Monitoring of Sugarcane Harvest in Brazil Based on Optical and SAR Data
The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly available Synthetic Aperture Radar (SAR) and optical satellite data. Algorithm 1 uses the NDVI (Normalized Difference Vegetation Index) time seri...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 24; p. 4080 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            MDPI AG
    
        13.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs12244080 | 
Cover
| Abstract | The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly available Synthetic Aperture Radar (SAR) and optical satellite data. Algorithm 1 uses the NDVI (Normalized Difference Vegetation Index) time series derived from Sentinel-2 data. Sharp and continuous decrease in the NDVI values is the main sign of sugarcane harvest. The NDVI time series allows the ability to determine most harvest dates. The best estimates of the sugarcane areas harvested per month have been obtained from March to August 2018 when cloudy pixel percentage is less than 45% of the image area. Algorithm 2 of the harvest monitoring uses the coherence time series derived from Sentinel-1 Single Look Complex (SLC) images and optical satellite data. Low coherence, demonstrating sharp growth upon the harvest completion, corresponds to the harvest period. The NDVI time series trends were used to refine the algorithm. It is supposed that the descending NDVI trend corresponds to harvest. The algorithms were used to identify the harvest dates and calculate the harvested areas of the reference sample of 574 sugarcane parcels with a total area of 3745 ha in the state of São Paulo, Brazil. The harvested areas identified by visual interpretation coincide with the optical-data algorithm (algorithm 1) by 97%; the coincidence with the algorithm based on SAR and optical data (algorithm 2) is 90%. The main practical applications of the algorithms are harvest monitoring and identification of the harvested fields to estimate the harvested area. | 
    
|---|---|
| AbstractList | The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly available Synthetic Aperture Radar (SAR) and optical satellite data. Algorithm 1 uses the NDVI (Normalized Difference Vegetation Index) time series derived from Sentinel-2 data. Sharp and continuous decrease in the NDVI values is the main sign of sugarcane harvest. The NDVI time series allows the ability to determine most harvest dates. The best estimates of the sugarcane areas harvested per month have been obtained from March to August 2018 when cloudy pixel percentage is less than 45% of the image area. Algorithm 2 of the harvest monitoring uses the coherence time series derived from Sentinel-1 Single Look Complex (SLC) images and optical satellite data. Low coherence, demonstrating sharp growth upon the harvest completion, corresponds to the harvest period. The NDVI time series trends were used to refine the algorithm. It is supposed that the descending NDVI trend corresponds to harvest. The algorithms were used to identify the harvest dates and calculate the harvested areas of the reference sample of 574 sugarcane parcels with a total area of 3745 ha in the state of São Paulo, Brazil. The harvested areas identified by visual interpretation coincide with the optical-data algorithm (algorithm 1) by 97%; the coincidence with the algorithm based on SAR and optical data (algorithm 2) is 90%. The main practical applications of the algorithms are harvest monitoring and identification of the harvested fields to estimate the harvested area. | 
    
| Author | Vasyliev, Volodymyr Kavats, Olena Khramov, Dmitriy Sergieieva, Kateryna  | 
    
| Author_xml | – sequence: 1 givenname: Olena orcidid: 0000-0002-0172-7856 surname: Kavats fullname: Kavats, Olena – sequence: 2 givenname: Dmitriy orcidid: 0000-0002-1737-7272 surname: Khramov fullname: Khramov, Dmitriy – sequence: 3 givenname: Kateryna orcidid: 0000-0001-7345-2209 surname: Sergieieva fullname: Sergieieva, Kateryna – sequence: 4 givenname: Volodymyr orcidid: 0000-0002-5211-9164 surname: Vasyliev fullname: Vasyliev, Volodymyr  | 
    
| BookMark | eNp9kFtLJDEQhYMoeJuX_QV5XJRZK5fuTh7VXXVgRNDd51CdTg8ZYjImPS7ur7fdEVcWsV6qKE59dTj7ZDum6Aj5wuCbEBpOcmGcSwkKtsgeh4ZPJdd8-928SyalLGEsIZgGuUcur1P0Q8o-Lmjq6d16gdlidPQK86MrA_WRnmX84wM9w-I6miK9WQ3eYqAYO3p3eku_44CHZKfHUNzktR-QXxc_fp5fTec3l7Pz0_nUiroepnXXN04pKxi0XeeQKZRVJbC2rWJ9pdE5Ucuuq3uJslFau0ZL2WKDiI0SIA7IbMPtEi7NKvt7zE8moTd_FykvDObRXnBGqhq4A1X1ABJw_MBFqxrVWMV5q-uRdbxhreMKn35jCG9ABuYlUvMv0lH9daNe5fSwHqMx975YF8KYVloXwyvGmBbAX8CwkdqcSsmuN9YPOPgUh4w-fEw_-u_kEyvPoNuT-Q | 
    
| CitedBy_id | crossref_primary_10_1016_j_compag_2022_107024 crossref_primary_10_3390_s23041833 crossref_primary_10_1016_j_rsase_2022_100749 crossref_primary_10_5194_essd_14_4397_2022 crossref_primary_10_3390_rs13204040 crossref_primary_10_3390_rs13152853 crossref_primary_10_1002_aepp_13393 crossref_primary_10_3390_agriengineering6040217 crossref_primary_10_3390_rs15245783 crossref_primary_10_3389_fpls_2022_949598 crossref_primary_10_1109_JSTARS_2024_3373489 crossref_primary_10_1111_poms_13967 crossref_primary_10_3390_rs14184540 crossref_primary_10_1007_s00704_024_05180_6 crossref_primary_10_1109_JSTARS_2024_3427127  | 
    
| Cites_doi | 10.3390/rs12040615 10.3390/rs3122682 10.3390/rs12081313 10.1590/S0103-90162014000100001 10.1016/j.landusepol.2019.104190 10.3390/rs11091109 10.1109/IGARSS.2018.8518261 10.1007/978-981-15-0630-7_55 10.1088/1755-1315/126/1/012112 10.3390/rs71114428 10.3390/rs11192228 10.3390/rs11151836 10.1007/s11119-018-9621-2 10.3390/rs11131569 10.3390/rs12091456 10.3390/rs11212496 10.1016/j.still.2013.12.009 10.1109/BIGSARDATA.2019.8858450 10.1109/IGARSS.2009.5417646 10.3390/s101008899 10.1109/IGARSS.2019.8898706 10.1109/36.581984 10.1088/1757-899X/434/1/012065 10.1016/S0034-4257(02)00096-2 10.2134/agronj2003.0291 10.3390/rs8060500 10.3390/rs11070861 10.1016/j.procs.2019.02.001 10.4236/am.2017.83028 10.3390/rs71114482 10.2307/1936256 10.1016/S0034-4257(96)00067-3 10.3390/rs12101551 10.1016/j.ijpe.2019.03.009 10.3390/rs11161887 10.3390/rs11222673  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs12244080 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_48602e085f0040acb823b8787c822b96 10.3390/rs12244080 10_3390_rs12244080  | 
    
| GeographicLocations | Brazil | 
    
| GeographicLocations_xml | – name: Brazil | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c366t-6df7e88c310bddea18a4553a6cb81f59aee364dd6f4a47899e7944ba7aaa78303 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Fri Oct 03 12:38:32 EDT 2025 Sun Oct 26 04:08:04 EDT 2025 Thu Sep 04 16:25:46 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Thu Oct 16 04:39:27 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 24 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c366t-6df7e88c310bddea18a4553a6cb81f59aee364dd6f4a47899e7944ba7aaa78303 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-1737-7272 0000-0001-7345-2209 0000-0002-5211-9164 0000-0002-0172-7856  | 
    
| OpenAccessLink | https://doaj.org/article/48602e085f0040acb823b8787c822b96 | 
    
| PQID | 2511193026 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_48602e085f0040acb823b8787c822b96 unpaywall_primary_10_3390_rs12244080 proquest_miscellaneous_2511193026 crossref_citationtrail_10_3390_rs12244080 crossref_primary_10_3390_rs12244080  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20201213 | 
    
| PublicationDateYYYYMMDD | 2020-12-13 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 20201213 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2020 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_50 Zheng (ref_17) 2014; 138 Rahmad (ref_51) 2018; 434 ref_13 ref_11 ref_10 Marin (ref_48) 2014; 71 Zaitunah (ref_44) 2018; 126 Cevallos (ref_31) 2019; 150 Wang (ref_29) 2019; 88 Sungnul (ref_6) 2017; 8 Morabito (ref_4) 2019; 213 Tuszynska (ref_19) 2018; 10 Momin (ref_9) 2018; 20 ref_25 ref_24 ref_23 ref_22 ref_21 Ghazvinei (ref_49) 2018; 12 Guarnieri (ref_20) 1997; 35 ref_28 ref_27 Schultz (ref_30) 2015; 7 ref_26 Aguiar (ref_8) 2011; 3 Gao (ref_16) 1996; 58 ref_36 ref_35 ref_34 ref_33 ref_39 ref_38 Carvalho (ref_5) 2018; 38 Mulianga (ref_32) 2015; 7 Baghdadi (ref_12) 2010; 10 Jordan (ref_14) 1969; 50 ref_47 ref_46 ref_45 ref_43 ref_42 ref_41 Huete (ref_15) 2002; 83 ref_40 ref_1 ref_3 ref_2 Nihei (ref_37) 2015; 8 Daughtry (ref_18) 2005; 97 ref_7  | 
    
| References_xml | – ident: ref_10 doi: 10.3390/rs12040615 – volume: 3 start-page: 2682 year: 2011 ident: ref_8 article-title: Remote Sensing Images in Support of Environmental Protocol: Monitoring the Sugarcane Harvest in São Paulo State, Brazil publication-title: Remote Sens. doi: 10.3390/rs3122682 – ident: ref_2 doi: 10.3390/rs12081313 – volume: 71 start-page: 1 year: 2014 ident: ref_48 article-title: Process-based simple model for simulating sugarcane growth and production publication-title: Sci. Agric. doi: 10.1590/S0103-90162014000100001 – volume: 10 start-page: 65 year: 2018 ident: ref_19 article-title: A pilot study on determining approximate date of crop harvest on the basis of Sentinel-2 satellite imagery publication-title: Geoinf. Issues – volume: 88 start-page: 104190 year: 2019 ident: ref_29 article-title: Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms publication-title: Land Use Policy doi: 10.1016/j.landusepol.2019.104190 – ident: ref_39 – ident: ref_7 doi: 10.3390/rs11091109 – ident: ref_46 doi: 10.1109/IGARSS.2018.8518261 – ident: ref_42 – ident: ref_1 – ident: ref_28 doi: 10.1007/978-981-15-0630-7_55 – volume: 126 start-page: 1 year: 2018 ident: ref_44 article-title: Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/126/1/012112 – volume: 7 start-page: 14428 year: 2015 ident: ref_32 article-title: Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing publication-title: Remote Sens. doi: 10.3390/rs71114428 – volume: 38 start-page: 23 year: 2018 ident: ref_5 article-title: Sustainability of sugarcane production in Brazil. A review publication-title: Agron. Sustain. Dev. – ident: ref_21 doi: 10.3390/rs11192228 – ident: ref_27 doi: 10.3390/rs11151836 – ident: ref_41 – ident: ref_13 – ident: ref_38 – volume: 20 start-page: 896 year: 2018 ident: ref_9 article-title: Sugarcane yield mapping based on vehicle tracking publication-title: Precis. Agric. doi: 10.1007/s11119-018-9621-2 – ident: ref_45 – ident: ref_23 doi: 10.3390/rs11131569 – ident: ref_26 doi: 10.3390/rs12091456 – ident: ref_24 doi: 10.3390/rs11212496 – ident: ref_47 – volume: 138 start-page: 26 year: 2014 ident: ref_17 article-title: Remote sensing of crop residue and tillage practices: Present capabilities and future prospects publication-title: Soil Tillage Res. doi: 10.1016/j.still.2013.12.009 – ident: ref_34 doi: 10.1109/BIGSARDATA.2019.8858450 – ident: ref_50 doi: 10.1109/IGARSS.2009.5417646 – ident: ref_40 – volume: 10 start-page: 8899 year: 2010 ident: ref_12 article-title: Multitemporal Observations of Sugarcane by TerraSAR-X Images publication-title: Sensors doi: 10.3390/s101008899 – ident: ref_3 doi: 10.1109/IGARSS.2019.8898706 – volume: 35 start-page: 660 year: 1997 ident: ref_20 article-title: SAR Interferometry: A “Quick and Dirty” Coherence Estimator for Data Browsing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.581984 – volume: 434 start-page: 012065 year: 2018 ident: ref_51 article-title: Identification of sugarcane maturity scale based on RGB, Gabor feature extraction and Support Vector Machine publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/434/1/012065 – volume: 83 start-page: 195 year: 2002 ident: ref_15 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 97 start-page: 864 year: 2005 ident: ref_18 article-title: Remote Sensing the Spatial Distribution of Crop Residues publication-title: Agron. J. doi: 10.2134/agronj2003.0291 – ident: ref_11 doi: 10.3390/rs8060500 – ident: ref_33 doi: 10.3390/rs11070861 – volume: 150 start-page: 757 year: 2019 ident: ref_31 article-title: Convolutional Neural Network in the Recognition of Spatial Images of Sugarcane Crops in the Troncal Region of the Coast of Ecuador publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.02.001 – volume: 12 start-page: 738 year: 2018 ident: ref_49 article-title: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 8 start-page: 329 year: 2017 ident: ref_6 article-title: Multi-Objective Mathematical Model for the Optimal Time to Harvest Sugarcane publication-title: Appl. Math. doi: 10.4236/am.2017.83028 – volume: 7 start-page: 14482 year: 2015 ident: ref_30 article-title: Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil publication-title: Remote Sens. doi: 10.3390/rs71114482 – volume: 50 start-page: 663 year: 1969 ident: ref_14 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology doi: 10.2307/1936256 – volume: 58 start-page: 257 year: 1996 ident: ref_16 article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – ident: ref_25 doi: 10.3390/rs12101551 – volume: 213 start-page: 150 year: 2019 ident: ref_4 article-title: Modeling and solving a sugarcane harvest front scheduling problem publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.03.009 – ident: ref_36 – ident: ref_43 – ident: ref_22 doi: 10.3390/rs11161887 – ident: ref_35 doi: 10.3390/rs11222673 – volume: 8 start-page: 53 year: 2015 ident: ref_37 article-title: Characteristics of sugarcane production in the State of São Paulo, Brazil publication-title: Geosp. Space  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.3869443 | 
    
