Monitoring of Sugarcane Harvest in Brazil Based on Optical and SAR Data

The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly available Synthetic Aperture Radar (SAR) and optical satellite data. Algorithm 1 uses the NDVI (Normalized Difference Vegetation Index) time seri...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 24; p. 4080
Main Authors Kavats, Olena, Khramov, Dmitriy, Sergieieva, Kateryna, Vasyliev, Volodymyr
Format Journal Article
LanguageEnglish
Published MDPI AG 13.12.2020
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs12244080

Cover

Abstract The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly available Synthetic Aperture Radar (SAR) and optical satellite data. Algorithm 1 uses the NDVI (Normalized Difference Vegetation Index) time series derived from Sentinel-2 data. Sharp and continuous decrease in the NDVI values is the main sign of sugarcane harvest. The NDVI time series allows the ability to determine most harvest dates. The best estimates of the sugarcane areas harvested per month have been obtained from March to August 2018 when cloudy pixel percentage is less than 45% of the image area. Algorithm 2 of the harvest monitoring uses the coherence time series derived from Sentinel-1 Single Look Complex (SLC) images and optical satellite data. Low coherence, demonstrating sharp growth upon the harvest completion, corresponds to the harvest period. The NDVI time series trends were used to refine the algorithm. It is supposed that the descending NDVI trend corresponds to harvest. The algorithms were used to identify the harvest dates and calculate the harvested areas of the reference sample of 574 sugarcane parcels with a total area of 3745 ha in the state of São Paulo, Brazil. The harvested areas identified by visual interpretation coincide with the optical-data algorithm (algorithm 1) by 97%; the coincidence with the algorithm based on SAR and optical data (algorithm 2) is 90%. The main practical applications of the algorithms are harvest monitoring and identification of the harvested fields to estimate the harvested area.
AbstractList The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly available Synthetic Aperture Radar (SAR) and optical satellite data. Algorithm 1 uses the NDVI (Normalized Difference Vegetation Index) time series derived from Sentinel-2 data. Sharp and continuous decrease in the NDVI values is the main sign of sugarcane harvest. The NDVI time series allows the ability to determine most harvest dates. The best estimates of the sugarcane areas harvested per month have been obtained from March to August 2018 when cloudy pixel percentage is less than 45% of the image area. Algorithm 2 of the harvest monitoring uses the coherence time series derived from Sentinel-1 Single Look Complex (SLC) images and optical satellite data. Low coherence, demonstrating sharp growth upon the harvest completion, corresponds to the harvest period. The NDVI time series trends were used to refine the algorithm. It is supposed that the descending NDVI trend corresponds to harvest. The algorithms were used to identify the harvest dates and calculate the harvested areas of the reference sample of 574 sugarcane parcels with a total area of 3745 ha in the state of São Paulo, Brazil. The harvested areas identified by visual interpretation coincide with the optical-data algorithm (algorithm 1) by 97%; the coincidence with the algorithm based on SAR and optical data (algorithm 2) is 90%. The main practical applications of the algorithms are harvest monitoring and identification of the harvested fields to estimate the harvested area.
Author Vasyliev, Volodymyr
Kavats, Olena
Khramov, Dmitriy
Sergieieva, Kateryna
Author_xml – sequence: 1
  givenname: Olena
  orcidid: 0000-0002-0172-7856
  surname: Kavats
  fullname: Kavats, Olena
– sequence: 2
  givenname: Dmitriy
  orcidid: 0000-0002-1737-7272
  surname: Khramov
  fullname: Khramov, Dmitriy
– sequence: 3
  givenname: Kateryna
  orcidid: 0000-0001-7345-2209
  surname: Sergieieva
  fullname: Sergieieva, Kateryna
– sequence: 4
  givenname: Volodymyr
  orcidid: 0000-0002-5211-9164
  surname: Vasyliev
  fullname: Vasyliev, Volodymyr
BookMark eNp9kFtLJDEQhYMoeJuX_QV5XJRZK5fuTh7VXXVgRNDd51CdTg8ZYjImPS7ur7fdEVcWsV6qKE59dTj7ZDum6Aj5wuCbEBpOcmGcSwkKtsgeh4ZPJdd8-928SyalLGEsIZgGuUcur1P0Q8o-Lmjq6d16gdlidPQK86MrA_WRnmX84wM9w-I6miK9WQ3eYqAYO3p3eku_44CHZKfHUNzktR-QXxc_fp5fTec3l7Pz0_nUiroepnXXN04pKxi0XeeQKZRVJbC2rWJ9pdE5Ucuuq3uJslFau0ZL2WKDiI0SIA7IbMPtEi7NKvt7zE8moTd_FykvDObRXnBGqhq4A1X1ABJw_MBFqxrVWMV5q-uRdbxhreMKn35jCG9ABuYlUvMv0lH9daNe5fSwHqMx975YF8KYVloXwyvGmBbAX8CwkdqcSsmuN9YPOPgUh4w-fEw_-u_kEyvPoNuT-Q
CitedBy_id crossref_primary_10_1016_j_compag_2022_107024
crossref_primary_10_3390_s23041833
crossref_primary_10_1016_j_rsase_2022_100749
crossref_primary_10_5194_essd_14_4397_2022
crossref_primary_10_3390_rs13204040
crossref_primary_10_3390_rs13152853
crossref_primary_10_1002_aepp_13393
crossref_primary_10_3390_agriengineering6040217
crossref_primary_10_3390_rs15245783
crossref_primary_10_3389_fpls_2022_949598
crossref_primary_10_1109_JSTARS_2024_3373489
crossref_primary_10_1111_poms_13967
crossref_primary_10_3390_rs14184540
crossref_primary_10_1007_s00704_024_05180_6
crossref_primary_10_1109_JSTARS_2024_3427127
Cites_doi 10.3390/rs12040615
10.3390/rs3122682
10.3390/rs12081313
10.1590/S0103-90162014000100001
10.1016/j.landusepol.2019.104190
10.3390/rs11091109
10.1109/IGARSS.2018.8518261
10.1007/978-981-15-0630-7_55
10.1088/1755-1315/126/1/012112
10.3390/rs71114428
10.3390/rs11192228
10.3390/rs11151836
10.1007/s11119-018-9621-2
10.3390/rs11131569
10.3390/rs12091456
10.3390/rs11212496
10.1016/j.still.2013.12.009
10.1109/BIGSARDATA.2019.8858450
10.1109/IGARSS.2009.5417646
10.3390/s101008899
10.1109/IGARSS.2019.8898706
10.1109/36.581984
10.1088/1757-899X/434/1/012065
10.1016/S0034-4257(02)00096-2
10.2134/agronj2003.0291
10.3390/rs8060500
10.3390/rs11070861
10.1016/j.procs.2019.02.001
10.4236/am.2017.83028
10.3390/rs71114482
10.2307/1936256
10.1016/S0034-4257(96)00067-3
10.3390/rs12101551
10.1016/j.ijpe.2019.03.009
10.3390/rs11161887
10.3390/rs11222673
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs12244080
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_48602e085f0040acb823b8787c822b96
10.3390/rs12244080
10_3390_rs12244080
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c366t-6df7e88c310bddea18a4553a6cb81f59aee364dd6f4a47899e7944ba7aaa78303
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Fri Oct 03 12:38:32 EDT 2025
Sun Oct 26 04:08:04 EDT 2025
Thu Sep 04 16:25:46 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Thu Oct 16 04:39:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-6df7e88c310bddea18a4553a6cb81f59aee364dd6f4a47899e7944ba7aaa78303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1737-7272
0000-0001-7345-2209
0000-0002-5211-9164
0000-0002-0172-7856
OpenAccessLink https://doaj.org/article/48602e085f0040acb823b8787c822b96
PQID 2511193026
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_48602e085f0040acb823b8787c822b96
unpaywall_primary_10_3390_rs12244080
proquest_miscellaneous_2511193026
crossref_citationtrail_10_3390_rs12244080
crossref_primary_10_3390_rs12244080
PublicationCentury 2000
PublicationDate 20201213
PublicationDateYYYYMMDD 2020-12-13
PublicationDate_xml – month: 12
  year: 2020
  text: 20201213
  day: 13
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Zheng (ref_17) 2014; 138
Rahmad (ref_51) 2018; 434
ref_13
ref_11
ref_10
Marin (ref_48) 2014; 71
Zaitunah (ref_44) 2018; 126
Cevallos (ref_31) 2019; 150
Wang (ref_29) 2019; 88
Sungnul (ref_6) 2017; 8
Morabito (ref_4) 2019; 213
Tuszynska (ref_19) 2018; 10
Momin (ref_9) 2018; 20
ref_25
ref_24
ref_23
ref_22
ref_21
Ghazvinei (ref_49) 2018; 12
Guarnieri (ref_20) 1997; 35
ref_28
ref_27
Schultz (ref_30) 2015; 7
ref_26
Aguiar (ref_8) 2011; 3
Gao (ref_16) 1996; 58
ref_36
ref_35
ref_34
ref_33
ref_39
ref_38
Carvalho (ref_5) 2018; 38
Mulianga (ref_32) 2015; 7
Baghdadi (ref_12) 2010; 10
Jordan (ref_14) 1969; 50
ref_47
ref_46
ref_45
ref_43
ref_42
ref_41
Huete (ref_15) 2002; 83
ref_40
ref_1
ref_3
ref_2
Nihei (ref_37) 2015; 8
Daughtry (ref_18) 2005; 97
ref_7
References_xml – ident: ref_10
  doi: 10.3390/rs12040615
– volume: 3
  start-page: 2682
  year: 2011
  ident: ref_8
  article-title: Remote Sensing Images in Support of Environmental Protocol: Monitoring the Sugarcane Harvest in São Paulo State, Brazil
  publication-title: Remote Sens.
  doi: 10.3390/rs3122682
– ident: ref_2
  doi: 10.3390/rs12081313
– volume: 71
  start-page: 1
  year: 2014
  ident: ref_48
  article-title: Process-based simple model for simulating sugarcane growth and production
  publication-title: Sci. Agric.
  doi: 10.1590/S0103-90162014000100001
– volume: 10
  start-page: 65
  year: 2018
  ident: ref_19
  article-title: A pilot study on determining approximate date of crop harvest on the basis of Sentinel-2 satellite imagery
  publication-title: Geoinf. Issues
– volume: 88
  start-page: 104190
  year: 2019
  ident: ref_29
  article-title: Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2019.104190
– ident: ref_39
– ident: ref_7
  doi: 10.3390/rs11091109
– ident: ref_46
  doi: 10.1109/IGARSS.2018.8518261
– ident: ref_42
– ident: ref_1
– ident: ref_28
  doi: 10.1007/978-981-15-0630-7_55
– volume: 126
  start-page: 1
  year: 2018
  ident: ref_44
  article-title: Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/126/1/012112
– volume: 7
  start-page: 14428
  year: 2015
  ident: ref_32
  article-title: Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs71114428
– volume: 38
  start-page: 23
  year: 2018
  ident: ref_5
  article-title: Sustainability of sugarcane production in Brazil. A review
  publication-title: Agron. Sustain. Dev.
– ident: ref_21
  doi: 10.3390/rs11192228
– ident: ref_27
  doi: 10.3390/rs11151836
– ident: ref_41
– ident: ref_13
– ident: ref_38
– volume: 20
  start-page: 896
  year: 2018
  ident: ref_9
  article-title: Sugarcane yield mapping based on vehicle tracking
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-018-9621-2
– ident: ref_45
– ident: ref_23
  doi: 10.3390/rs11131569
– ident: ref_26
  doi: 10.3390/rs12091456
– ident: ref_24
  doi: 10.3390/rs11212496
– ident: ref_47
– volume: 138
  start-page: 26
  year: 2014
  ident: ref_17
  article-title: Remote sensing of crop residue and tillage practices: Present capabilities and future prospects
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2013.12.009
– ident: ref_34
  doi: 10.1109/BIGSARDATA.2019.8858450
– ident: ref_50
  doi: 10.1109/IGARSS.2009.5417646
– ident: ref_40
– volume: 10
  start-page: 8899
  year: 2010
  ident: ref_12
  article-title: Multitemporal Observations of Sugarcane by TerraSAR-X Images
  publication-title: Sensors
  doi: 10.3390/s101008899
– ident: ref_3
  doi: 10.1109/IGARSS.2019.8898706
– volume: 35
  start-page: 660
  year: 1997
  ident: ref_20
  article-title: SAR Interferometry: A “Quick and Dirty” Coherence Estimator for Data Browsing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.581984
– volume: 434
  start-page: 012065
  year: 2018
  ident: ref_51
  article-title: Identification of sugarcane maturity scale based on RGB, Gabor feature extraction and Support Vector Machine
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/434/1/012065
– volume: 83
  start-page: 195
  year: 2002
  ident: ref_15
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 97
  start-page: 864
  year: 2005
  ident: ref_18
  article-title: Remote Sensing the Spatial Distribution of Crop Residues
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.0291
– ident: ref_11
  doi: 10.3390/rs8060500
– ident: ref_33
  doi: 10.3390/rs11070861
– volume: 150
  start-page: 757
  year: 2019
  ident: ref_31
  article-title: Convolutional Neural Network in the Recognition of Spatial Images of Sugarcane Crops in the Troncal Region of the Coast of Ecuador
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.02.001
– volume: 12
  start-page: 738
  year: 2018
  ident: ref_49
  article-title: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 8
  start-page: 329
  year: 2017
  ident: ref_6
  article-title: Multi-Objective Mathematical Model for the Optimal Time to Harvest Sugarcane
  publication-title: Appl. Math.
  doi: 10.4236/am.2017.83028
– volume: 7
  start-page: 14482
  year: 2015
  ident: ref_30
  article-title: Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil
  publication-title: Remote Sens.
  doi: 10.3390/rs71114482
– volume: 50
  start-page: 663
  year: 1969
  ident: ref_14
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 58
  start-page: 257
  year: 1996
  ident: ref_16
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– ident: ref_25
  doi: 10.3390/rs12101551
– volume: 213
  start-page: 150
  year: 2019
  ident: ref_4
  article-title: Modeling and solving a sugarcane harvest front scheduling problem
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2019.03.009
– ident: ref_36
– ident: ref_43
– ident: ref_22
  doi: 10.3390/rs11161887
– ident: ref_35
  doi: 10.3390/rs11222673
– volume: 8
  start-page: 53
  year: 2015
  ident: ref_37
  article-title: Characteristics of sugarcane production in the State of São Paulo, Brazil
  publication-title: Geosp. Space
SSID ssj0000331904
Score 2.3869443
Snippet The algorithms for determining sugarcane harvest dates are proposed; the algorithms allow the ability to monitor large areas and are based on the publicly...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4080
SubjectTerms algorithms
area
Brazil
fields
harvest
harvest date
monitoring
NDVI
normalized difference vegetation index
remote sensing
Sentinel-1
Sentinel-2
SLC
sugarcane
synthetic aperture radar
time series analysis
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9zBeGJ-iDJARe-HBa5M4jv2EWmBMSAzEqDSeorNjbxVVUnUJaPvruUvSUhBCSLxaF8mX-z7bv2PswDijIdWF8KlxQpo4CB3bRLhCGvAo9LGn1sD7E3U8k-_O0rOtV_x0rRJL8XnrpONxFguapzSK4lEsR5IwEJdFePmt7yUROppWUtHj3h2VYjY-YDuzk4-TLzRTbv11h0qaYHU_Wl3SSZJsUSC34lAL1_9LjrnblEu4-g6LxVa4OdpjsN5od8vk62FT20N3_RuG4_9wcpvd6nNRPumU5w674cu7bLcfi35xdY-97SyeWn-8Cvy0OUezgNJzmiiEDPB5yacruJ4v-BSjYcGrkn9Ytt1xDmXBTyef-Guo4T6bHb35_OpY9JMXhEuUqoUqQua1digqi_4PIg0yTRNQzuoopChFnyhZFCpIkBmWbB7NWlrIACDTGBUfsEFZlf4h4waXZVCJJ-QvYzLjxs56GYG0kQ7BD9mLtRxy18OS03SMRY7lCcks_ymzIXu-oV12YBx_pJqSODcUBKDdLlSr87y3x7ydveUx3wzkxgD5ihOr0Xs5zJisUUP2bK0MORocnaLg762ay5xqMsx6sXYdsoONlvxlP4_-jWyf3Yyplo9iESWP2aBeNf4JJjy1fdrr9A9jgvej
  priority: 102
  providerName: Unpaywall
Title Monitoring of Sugarcane Harvest in Brazil Based on Optical and SAR Data
URI https://www.proquest.com/docview/2511193026
https://www.mdpi.com/2072-4292/12/24/4080/pdf?version=1607864611
https://doaj.org/article/48602e085f0040acb823b8787c822b96
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwEB3xcYAL4mNXlF0qI7jsIaKJncQ-tkBBKyiIbiX2FI0dG5CqtCqtVuyvZ5yEUiS0e-EUxRpF1puxZ54dvQE4UkZJjGUe2FiZQKjIBTLSPDC5UGjJ6S3rjwauesnFQPy8i-8WWn35f8IqeeAKuOOySZKlwsD5eEOjZcS1pDAzlNq0KsW2W1ItkKlyD-YUWi1R6ZFy4vXHkyd_hyRK_ceFDFQK9b-rLtdmxRif_-BwuJBoupuwUVeIrF3NbAuWbLENa3Wz8ofnHTiv1qE_kGMjx_qzewpWLCzzfX7o4-yxYJ0J_n0csg7lqJyNCnY9Ls-sGRY567dv2SlO8QsMume_Ti6Cuh9CYHiSTIMkd6mV0hCAmnYlDCWKOOaYECihiwlbyxOR54kTKFIiUpYWm9CYImIqKVd9hZViVNhdYIqGhUu49XpcSqXKtIy2IkShQ-mcbcCPV4wyU4uF-54Vw4xIg8cze8OzAYdz23ElkfGhVcdDPbfwstblADk7q52d_c_ZDTh4dVRGy8DfbRC8o9lT5pkS1aLEKBtwNPfgP-az9xnz-QbrkeffYRSE_DusTCczu09FylQ3YVl2z5uw2j69uuzTs3PWu7ltllFKb4PeTfv3CxUr5pc
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9zBeGJ-iDJARe-HBa5M4jv2EWmBMSAzEqDSeorNjbxVVUnUJaPvruUvSUhBCSLxaF8mX-z7bv2PswDijIdWF8KlxQpo4CB3bRLhCGvAo9LGn1sD7E3U8k-_O0rOtV_x0rRJL8XnrpONxFguapzSK4lEsR5IwEJdFePmt7yUROppWUtHj3h2VYjY-YDuzk4-TLzRTbv11h0qaYHU_Wl3SSZJsUSC34lAL1_9LjrnblEu4-g6LxVa4OdpjsN5od8vk62FT20N3_RuG4_9wcpvd6nNRPumU5w674cu7bLcfi35xdY-97SyeWn-8Cvy0OUezgNJzmiiEDPB5yacruJ4v-BSjYcGrkn9Ytt1xDmXBTyef-Guo4T6bHb35_OpY9JMXhEuUqoUqQua1digqi_4PIg0yTRNQzuoopChFnyhZFCpIkBmWbB7NWlrIACDTGBUfsEFZlf4h4waXZVCJJ-QvYzLjxs56GYG0kQ7BD9mLtRxy18OS03SMRY7lCcks_ymzIXu-oV12YBx_pJqSODcUBKDdLlSr87y3x7ydveUx3wzkxgD5ihOr0Xs5zJisUUP2bK0MORocnaLg762ay5xqMsx6sXYdsoONlvxlP4_-jWyf3Yyplo9iESWP2aBeNf4JJjy1fdrr9A9jgvej
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+Sugarcane+Harvest+in+Brazil+Based+on+Optical+and+SAR+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Olena+Kavats&rft.au=Dmitriy+Khramov&rft.au=Kateryna+Sergieieva&rft.au=Volodymyr+Vasyliev&rft.date=2020-12-13&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=24&rft.spage=4080&rft_id=info:doi/10.3390%2Frs12244080&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48602e085f0040acb823b8787c822b96
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon