A Novel Approach for Colorization of a Grayscale Image using Soft Computing Techniques

Colorization of grayscale image is a process to convert a grayscale image into a color one. Few research works reported in literature on this but there is hardly any generalized method that successfully colorizes all types of grayscale image. This study proposes a novel grayscale image colorization...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multimedia data engineering & management Vol. 8; no. 4; pp. 19 - 43
Main Authors Hasnat, Abul, Halder, Santanu, Bhattacharjee, Debotosh, Nasipuri, Mita
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.10.2017
Subjects
Online AccessGet full text
ISSN1947-8534
1947-8542
DOI10.4018/IJMDEM.2017100102

Cover

Abstract Colorization of grayscale image is a process to convert a grayscale image into a color one. Few research works reported in literature on this but there is hardly any generalized method that successfully colorizes all types of grayscale image. This study proposes a novel grayscale image colorization method using a reference color image. It takes the grayscale image and the type of the query image as input. First, it selects reference image from color image database using histogram index of the query image and histogram index of luminance channel of color images of respective type. Once the reference image is selected, four features are extracted for each pixel of the luminance channel of the reference image. These extracted features as input and chrominance blue(Cb) value as target value forms the training dataset for Cb channel. Similarly training dataset for chrominance red(Cr) channel is also formed. These extracted features of the reference image and associated chrominance values are used to train two artificial neural network(ANN)- one for Cb and one for Cr channel. Then, for each pixel of the of query image, same four features are extracted and used as input to the trained ANN to predict the chrominance values of the query image. Thus predicted chrominance values along with the original luminance values of the query image are used to construct the colorized image. The experiment has been conducted on images collected from different standard image database i.e. FRAV2D, UCID.v2 and images captured using standard digital camera etc. These images are initially converted into grayscale images and then the colorization method was applied. For performance evaluation, PSNR between the original color image and newly colorized image is calculated. PSNR shows that the proposed method better colorizes than the recently reported methods in the literature. Beside this, “Colorization Turing test” was conducted asking human subject to choose the image (closer to the original color image) among the colorized images using proposed algorithm and recently reported methods. In 80% of cases colorized images using the proposed method got selected.
AbstractList Colorization of grayscale image is a process to convert a grayscale image into a color one. Few research works reported in literature on this but there is hardly any generalized method that successfully colorizes all types of grayscale image. This study proposes a novel grayscale image colorization method using a reference color image. It takes the grayscale image and the type of the query image as input. First, it selects reference image from color image database using histogram index of the query image and histogram index of luminance channel of color images of respective type. Once the reference image is selected, four features are extracted for each pixel of the luminance channel of the reference image. These extracted features as input and chrominance blue(Cb) value as target value forms the training dataset for Cb channel. Similarly training dataset for chrominance red(Cr) channel is also formed. These extracted features of the reference image and associated chrominance values are used to train two artificial neural network(ANN)- one for Cb and one for Cr channel. Then, for each pixel of the of query image, same four features are extracted and used as input to the trained ANN to predict the chrominance values of the query image. Thus predicted chrominance values along with the original luminance values of the query image are used to construct the colorized image. The experiment has been conducted on images collected from different standard image database i.e. FRAV2D, UCID.v2 and images captured using standard digital camera etc. These images are initially converted into grayscale images and then the colorization method was applied. For performance evaluation, PSNR between the original color image and newly colorized image is calculated. PSNR shows that the proposed method better colorizes than the recently reported methods in the literature. Beside this, “Colorization Turing test” was conducted asking human subject to choose the image (closer to the original color image) among the colorized images using proposed algorithm and recently reported methods. In 80% of cases colorized images using the proposed method got selected.
Audience Academic
Author Halder, Santanu
Hasnat, Abul
Bhattacharjee, Debotosh
Nasipuri, Mita
AuthorAffiliation Government College of Engineering & Leather Technology, Kolkata, India
Government College of Engineering & Textile Technology, Berhampore, India
Jadavpur University, Department of Computer Science and Engineering, Kolkata, India
AuthorAffiliation_xml – name: Government College of Engineering & Leather Technology, Kolkata, India
– name: Jadavpur University, Department of Computer Science and Engineering, Kolkata, India
– name: Government College of Engineering & Textile Technology, Berhampore, India
Author_xml – sequence: 1
  givenname: Abul
  surname: Hasnat
  fullname: Hasnat, Abul
  organization: Government College of Engineering & Textile Technology, Berhampore, India
– sequence: 2
  givenname: Santanu
  surname: Halder
  fullname: Halder, Santanu
  organization: Government College of Engineering & Leather Technology, Kolkata, India
– sequence: 3
  givenname: Debotosh
  surname: Bhattacharjee
  fullname: Bhattacharjee, Debotosh
  organization: Jadavpur University, Department of Computer Science and Engineering, Kolkata, India
– sequence: 4
  givenname: Mita
  surname: Nasipuri
  fullname: Nasipuri, Mita
  organization: Jadavpur University, Department of Computer Science and Engineering, Kolkata, India
BookMark eNp9kUtP4zAURi0EEo_hB7CzxAqJgl-xnWVVSimCYTHMbC0ntVOjNA52ggS_HpcCHWCYLBxbOp_vvT67YLPxjQHgAKMThrA8nV5en42vTwjCAiOEEdkAOzhnYiAzRjbf95Rtg_0Y71D6MiYEZjvgzxD-9A-mhsO2DV6Xc2h9gCNf--CedOd8A72FGk6Cfoylrg2cLnRlYB9dU8Ff3nYJXrR9tzzemnLeuPvexB9gy-o6mv3X_x74fT6-HV0Mrm4m09HwalBSzrsB56TIZaYJY8xqoRHnFlNKBM1tjrFADBVYamNsar4oZhkuuLSCy1nGC0kKugcOV_em5pd1O3Xn-9CkkorklDAsGUVrqkoDKNdY3wVdLlws1VBwlIlMcJKo47-oYjmhiWmJrpp3sdJ9jB9xvMLL4GMMxqo2uIUOjwojtdSiVlrUWkvKiE-Z0nUvr5wacvV_k0erpKvcesYvnGpnNrGTf7BJsnqTrJJk9Sb526KSPgN5DrUu
CitedBy_id crossref_primary_10_1007_s42044_024_00173_0
Cites_doi 10.1109/TIP.2013.2288929
10.1109/TIP.2005.864231
10.1007/978-3-319-46493-0_35
10.1109/INVENTIVE.2016.7823295
10.1145/566654.566576
10.4018/IJVAR.2017010106
10.1137/1.9780898718348
10.15388/Informatica.2014.25
10.1007/978-3-319-46487-9_40
10.1109/38.946629
10.1109/TIP.2007.903257
10.1145/1015706.1015780
ContentType Journal Article
Copyright COPYRIGHT 2017 IGI Global
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2017 IGI Global
– notice: Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/IJMDEM.2017100102
DatabaseName CrossRef
Gale Business Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1947-8542
EndPage 43
ExternalDocumentID A760575762
10_4018_IJMDEM_2017100102
vel_Approach_for_Coloriza10_4018_IJMDEM_20171001028
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
EJD
H13
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ABDBF
ABJCF
ACOJC
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
CTSEY
HCIFZ
HZ~
IAO
ITC
K7-
M7S
N95
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c366t-662b985a2444fa7a066f1332739f9117040b18aeef534bbd51b68f768d56b82b3
IEDL.DBID BENPR
ISSN 1947-8534
IngestDate Fri Jul 25 10:41:12 EDT 2025
Mon Oct 20 22:19:03 EDT 2025
Fri May 23 01:15:13 EDT 2025
Wed Oct 01 04:16:14 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Thu May 09 18:42:41 EDT 2019
Tue Jan 05 23:29:11 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-662b985a2444fa7a066f1332739f9117040b18aeef534bbd51b68f768d56b82b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2932418430
PQPubID 2045821
PageCount 25
ParticipantIDs crossref_primary_10_4018_IJMDEM_2017100102
igi_journals_vel_Approach_for_Coloriza10_4018_IJMDEM_20171001028
gale_businessinsightsgauss_A760575762
gale_infotracmisc_A760575762
proquest_journals_2932418430
crossref_citationtrail_10_4018_IJMDEM_2017100102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of multimedia data engineering & management
PublicationYear 2017
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJMDEM.2017100102-23
IJMDEM.2017100102-24
IJMDEM.2017100102-25
S. E.Umbaugh (IJMDEM.2017100102-22) 1998
G. D.Blasi (IJMDEM.2017100102-3) 2003
G.Schaefer (IJMDEM.2017100102-20) 2004
R. C.Gonzalez (IJMDEM.2017100102-8) 2010
IJMDEM.2017100102-18
IJMDEM.2017100102-12
IJMDEM.2017100102-10
IJMDEM.2017100102-16
J.Han (IJMDEM.2017100102-11) 2011
IJMDEM.2017100102-17
IJMDEM.2017100102-15
S.Haykin (IJMDEM.2017100102-13) 2001
IJMDEM.2017100102-2
E.Alpaydin (IJMDEM.2017100102-1) 2012
IJMDEM.2017100102-4
IJMDEM.2017100102-6
IJMDEM.2017100102-5
I.Ullah (IJMDEM.2017100102-21) 2012
IJMDEM.2017100102-7
A. K.Jain (IJMDEM.2017100102-14) 1988
IJMDEM.2017100102-0
R. C.Gonzalez (IJMDEM.2017100102-9) 2010
M. M.Sathik (IJMDEM.2017100102-19) 2010; 2
References_xml – ident: IJMDEM.2017100102-4
  doi: 10.1109/TIP.2013.2288929
– start-page: 472
  year: 2004
  ident: IJMDEM.2017100102-20
  article-title: UCID - An Uncompressed Colour Image Database.
  publication-title: Proc. of SPIE, Storage and Retrieval Methods and Applications for Multimedia
– ident: IJMDEM.2017100102-24
  doi: 10.1109/TIP.2005.864231
– year: 2010
  ident: IJMDEM.2017100102-8
  publication-title: Digital Image Processing
– ident: IJMDEM.2017100102-16
  doi: 10.1007/978-3-319-46493-0_35
– volume: 2
  start-page: 2820
  issue: 7
  year: 2010
  ident: IJMDEM.2017100102-19
  article-title: Feature Extraction on Colored X-Ray images by Bit-Plane Slicing Technique.
  publication-title: International Journal of Engineering Science and Technology
– ident: IJMDEM.2017100102-2
  doi: 10.1109/INVENTIVE.2016.7823295
– ident: IJMDEM.2017100102-10
– ident: IJMDEM.2017100102-23
  doi: 10.1145/566654.566576
– year: 2012
  ident: IJMDEM.2017100102-1
  publication-title: Introduction to machine learning
– ident: IJMDEM.2017100102-12
  doi: 10.4018/IJVAR.2017010106
– year: 2011
  ident: IJMDEM.2017100102-11
  publication-title: Data mining Concepts and Techniques
– ident: IJMDEM.2017100102-7
  doi: 10.1137/1.9780898718348
– year: 2010
  ident: IJMDEM.2017100102-9
  publication-title: Digital Image processing using MATLB. New Delhi, India
– year: 1988
  ident: IJMDEM.2017100102-14
  publication-title: Algorithms for Clustering Data
– ident: IJMDEM.2017100102-5
  doi: 10.15388/Informatica.2014.25
– start-page: 417
  year: 2012
  ident: IJMDEM.2017100102-21
  publication-title: Gender recognition from face images with local wld descriptor
– ident: IJMDEM.2017100102-25
  doi: 10.1007/978-3-319-46487-9_40
– ident: IJMDEM.2017100102-18
  doi: 10.1109/38.946629
– year: 2001
  ident: IJMDEM.2017100102-13
  publication-title: Neural Networks A comprehensive foundation
– ident: IJMDEM.2017100102-15
  doi: 10.1109/TIP.2007.903257
– ident: IJMDEM.2017100102-6
– year: 2003
  ident: IJMDEM.2017100102-3
  publication-title: Fast Colorization of Gray Images
– ident: IJMDEM.2017100102-0
– year: 1998
  ident: IJMDEM.2017100102-22
  publication-title: Computer vision and image Processing
– ident: IJMDEM.2017100102-17
  doi: 10.1145/1015706.1015780
SSID ssj0000547714
Score 2.021241
Snippet Colorization of grayscale image is a process to convert a grayscale image into a color one. Few research works reported in literature on this but there is...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Algorithms
Artificial neural networks
Color imagery
Colorization
Datasets
Digital cameras
Digital imaging
Equipment and supplies
Gray scale
Histograms
Image databases
Image processing
Logic
Luminance
Medical imaging equipment
Methods
Neural networks
Performance evaluation
Pixels
Queries
Soft computing
Title A Novel Approach for Colorization of a Grayscale Image using Soft Computing Techniques
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJMDEM.2017100102
https://www.proquest.com/docview/2932418430
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1947-8542
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000547714
  issn: 1947-8534
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1947-8542
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000547714
  issn: 1947-8534
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-a9GUv6z5Zuq6Isr0MTONIluSHsWWl6Qc0jK0dfROSLYXCFmd1Oth_v7tYaiilfTEYyZJ8J92HdLofwPvgyzxUWmSuIgizvFBZiZow47x0svC5GNV0d_hsKo8vxOllcbkB03QXhsIqk0xcCeq6qWiPfB_VEiobLfjw8-JPRqhRdLqaIDRshFaoP61SjPVgc0SZsfqw-fVw-u377a4LGihK5d1Rs0DxXHDRHXWim6H3T07P8O8p3oty3uRxqyUpqyiye1ezq3uCe6WNJs_gaTQj2bjj-3PY8PMXsJUgGlhcsS_h55hNm78ea8bc4QyNVHbQUNxddwGTNYFZdnRt_7XILs9OfqOEYRQOP2M_UEazrlF6PU_5XttXcDE5PD84ziKUQlZxKZeZlCNX6sKiMhfBKouGRkDvFG2XMpQEPiOGLtfW-4AUca4ucid1QFekLqTTI8dfQ3_ezP0bYJVTXBRBOKW8sJW1hDzEVZBaujrwcgDDRDNTxTzjBHfxy6C_QWQ2HZnNmswD-Hj7yaJLsvFY5Q_ECBNBOvHR0jZGO7M3bWvGSpIFiiJ-ADurerRQsf8Kl011p3gPGWniim3v92MWdRjAlzuVkF8m8csgv0zi14Oj1TiMNFXW7awn8_bjxW_hCbXVRQ_uQH95fePfoRW0dLvQ05Oj3TjB_wN5QAAI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED_t4wFe-EYUBliIvSBFa2LHSR4mKGOj3dYKQYf25tmJXU2CpiwdaP8cfxt3jb1qmtjbXiJFcZzozr7fnX2-H8BbZ4vYlbmITEkUZnGaRQUiYcR5YWRqY5FUdHZ4OJL9I7F_nB6vwN9wFobSKoNNXBjqqi5pjXwLYQnBJhe8-372KyLWKNpdDRQa2lMrVNuLEmP-YMeBvfiDIVyzPfiE-t5Mkr3d8U4_8iwDUcmlnEdSJqbIU404J5zONGKww8ANYb1wBfGyiK6Jc22tS7kwpkpjI3OHXnqVSpMnhmO_q7AuuCgw-Fv_uDv68vVylQcdoiyL261tgXCAXbRbqxjW5FuD_SFKm_LLqMZO7Jd2Ajh6iFg9nZxeA4oF-u09gHvebWW9dpw9hBU7fQT3AyUE8xbiMXzvsVH922JLX6ucoVPMdmrK82sPfLLaMc0-n-mLBoeHZYOfaNEYpd9P2DfEBNZ2SrfjUF-2eQJHtyLUp7A2raf2GbDSZFykTpgss0KXWhPTEc-czKWpHC860A0yU6Wva070Gj8UxjckZtWKWS3F3IF3l6_M2qIeNzXeJEUoTwqKl4aWTZqJPm8a1cskebwIKR3YWLQjw4DfL3Gallcev0FFKm8hmuvfUbPKdeDDlUaoLxX0pVBfKujrv3-b42-EobLsZzl5nt_8-DXc6Y-Hh-pwMDp4AXep3zZzcQPW5mfn9iV6YHPzyg9zBie3PbP-AfdEOnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+for+Colorization+of+a+Grayscale+Image+using+Soft+Computing+Techniques&rft.jtitle=International+journal+of+multimedia+data+engineering+%26+management&rft.au=Hasnat%2C+Abul&rft.au=Halder%2C+Santanu&rft.au=Bhattacharjee%2C+Debotosh&rft.au=Nasipuri%2C+Mita&rft.date=2017-10-01&rft.issn=1947-8534&rft.eissn=1947-8542&rft.volume=8&rft.issue=4&rft.spage=19&rft.epage=43&rft_id=info:doi/10.4018%2FIJMDEM.2017100102&rft.externalDocID=vel_Approach_for_Coloriza10_4018_IJMDEM_20171001028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-8534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-8534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-8534&client=summon