| Snippet | The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 4080 | 
    
| SubjectTerms | algorithms area Brazil fields harvest harvest date monitoring NDVI normalized difference vegetation index remote sensing Sentinel-1 Sentinel-2 SLC sugarcane synthetic aperture radar time series analysis  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9zBeGJ-iDJARe-HBa5M4jv2EWmBMSAzEqDSeorNjbxVVUnUJaPvruUvSUhBCSLxaF8mX-z7bv2PswDijIdWF8KlxQpo4CB3bRLhCGvAo9LGn1sD7E3U8k-_O0rOtV_x0rRJL8XnrpONxFguapzSK4lEsR5IwEJdFePmt7yUROppWUtHj3h2VYjY-YDuzk4-TLzRTbv11h0qaYHU_Wl3SSZJsUSC34lAL1_9LjrnblEu4-g6LxVa4OdpjsN5od8vk62FT20N3_RuG4_9wcpvd6nNRPumU5w674cu7bLcfi35xdY-97SyeWn-8Cvy0OUezgNJzmiiEDPB5yacruJ4v-BSjYcGrkn9Ytt1xDmXBTyef-Guo4T6bHb35_OpY9JMXhEuUqoUqQua1digqi_4PIg0yTRNQzuoopChFnyhZFCpIkBmWbB7NWlrIACDTGBUfsEFZlf4h4waXZVCJJ-QvYzLjxs56GYG0kQ7BD9mLtRxy18OS03SMRY7lCcks_ymzIXu-oV12YBx_pJqSODcUBKDdLlSr87y3x7ydveUx3wzkxgD5ihOr0Xs5zJisUUP2bK0MORocnaLg762ay5xqMsx6sXYdsoONlvxlP4_-jWyf3Yyplo9iESWP2aBeNf4JJjy1fdrr9A9jgvej priority: 102 providerName: Unpaywall  | 
    
| Title | Monitoring of Sugarcane Harvest in Brazil Based on Optical and SAR Data | 
    
| URI | https://www.proquest.com/docview/2511193026 https://www.mdpi.com/2072-4292/12/24/4080/pdf?version=1607864611 https://doaj.org/article/48602e085f0040acb823b8787c822b96  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwEB3xcYAL4mNXlF0qI7jsIaKJncQ-tkBBKyiIbiX2FI0dG5CqtCqtVuyvZ5yEUiS0e-EUxRpF1puxZ54dvQE4UkZJjGUe2FiZQKjIBTLSPDC5UGjJ6S3rjwauesnFQPy8i-8WWn35f8IqeeAKuOOySZKlwsD5eEOjZcS1pDAzlNq0KsW2W1ItkKlyD-YUWi1R6ZFy4vXHkyd_hyRK_ceFDFQK9b-rLtdmxRif_-BwuJBoupuwUVeIrF3NbAuWbLENa3Wz8ofnHTiv1qE_kGMjx_qzewpWLCzzfX7o4-yxYJ0J_n0csg7lqJyNCnY9Ls-sGRY567dv2SlO8QsMume_Ti6Cuh9CYHiSTIMkd6mV0hCAmnYlDCWKOOaYECihiwlbyxOR54kTKFIiUpYWm9CYImIqKVd9hZViVNhdYIqGhUu49XpcSqXKtIy2IkShQ-mcbcCPV4wyU4uF-54Vw4xIg8cze8OzAYdz23ElkfGhVcdDPbfwstblADk7q52d_c_ZDTh4dVRGy8DfbRC8o9lT5pkS1aLEKBtwNPfgP-az9xnz-QbrkeffYRSE_DusTCczu09FylQ3YVl2z5uw2j69uuzTs3PWu7ltllFKb4PeTfv3CxUr5pc | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9zBeGJ-iDJARe-HBa5M4jv2EWmBMSAzEqDSeorNjbxVVUnUJaPvruUvSUhBCSLxaF8mX-z7bv2PswDijIdWF8KlxQpo4CB3bRLhCGvAo9LGn1sD7E3U8k-_O0rOtV_x0rRJL8XnrpONxFguapzSK4lEsR5IwEJdFePmt7yUROppWUtHj3h2VYjY-YDuzk4-TLzRTbv11h0qaYHU_Wl3SSZJsUSC34lAL1_9LjrnblEu4-g6LxVa4OdpjsN5od8vk62FT20N3_RuG4_9wcpvd6nNRPumU5w674cu7bLcfi35xdY-97SyeWn-8Cvy0OUezgNJzmiiEDPB5yacruJ4v-BSjYcGrkn9Ytt1xDmXBTyef-Guo4T6bHb35_OpY9JMXhEuUqoUqQua1digqi_4PIg0yTRNQzuoopChFnyhZFCpIkBmWbB7NWlrIACDTGBUfsEFZlf4h4waXZVCJJ-QvYzLjxs56GYG0kQ7BD9mLtRxy18OS03SMRY7lCcks_ymzIXu-oV12YBx_pJqSODcUBKDdLlSr87y3x7ydveUx3wzkxgD5ihOr0Xs5zJisUUP2bK0MORocnaLg762ay5xqMsx6sXYdsoONlvxlP4_-jWyf3Yyplo9iESWP2aBeNf4JJjy1fdrr9A9jgvej | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+Sugarcane+Harvest+in+Brazil+Based+on+Optical+and+SAR+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Olena+Kavats&rft.au=Dmitriy+Khramov&rft.au=Kateryna+Sergieieva&rft.au=Volodymyr+Vasyliev&rft.date=2020-12-13&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=24&rft.spage=4080&rft_id=info:doi/10.3390%2Frs12244080&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48602e085f0040acb823b8787c822b96 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |