: 4 year: 2017 ident: 10.1016/j.bspc.2021.102581_bib0040 article-title: Cardiorespiratory sleep stage detection using conditional random fields publication-title: IEEE J. Biomed. Health Informatics doi: 10.1109/JBHI.2016.2550104 – volume: 8 start-page: 134480 year: 2020 ident: 10.1016/j.bspc.2021.102581_bib0165 article-title: Learning to learn sequential network attacks using hidden Markov models publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011293  | 
    
| SSID | ssj0048714 | 
    
| Score | 2.4937139 | 
    
| Snippet | •Our proposed 1D-CNN-HMM model combines 1D-CNN and HMM. 1D-CNN could extract features from raw EEG to perform epoch-wise classification, and HMM works as... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 102581 | 
    
| SubjectTerms | Convolutional neural network Electroencephalogram Hidden Markov model Sleep stage classification Subject-independent testing  | 
    
| Title | A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model | 
    
| URI | https://dx.doi.org/10.1016/j.bspc.2021.102581 | 
    
| Volume | 68 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF9EL-1B1LZo_WAO3sr2mWSzSY4Pefps0UsreAs72dmqhLxHfXr0H_GfdWaTJwrFQ09hwwwsO8N8wG9-o9QhdxEUkCs3jnRWG24ZdIkYdEhTTk65wybSF59f2Oml-XGVX62o4-UsjMAqh9jfx_QYrYc_o-E1R_Obm9EvrqVtyd1JmsQd80K7bUwhWwy-P77APLgej_zeIqxFehic6TFeeDcXGsM0EQaDvEz-nZxeJZyTDbU-VIow7i-zqVao21IfX_EHflJPY5BWvyUt87sdtTCZnIIkJg_ufjGLdKxw1xLNgavAPwSNFMuCDooGgX5_NLTEDh3XFYEX2VlH2gvtf0_ZAQJNH1yUT0KBGT8RQA6u83AtRCQdyODP7AHidp3P6vJk8vt4qodtC7rJrF1oS96ZQIgWKXEVWzDn_I0J-cpUhTMGQ9EQVk2FWWlKTz4LhXWcAtE2Npjsi1rt-H7bCrxrMheSpBC2L0ytC84j5XzOjzJ_hDsqWT5z3QxU5LIRo62XmLPbWkxTi2nq3jQ76tuLzrwn4nhXOl9ar37jTjVninf0vv6n3q76IKcex7unVhd_72mfq5UFHkR3PFBr47Of04tnMgXtbg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHoBD1dKiQl9z6K0ySxLHSY4ILd22wAWQuEWeeAyLouyqLBz5I_2znXGyiEoVh54ix2PJ8ozmIX3zjVJfuIqggJy5saez2nDJoEvEoEOacnDKHTaRvvjk1E4uzI_L_HJFHS57YQRWOfj-3qdHbz38GQ2vOZpPp6MzzqVtydVJmsQZ83ZVvTB5WkgFtvfwiPPghDwSfIu0FvGhc6YHeeHtXHgM00QoDPIy-Xd0ehJxjl6pl0OqCAf9bV6rFeq21OYTAsE36vcBSK3fkpYG3o5aGI-_gUQmD-5uMYt8rHDbEs2B08ArgkayZYEHRY1AP0AaWmKLjvOKwIvsrCPthfe_5-wAwaYPNsor4cCMn4ggB9d5uBYmkg6k82d2D3G8zlt1cTQ-P5zoYdyCbjJrF9qSdyYQokVKXMUqzDmAY0K-MlXhjMFQNIRVU2FWmtKTz0JhHcdAtI0NJttWax3f750C75rMhSQphO4LU-uC80g5r_P9zO_jjkqWz1w3Axe5jMRo6yXo7KYW1dSimrpXzY76-nhm3jNxPCudL7VX_2VPNYeKZ87t_ue5z2p9cn5yXB9_P_35Xm3ITg_q_aDWFr_u6COnLgv8FE3zD7cg7wM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-channel+EEG+based+automatic+sleep+stage+classification+method+leveraging+deep+one-dimensional+convolutional+neural+network+and+hidden+Markov+model&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Bufang&rft.au=Zhu%2C+Xilin&rft.au=Liu%2C+Yitian&rft.au=Liu%2C+Hongxing&rft.date=2021-07-01&rft.issn=1746-8094&rft.volume=68&rft.spage=102581&rft_id=info:doi/10.1016%2Fj.bspc.2021.102581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102581 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |