Improved accelerated PSO algorithm for mechanical engineering optimization problems

Flowchart of the improved accelerated particle swarm optimization. •A new improved accelerated particle swarm optimization algorithm is proposed (IAPSO).•Individual particles memories are incorporated in order to increase swarm diversity.•Balance between exploration and exploitation is controlled th...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 40; pp. 455 - 467
Main Author Ben Guedria, Najeh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2015.10.048

Cover

Abstract Flowchart of the improved accelerated particle swarm optimization. •A new improved accelerated particle swarm optimization algorithm is proposed (IAPSO).•Individual particles memories are incorporated in order to increase swarm diversity.•Balance between exploration and exploitation is controlled through two selected functions.•IAPSO outperforms several recent meta-heuristic algorithms, in terms of accuracy and convergence speed.•New optimal solutions, for some benchmark engineering problems, are obtained. This paper introduces an improved accelerated particle swarm optimization algorithm (IAPSO) to solve constrained nonlinear optimization problems with various types of design variables. The main improvements of the original algorithm are the incorporation of the individual particles memories, in order to increase swarm diversity, and the introduction of two selected functions to control balance between exploration and exploitation, during search process. These modifications are used to update particles positions of the swarm. Performance of the proposed algorithm is illustrated through six benchmark mechanical engineering design optimization problems. Comparison of obtained computation results with those of several recent meta-heuristic algorithms shows the superiority of the IAPSO in terms of accuracy and convergence speed.
AbstractList Flowchart of the improved accelerated particle swarm optimization. •A new improved accelerated particle swarm optimization algorithm is proposed (IAPSO).•Individual particles memories are incorporated in order to increase swarm diversity.•Balance between exploration and exploitation is controlled through two selected functions.•IAPSO outperforms several recent meta-heuristic algorithms, in terms of accuracy and convergence speed.•New optimal solutions, for some benchmark engineering problems, are obtained. This paper introduces an improved accelerated particle swarm optimization algorithm (IAPSO) to solve constrained nonlinear optimization problems with various types of design variables. The main improvements of the original algorithm are the incorporation of the individual particles memories, in order to increase swarm diversity, and the introduction of two selected functions to control balance between exploration and exploitation, during search process. These modifications are used to update particles positions of the swarm. Performance of the proposed algorithm is illustrated through six benchmark mechanical engineering design optimization problems. Comparison of obtained computation results with those of several recent meta-heuristic algorithms shows the superiority of the IAPSO in terms of accuracy and convergence speed.
Author Ben Guedria, Najeh
Author_xml – sequence: 1
  givenname: Najeh
  surname: Ben Guedria
  fullname: Ben Guedria, Najeh
  email: najeh.benguedria@istls.rnu.tn, najehbenguedria@gmail.com
  organization: Higher Institute of Transport and Logistics, University of Sousse, Tunisia
BookMark eNp9kM1qwzAQhEVJoUnaF-jJL2BXkm1Zhl5K6E8gkELas5DltaNgS0ESgfbpKzc99ZDL7jDwDbuzQDNjDSB0T3BGMGEPh0x6qzKKSRmNDBf8Cs0Jr2haM05mUZeMp0VdsBu08P6AI1RTPke79Xh09gRtIpWCAZwMUb_vtokceut02I9JZ10ygtpLo5UcEjC9NgBOmz6xx6BH_S2DtiaJQc0Ao79F150cPNz97SX6fHn-WL2lm-3revW0SVXOWEgZpjVjJKekaVgFdZFLDKStyrquiq7FpG1KKXFJKC2wYhR4x6FraCXzVpE4l4ifc5Wz3jvohNLh95TgpB4EwWIqRxzEVI6Yypm8WE5E6T_06PQo3ddl6PEMQXzqpMEJrzQYBa12oIJorb6E_wBrDIGK
CitedBy_id crossref_primary_10_1016_j_energy_2020_118602
crossref_primary_10_1155_2020_1450985
crossref_primary_10_3390_math12071115
crossref_primary_10_1007_s00607_024_01290_1
crossref_primary_10_1109_ACCESS_2021_3083528
crossref_primary_10_1016_j_cma_2023_116097
crossref_primary_10_3390_pr9050859
crossref_primary_10_1007_s00500_018_3273_z
crossref_primary_10_1038_s41598_025_91270_y
crossref_primary_10_3390_su15021644
crossref_primary_10_1007_s00500_021_06109_1
crossref_primary_10_1088_1742_6596_1879_3_032047
crossref_primary_10_1016_j_asoc_2017_09_021
crossref_primary_10_1007_s10462_024_10738_x
crossref_primary_10_1115_1_4036997
crossref_primary_10_1016_j_asoc_2016_12_030
crossref_primary_10_1016_j_jmapro_2020_04_085
crossref_primary_10_1016_j_cscm_2022_e01430
crossref_primary_10_32604_cmc_2024_057431
crossref_primary_10_1016_j_cie_2020_106560
crossref_primary_10_1016_j_asoc_2022_108640
crossref_primary_10_1002_int_22707
crossref_primary_10_1016_j_ins_2021_11_073
crossref_primary_10_1007_s11277_020_07184_7
crossref_primary_10_1016_j_apm_2019_09_053
crossref_primary_10_1016_j_apm_2020_12_021
crossref_primary_10_1016_j_eswa_2020_113897
crossref_primary_10_1051_e3sconf_202341005002
crossref_primary_10_3390_e18050185
crossref_primary_10_1155_2021_2298215
crossref_primary_10_1016_j_eswa_2023_120759
crossref_primary_10_1016_j_ins_2019_08_054
crossref_primary_10_1016_j_asoc_2017_07_023
crossref_primary_10_1155_2021_8548639
crossref_primary_10_1007_s40747_021_00292_2
crossref_primary_10_1007_s10845_018_1419_6
crossref_primary_10_1007_s00521_024_09533_0
crossref_primary_10_1016_j_cma_2024_116915
crossref_primary_10_1093_jcde_qwad037
crossref_primary_10_1007_s00500_024_09896_5
crossref_primary_10_1002_cpe_6310
crossref_primary_10_1109_ACCESS_2023_3257190
crossref_primary_10_1177_10996362211020388
crossref_primary_10_1016_j_asoc_2020_106833
crossref_primary_10_1007_s10462_022_10341_y
crossref_primary_10_1016_j_swevo_2019_04_011
crossref_primary_10_1109_ACCESS_2021_3113323
crossref_primary_10_1007_s12206_017_0906_6
crossref_primary_10_1016_j_eswa_2019_112882
crossref_primary_10_1016_j_eswa_2024_123517
crossref_primary_10_1038_s41598_025_93326_5
crossref_primary_10_1007_s11831_023_09944_7
crossref_primary_10_1080_01496395_2022_2098145
crossref_primary_10_1016_j_dajour_2022_100144
crossref_primary_10_1016_j_asoc_2018_06_028
crossref_primary_10_1007_s00366_021_01572_8
crossref_primary_10_1177_1687814018824930
crossref_primary_10_3390_math8101749
crossref_primary_10_3934_mbe_2023443
crossref_primary_10_1007_s12555_016_0338_6
crossref_primary_10_1155_2021_9210050
crossref_primary_10_1007_s00500_023_08202_z
crossref_primary_10_1109_ACCESS_2021_3133579
crossref_primary_10_1007_s00500_023_08011_4
crossref_primary_10_1109_ACCESS_2020_2994984
crossref_primary_10_1016_j_cma_2022_115734
crossref_primary_10_22201_fi_25940732e_2020_21n1_006
crossref_primary_10_1007_s40430_019_1792_x
crossref_primary_10_1155_2021_1743673
crossref_primary_10_1016_j_matcom_2022_12_022
crossref_primary_10_3390_en16073210
crossref_primary_10_1007_s00366_021_01431_6
crossref_primary_10_1016_j_optlastec_2023_110511
crossref_primary_10_1016_j_advengsoft_2022_103272
crossref_primary_10_1007_s00521_018_3587_x
crossref_primary_10_1016_j_apm_2020_03_024
crossref_primary_10_1007_s40996_024_01684_3
crossref_primary_10_3390_a10030076
crossref_primary_10_3390_biomimetics9100602
crossref_primary_10_1007_s00521_022_07369_0
crossref_primary_10_1049_iet_smt_2018_0046
crossref_primary_10_1109_ACCESS_2024_3460385
crossref_primary_10_1109_ACCESS_2020_2965598
crossref_primary_10_1016_j_asoc_2018_08_028
crossref_primary_10_1038_s41598_023_38778_3
crossref_primary_10_3233_JIFS_171288
crossref_primary_10_1007_s10922_019_09489_w
crossref_primary_10_1007_s10462_023_10463_x
crossref_primary_10_1007_s12597_016_0256_7
crossref_primary_10_1016_j_mtcomm_2023_106565
crossref_primary_10_1007_s12652_021_03372_w
crossref_primary_10_1007_s11063_022_10821_w
crossref_primary_10_1016_j_asoc_2019_105549
crossref_primary_10_3390_math10234555
crossref_primary_10_1016_j_eswa_2018_05_027
crossref_primary_10_1007_s13198_022_01824_w
crossref_primary_10_1007_s10845_022_01921_4
crossref_primary_10_1016_j_asoc_2022_108717
crossref_primary_10_1093_jcde_qwae054
crossref_primary_10_1007_s10845_021_01877_x
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1016_j_future_2024_04_010
crossref_primary_10_3390_app9122487
crossref_primary_10_46387_bjesr_1435356
crossref_primary_10_1109_TIE_2019_2934030
crossref_primary_10_1080_0952813X_2018_1467491
crossref_primary_10_1155_2020_9562828
crossref_primary_10_1155_2021_5519213
crossref_primary_10_3390_sym11111414
crossref_primary_10_1007_s00521_018_3785_6
crossref_primary_10_1016_j_asoc_2018_07_051
crossref_primary_10_1007_s40747_023_01243_9
crossref_primary_10_1016_j_swevo_2018_07_002
crossref_primary_10_3390_math10132211
crossref_primary_10_1016_j_asoc_2018_08_016
crossref_primary_10_1080_09540091_2019_1700911
crossref_primary_10_3390_biomimetics9040204
crossref_primary_10_1016_j_ijepes_2020_106739
crossref_primary_10_1016_j_ins_2022_11_167
crossref_primary_10_3390_math8112072
crossref_primary_10_1007_s00366_021_01571_9
crossref_primary_10_1016_j_jocs_2020_101086
crossref_primary_10_1109_ACCESS_2018_2801564
crossref_primary_10_1177_0954407018776745
crossref_primary_10_1016_j_asoc_2024_112019
crossref_primary_10_1049_iet_spr_2017_0532
crossref_primary_10_1007_s00500_023_09025_8
crossref_primary_10_1155_2022_5191758
crossref_primary_10_1016_j_simpat_2019_102026
crossref_primary_10_1016_j_ins_2016_02_054
crossref_primary_10_1016_j_asoc_2019_01_025
crossref_primary_10_1016_j_isci_2024_110561
crossref_primary_10_1007_s10957_023_02210_7
crossref_primary_10_1007_s11047_018_9712_z
crossref_primary_10_3390_info9010016
crossref_primary_10_1007_s12652_019_01265_7
crossref_primary_10_1016_j_apm_2019_09_016
crossref_primary_10_1007_s10489_022_03899_1
crossref_primary_10_1016_j_ymssp_2024_111964
crossref_primary_10_1016_j_mtcomm_2024_108667
crossref_primary_10_5937_jouproman2103089B
crossref_primary_10_1109_ACCESS_2019_2962906
crossref_primary_10_3390_math7030250
crossref_primary_10_1016_j_cma_2020_113609
crossref_primary_10_1109_ACCESS_2019_2948859
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_1080_0305215X_2021_1900154
crossref_primary_10_1177_1687814019830797
crossref_primary_10_1016_j_heliyon_2024_e40068
crossref_primary_10_1016_j_jclepro_2017_07_221
crossref_primary_10_1016_j_engappai_2023_106389
crossref_primary_10_1371_journal_pone_0261562
crossref_primary_10_1080_01605682_2022_2129488
crossref_primary_10_3390_en14248575
crossref_primary_10_1016_j_eswa_2020_114430
crossref_primary_10_3390_app11115144
crossref_primary_10_1007_s11831_022_09717_8
crossref_primary_10_1155_2017_2734362
crossref_primary_10_1177_09544070221150023
crossref_primary_10_1007_s00366_019_00723_2
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1007_s10489_021_02865_7
crossref_primary_10_1007_s00158_018_1978_3
crossref_primary_10_1016_j_asoc_2017_05_022
crossref_primary_10_1109_ACCESS_2019_2911629
crossref_primary_10_1109_ACCESS_2025_3543760
crossref_primary_10_1364_OE_502123
crossref_primary_10_1007_s00521_022_06906_1
crossref_primary_10_1016_j_compstruc_2021_106731
crossref_primary_10_3390_math9233011
crossref_primary_10_1093_jcde_qwac099
crossref_primary_10_1155_2019_2587373
crossref_primary_10_1080_0305215X_2023_2260992
crossref_primary_10_1038_s41598_024_79316_z
crossref_primary_10_12677_CSA_2020_108148
crossref_primary_10_1080_0952813X_2018_1509381
crossref_primary_10_1007_s44196_024_00503_x
crossref_primary_10_1016_j_scs_2024_105356
crossref_primary_10_1007_s10845_021_01771_6
crossref_primary_10_1016_j_asoc_2019_105866
crossref_primary_10_1007_s10586_016_0680_8
crossref_primary_10_1007_s11069_020_03892_2
Cites_doi 10.1016/j.eswa.2009.06.044
10.1016/j.asoc.2014.03.004
10.1080/03052159808941235
10.1126/science.220.4598.671
10.1007/s00158-007-0222-3
10.1016/j.patcog.2012.12.011
10.1007/s00158-008-0238-3
10.1016/j.asoc.2012.11.026
10.1016/S1474-0346(02)00011-3
10.1007/s00170-008-1453-1
10.1016/S0166-3615(99)00046-9
10.1007/s00366-011-0241-y
10.1016/j.amc.2006.07.105
10.1109/TEVC.2003.814902
10.1109/ENC.2005.32
10.1016/j.engappai.2006.03.003
10.1109/TSMCB.2006.873185
10.1109/4235.985692
10.1016/0094-114X(73)90018-9
10.1115/1.2919393
10.1016/j.amc.2006.07.134
10.1016/j.asoc.2014.04.039
10.1016/j.compstruc.2004.01.002
10.1109/TMAG.2006.892100
10.1016/j.compchemeng.2009.09.006
10.1080/03052150410001647966
10.1016/j.eswa.2008.02.039
10.1115/1.2912596
10.1016/j.asoc.2009.08.031
10.1115/1.3438995
10.1016/j.ins.2008.02.014
10.1109/MCI.2006.329691
10.1007/s00158-009-0454-5
10.1016/j.compstruc.2012.07.010
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2015.10.048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 467
ExternalDocumentID 10_1016_j_asoc_2015_10_048
S1568494615006900
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-6029661321bb67e943a0e1d759974fd01db5aa0512240c62e8f8efb27a3dc17a3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:10:15 EDT 2025
Wed Oct 01 02:32:05 EDT 2025
Fri Feb 23 02:28:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Engineering problems
Meta-heuristic
Particle swarm optimization
Memory
Diversity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-6029661321bb67e943a0e1d759974fd01db5aa0512240c62e8f8efb27a3dc17a3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2015_10_048
crossref_primary_10_1016_j_asoc_2015_10_048
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_10_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2016
2016-03-00
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jianjun, Jian (bib0445) 2009
Sadollah, Bahreininejad, Eskandar, Hamdi (bib0380) 2013; 13
Mezura-Montes, Hernández-Ocaña (bib0570) 2009
Worasucheep (bib0425) 2008
Kennedy, Eberhart (bib0345) 1995
Husseinzadeh Kashan (bib0370) 2011; 43
He, Wang (bib0405) 2007; 20
Dorigo, Birattari, Stützle (bib0350) 2006; 1
Golinski (bib0560) 1973; 8
Quaranta, Marano, Greco, Monti (bib0470) 2014; 22
Eberhart, Kennedy (bib0340) 1995
Davoodi, Hagh, Zadeh (bib0465) 2014; 21
Yang (bib0490) 2010
Lampinen (bib0540) 2002
Yuan, Qian (bib0525) 2010; 34
Shi, Eberhart (bib0390) 1999
Mezura-Montes, Coello Coello, Velázquez-Reyes (bib0610) 2006
Sandgren (bib0545) 1990; 112
Clerc, Kennedy (bib0395) 2002; 6
Ku, Rao, Chen (bib0565) 1998; 30
Osyczka (bib0630) 2002
Kirkpatrick, Gelatt, Vecchi (bib0325) 1983; 220
Zavala, Aguirre, Villa Diharce (bib0400) 2005; 2005
Yang (bib0365) 2009; vol. 5792
Kim, Chong, Park, Lowther (bib0575) 2007; 43
Mezura-Montes, Coello Coello (bib0600) 2005; 3789
Parsopoulos, Vrahatis (bib0475) 2010
Yang, Deb, Fong (bib0495) 2012
Deb, Srinivasan (bib0635) 2006
Aguirre, Zavala, Villa, Hern, Mu (bib0415) 2007; 2007
Zahara, Kao (bib0450) 2009; 36
Nouaouria, Boukadoum, Proulx (bib0485) 2013; 46
Wang, Yin (bib0435) 2008; 37
Hasançebi, Azad (bib0500) 2012; 2
Ragsdell, Phillips (bib0510) 1976; 98
Wang, Chen, Ong (bib0625) 2005; 3612
Wang, Li (bib0585) 2010; 41
Coello Coello, Montes (bib0520) 2002; 16
Lee, Geem (bib0355) 2004; 82
He, Wang (bib0420) 2007; 186
Shi, Eberhart (bib0385) 1998
Arora (bib0615) 2012
Mezura-Montes, Velazquez-Reyes, Coello Coello (bib0605) 2006
Rao, Savsani, Vakharia (bib0640) 2011; 43
Coello Coello (bib0515) 2000; 41
Eskandar, Sadollah, Bahreininejad, Hamdi (bib0375) 2012; 110–111
Holland (bib0330) 1975
Ray, Liew (bib0535) 2003; 7
Goldberg (bib0335) 1989
Karaboga, Basturk (bib0360) 2007; 4529
Huang, Wang, He (bib0555) 2007; 186
Cagnina, Esquivel, Coello Coello (bib0430) 2008; 32
Gandomi, Yang, Alavi (bib0620) 2013; 29
Coello Coello, Landa-Becerra (bib0580) 2003
Zhang, Luo, Wang (bib0590) 2008; 178
Wang, Cai, Zhou, Fan (bib0595) 2009; 37
Liu, Cai, Wang (bib0455) 2010; 10
Own, Me (bib0480) 2012; 4
Michalewicz (bib0505) 1995
Kannan, Kramer (bib0550) 1994; 116
Coello Coello, Becerra (bib0530) 2004; 36
a Krohling, Coelho (bib0410) 2006; 36
Coelho (bib0460) 2010; 37
Yıldız (bib0440) 2009; 40
Zavala (10.1016/j.asoc.2015.10.048_bib0400) 2005; 2005
Lee (10.1016/j.asoc.2015.10.048_bib0355) 2004; 82
Mezura-Montes (10.1016/j.asoc.2015.10.048_bib0570) 2009
He (10.1016/j.asoc.2015.10.048_bib0405) 2007; 20
Davoodi (10.1016/j.asoc.2015.10.048_bib0465) 2014; 21
Yang (10.1016/j.asoc.2015.10.048_bib0495) 2012
Yıldız (10.1016/j.asoc.2015.10.048_bib0440) 2009; 40
Own (10.1016/j.asoc.2015.10.048_bib0480) 2012; 4
Sadollah (10.1016/j.asoc.2015.10.048_bib0380) 2013; 13
Lampinen (10.1016/j.asoc.2015.10.048_bib0540) 2002
Zahara (10.1016/j.asoc.2015.10.048_bib0450) 2009; 36
Coello Coello (10.1016/j.asoc.2015.10.048_bib0515) 2000; 41
Yuan (10.1016/j.asoc.2015.10.048_bib0525) 2010; 34
Mezura-Montes (10.1016/j.asoc.2015.10.048_bib0605) 2006
Coello Coello (10.1016/j.asoc.2015.10.048_bib0580) 2003
Kennedy (10.1016/j.asoc.2015.10.048_bib0345) 1995
Parsopoulos (10.1016/j.asoc.2015.10.048_bib0475) 2010
Jianjun (10.1016/j.asoc.2015.10.048_bib0445) 2009
Gandomi (10.1016/j.asoc.2015.10.048_bib0620) 2013; 29
Sandgren (10.1016/j.asoc.2015.10.048_bib0545) 1990; 112
Cagnina (10.1016/j.asoc.2015.10.048_bib0430) 2008; 32
Ku (10.1016/j.asoc.2015.10.048_bib0565) 1998; 30
Zhang (10.1016/j.asoc.2015.10.048_bib0590) 2008; 178
Mezura-Montes (10.1016/j.asoc.2015.10.048_bib0600) 2005; 3789
Worasucheep (10.1016/j.asoc.2015.10.048_bib0425) 2008
Shi (10.1016/j.asoc.2015.10.048_bib0390) 1999
Goldberg (10.1016/j.asoc.2015.10.048_bib0335) 1989
Huang (10.1016/j.asoc.2015.10.048_bib0555) 2007; 186
Hasançebi (10.1016/j.asoc.2015.10.048_bib0500) 2012; 2
Coello Coello (10.1016/j.asoc.2015.10.048_bib0520) 2002; 16
Shi (10.1016/j.asoc.2015.10.048_bib0385) 1998
Liu (10.1016/j.asoc.2015.10.048_bib0455) 2010; 10
Husseinzadeh Kashan (10.1016/j.asoc.2015.10.048_bib0370) 2011; 43
Mezura-Montes (10.1016/j.asoc.2015.10.048_bib0610) 2006
Ray (10.1016/j.asoc.2015.10.048_bib0535) 2003; 7
Kim (10.1016/j.asoc.2015.10.048_bib0575) 2007; 43
Eskandar (10.1016/j.asoc.2015.10.048_bib0375) 2012; 110–111
Coello Coello (10.1016/j.asoc.2015.10.048_bib0530) 2004; 36
He (10.1016/j.asoc.2015.10.048_bib0420) 2007; 186
Quaranta (10.1016/j.asoc.2015.10.048_bib0470) 2014; 22
Wang (10.1016/j.asoc.2015.10.048_bib0595) 2009; 37
Wang (10.1016/j.asoc.2015.10.048_bib0435) 2008; 37
Kannan (10.1016/j.asoc.2015.10.048_bib0550) 1994; 116
Coelho (10.1016/j.asoc.2015.10.048_bib0460) 2010; 37
Wang (10.1016/j.asoc.2015.10.048_bib0625) 2005; 3612
Dorigo (10.1016/j.asoc.2015.10.048_bib0350) 2006; 1
Nouaouria (10.1016/j.asoc.2015.10.048_bib0485) 2013; 46
Osyczka (10.1016/j.asoc.2015.10.048_bib0630) 2002
Deb (10.1016/j.asoc.2015.10.048_bib0635) 2006
Clerc (10.1016/j.asoc.2015.10.048_bib0395) 2002; 6
Wang (10.1016/j.asoc.2015.10.048_bib0585) 2010; 41
a Krohling (10.1016/j.asoc.2015.10.048_bib0410) 2006; 36
Ragsdell (10.1016/j.asoc.2015.10.048_bib0510) 1976; 98
Holland (10.1016/j.asoc.2015.10.048_bib0330) 1975
Kirkpatrick (10.1016/j.asoc.2015.10.048_bib0325) 1983; 220
Eberhart (10.1016/j.asoc.2015.10.048_bib0340) 1995
Karaboga (10.1016/j.asoc.2015.10.048_bib0360) 2007; 4529
Michalewicz (10.1016/j.asoc.2015.10.048_bib0505) 1995
Golinski (10.1016/j.asoc.2015.10.048_bib0560) 1973; 8
Aguirre (10.1016/j.asoc.2015.10.048_bib0415) 2007; 2007
Yang (10.1016/j.asoc.2015.10.048_bib0490) 2010
Arora (10.1016/j.asoc.2015.10.048_bib0615) 2012
Rao (10.1016/j.asoc.2015.10.048_bib0640) 2011; 43
Yang (10.1016/j.asoc.2015.10.048_bib0365) 2009; vol. 5792
References_xml – year: 2010
  ident: bib0490
  article-title: Engineering Optimization: An Introduction with Metaheuristic Applications
– start-page: 218
  year: 2002
  ident: bib0630
  article-title: Evolutionary Algorithms for Single and Multicriteria Design Optimization: Studies in Fuzzyness and Soft Computing
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: bib0455
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput. J.
– volume: 36
  start-page: 3880
  year: 2009
  end-page: 3886
  ident: bib0450
  article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Syst. Appl.
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0340
  article-title: A new optimizer using particle swarm theory
  publication-title: MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci.
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: bib0515
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– volume: 82
  start-page: 781
  year: 2004
  end-page: 798
  ident: bib0355
  article-title: A new structural optimization method based on the harmony search algorithm
  publication-title: Comput. Struct.
– volume: 8
  start-page: 419
  year: 1973
  end-page: 436
  ident: bib0560
  article-title: An adaptive optimization system applied to machine synthesis
  publication-title: Mech. Mach. Theory
– volume: 40
  start-page: 617
  year: 2009
  end-page: 628
  ident: bib0440
  article-title: A novel particle swarm optimization approach for product design and manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 149
  year: 2003
  end-page: 156
  ident: bib0580
  article-title: Engineering Optimization Using a Simple Evolutionary Algorithm
– year: 2009
  ident: bib0445
  article-title: A modified particle swarm optimization for practical engineering optimization
  publication-title: 2009 Fifth Int. Conf. Nat. Comput., vol. 3
– start-page: 1468
  year: 2002
  end-page: 1473
  ident: bib0540
  article-title: A constraint handling approach for the differential evolution algorithm
  publication-title: IEEE Proc. 2002 Congr. Evol. Comput. CEC’02 (Cat. No.02TH8600)
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0385
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE Int. Conf. Evol. Comput. Proceedings. IEEE World Congr. Comput. Intell. (Cat. No.98TH8360)
– volume: 41
  start-page: 947
  year: 2010
  end-page: 963
  ident: bib0585
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct. Multidiscip. Optim.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: bib0380
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput. J.
– start-page: 1945
  year: 1999
  end-page: 1950
  ident: bib0390
  article-title: Empirical study of particle swarm optimization
  publication-title: Proc. 1999 Congr. Evol. Comput.
– volume: 98
  start-page: 1021
  year: 1976
  end-page: 1025
  ident: bib0510
  article-title: Optimal design of a class of welded structures using geometric programming
  publication-title: J. Eng. Ind.
– volume: 4529
  start-page: 789
  year: 2007
  end-page: 798
  ident: bib0360
  article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization
  publication-title: LNAI
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib0325
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0395
  article-title: The particle swarm – explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 37
  start-page: 1676
  year: 2010
  end-page: 1683
  ident: bib0460
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 479
  year: 2012
  end-page: 487
  ident: bib0500
  article-title: An efficient metaheuristic algorithm for engineering optimization: SPOT
  publication-title: Int. J. Optim. Civ. Eng.
– start-page: 25
  year: 2006
  end-page: 32
  ident: bib0605
  article-title: Modified differential evolution for constrained optimization
  publication-title: IEEE Int. Conf. Evol. Comput.
– volume: 186
  start-page: 1407
  year: 2007
  end-page: 1422
  ident: bib0420
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Appl. Math. Comput.
– volume: 2007
  year: 2007
  ident: bib0415
  article-title: COPSO: constrained optimization via PSO algorithm
  publication-title: Statistics (Berl)
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: bib0535
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
– year: 1975
  ident: bib0330
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
– start-page: 135
  year: 1995
  end-page: 155
  ident: bib0505
  article-title: A survey of constraint handling techniques in evolutionary computation methods
  publication-title: Proceedings of the 4th Annual Conference on Evolutionary Programming
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0345
  article-title: Particle swarm optimization, neural networks
  publication-title: Proceedings., IEEE Int. Conf. 4, vol. 4
– volume: 2005
  start-page: 282
  year: 2005
  end-page: 289
  ident: bib0400
  article-title: Particle evolutionary swarm optimization algorithm (PESO)
  publication-title: Proc. Mex. Int. Conf. Comput. Sci.
– volume: 3612
  start-page: 582
  year: 2005
  end-page: 591
  ident: bib0625
  article-title: Unified particle swarm optimization for solving constrained engineering optimization problems
  publication-title: Adv. Nat. Comput. Lect. Notes Comput. Sci. Vol.
– volume: 178
  start-page: 3043
  year: 2008
  end-page: 3074
  ident: bib0590
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inf. Sci. (NY).
– volume: 3789
  start-page: 652
  year: 2005
  end-page: 662
  ident: bib0600
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
  publication-title: MICAI 2005
– start-page: 131
  year: 2006
  end-page: 139
  ident: bib0610
  article-title: Increasing successful offspring and diversity in differential evolution for engineering design
  publication-title: Proc. Adaptive Computing in Design and Manufacture (ACDM 2006)
– volume: 21
  start-page: 171
  year: 2014
  end-page: 179
  ident: bib0465
  article-title: A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems
  publication-title: Appl. Soft Comput.
– start-page: 1629
  year: 2006
  end-page: 1636
  ident: bib0635
  article-title: Innovization
  publication-title: Proc. 8th Annu. Conf. Genet. Evol. Comput. – GECCO '06
– start-page: 8
  year: 2008
  end-page: 11
  ident: bib0425
  article-title: Solving Constrained Engineering Optimization Problems by the Constrained PSO-DD
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: bib0375
  article-title: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: bib0405
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
– year: 2009
  ident: bib0570
  article-title: Modified Bacterial Foraging Optimization for Engineering Design
  publication-title: Intelligent Engineering Systems Through Artificial Neural Networks
– volume: 30
  start-page: 1
  year: 1998
  end-page: 23
  ident: bib0565
  article-title: Taguchi-aided search method for design optimization of engineering systems
  publication-title: Eng. Optim.
– volume: 36
  start-page: 1407
  year: 2006
  end-page: 1416
  ident: bib0410
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man. Cybern. B. Cybern.
– volume: 37
  start-page: 131
  year: 2008
  end-page: 147
  ident: bib0435
  article-title: A ranking selection-based particle swarm optimizer for engineering design optimization problems
  publication-title: Struct. Multidiscip. Optim.
– volume: 46
  start-page: 2028
  year: 2013
  end-page: 2044
  ident: bib0485
  article-title: Particle swarm classification: a survey and positioning
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 319
  year: 2008
  end-page: 326
  ident: bib0430
  article-title: Solving engineering optimization problems with the simple constrained particle swarm optimizer
  publication-title: Informatica
– volume: 36
  start-page: 219
  year: 2004
  end-page: 236
  ident: bib0530
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optim.
– volume: 37
  start-page: 395
  year: 2009
  end-page: 413
  ident: bib0595
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
– volume: 186
  start-page: 340
  year: 2007
  end-page: 356
  ident: bib0555
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Appl. Math. Comput.
– volume: vol. 5792
  start-page: 169
  year: 2009
  end-page: 178
  ident: bib0365
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 43
  start-page: 1769
  year: 2011
  end-page: 1792
  ident: bib0370
  article-title: An efficient algorithm for constrained global optimization and application to mechanical engineering design: league championship algorithm (LCA)
  publication-title: Comput. Des.
– start-page: 12
  year: 2012
  ident: bib0495
  article-title: Accelerated particle swarm optimization and support vector machine for business optimization and applications
  publication-title: Netw. Digit. Technol.
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: bib0545
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0640
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Des.
– volume: 34
  start-page: 36
  year: 2010
  end-page: 41
  ident: bib0525
  article-title: A hybrid genetic algorithm for twice continuously differentiable NLP problems
  publication-title: Comput. Chem. Eng.
– year: 2012
  ident: bib0615
  article-title: Introduction to Optimum Design
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: bib0520
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inf.
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: bib0550
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
– year: 2010
  ident: bib0475
  article-title: Particle swarm optimization and intelligence: advances and applications
  publication-title: Inf. Sci. Ref.
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: bib0350
  article-title: Ant colony optimization artificial ants as a computational intelligence technique
  publication-title: IEEE Comput. Intell. Mag.
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: bib0620
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– year: 1989
  ident: bib0335
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 4
  start-page: 1181
  year: 2012
  end-page: 1197
  ident: bib0480
  article-title: A survey of the state of the art in particle swarm optimization
  publication-title: Res. J. Appl. Sci. Eng. Technol.
– volume: 22
  start-page: 458
  year: 2014
  end-page: 464
  ident: bib0470
  article-title: Parametric identification of seismic isolators using differential evolution and particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 1565
  year: 2007
  end-page: 1568
  ident: bib0575
  article-title: Differential evolution strategy for constrained global optimization and application to practical engineering problems
  publication-title: IEEE Trans. Magn.
– volume: 2007
  year: 2007
  ident: 10.1016/j.asoc.2015.10.048_bib0415
  article-title: COPSO: constrained optimization via PSO algorithm
  publication-title: Statistics (Berl)
– year: 2009
  ident: 10.1016/j.asoc.2015.10.048_bib0445
  article-title: A modified particle swarm optimization for practical engineering optimization
– volume: 37
  start-page: 1676
  year: 2010
  ident: 10.1016/j.asoc.2015.10.048_bib0460
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.044
– year: 1989
  ident: 10.1016/j.asoc.2015.10.048_bib0335
– volume: 21
  start-page: 171
  year: 2014
  ident: 10.1016/j.asoc.2015.10.048_bib0465
  article-title: A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.004
– volume: 30
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.asoc.2015.10.048_bib0565
  article-title: Taguchi-aided search method for design optimization of engineering systems
  publication-title: Eng. Optim.
  doi: 10.1080/03052159808941235
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.asoc.2015.10.048_bib0325
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 37
  start-page: 131
  year: 2008
  ident: 10.1016/j.asoc.2015.10.048_bib0435
  article-title: A ranking selection-based particle swarm optimizer for engineering design optimization problems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0222-3
– volume: 46
  start-page: 2028
  year: 2013
  ident: 10.1016/j.asoc.2015.10.048_bib0485
  article-title: Particle swarm classification: a survey and positioning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.12.011
– volume: 37
  start-page: 395
  year: 2009
  ident: 10.1016/j.asoc.2015.10.048_bib0595
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0238-3
– volume: 13
  start-page: 2592
  year: 2013
  ident: 10.1016/j.asoc.2015.10.048_bib0380
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 16
  start-page: 193
  year: 2002
  ident: 10.1016/j.asoc.2015.10.048_bib0520
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/S1474-0346(02)00011-3
– volume: 40
  start-page: 617
  year: 2009
  ident: 10.1016/j.asoc.2015.10.048_bib0440
  article-title: A novel particle swarm optimization approach for product design and manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-008-1453-1
– volume: 41
  start-page: 113
  year: 2000
  ident: 10.1016/j.asoc.2015.10.048_bib0515
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 29
  start-page: 17
  year: 2013
  ident: 10.1016/j.asoc.2015.10.048_bib0620
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– start-page: 218
  year: 2002
  ident: 10.1016/j.asoc.2015.10.048_bib0630
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.asoc.2015.10.048_bib0640
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Des.
– volume: 186
  start-page: 340
  year: 2007
  ident: 10.1016/j.asoc.2015.10.048_bib0555
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.105
– start-page: 1629
  year: 2006
  ident: 10.1016/j.asoc.2015.10.048_bib0635
  article-title: Innovization
– volume: 3789
  start-page: 652
  year: 2005
  ident: 10.1016/j.asoc.2015.10.048_bib0600
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
  publication-title: Lect. Notes Artif. Int.
– volume: 7
  start-page: 386
  year: 2003
  ident: 10.1016/j.asoc.2015.10.048_bib0535
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– volume: 2
  start-page: 479
  year: 2012
  ident: 10.1016/j.asoc.2015.10.048_bib0500
  article-title: An efficient metaheuristic algorithm for engineering optimization: SPOT
  publication-title: Int. J. Optim. Civ. Eng.
– volume: 2005
  start-page: 282
  year: 2005
  ident: 10.1016/j.asoc.2015.10.048_bib0400
  article-title: Particle evolutionary swarm optimization algorithm (PESO)
  publication-title: Proc. Mex. Int. Conf. Comput. Sci.
  doi: 10.1109/ENC.2005.32
– volume: 20
  start-page: 89
  year: 2007
  ident: 10.1016/j.asoc.2015.10.048_bib0405
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.03.003
– volume: 36
  start-page: 1407
  year: 2006
  ident: 10.1016/j.asoc.2015.10.048_bib0410
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man. Cybern. B. Cybern.
  doi: 10.1109/TSMCB.2006.873185
– year: 2010
  ident: 10.1016/j.asoc.2015.10.048_bib0490
– volume: 3612
  start-page: 582
  year: 2005
  ident: 10.1016/j.asoc.2015.10.048_bib0625
  article-title: Unified particle swarm optimization for solving constrained engineering optimization problems
  publication-title: Adv. Nat. Comput. Lect. Notes Comput. Sci. Vol.
– volume: 6
  start-page: 58
  year: 2002
  ident: 10.1016/j.asoc.2015.10.048_bib0395
  article-title: The particle swarm – explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– year: 1975
  ident: 10.1016/j.asoc.2015.10.048_bib0330
– volume: 4529
  start-page: 789
  year: 2007
  ident: 10.1016/j.asoc.2015.10.048_bib0360
  article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization
  publication-title: LNAI
– start-page: 149
  year: 2003
  ident: 10.1016/j.asoc.2015.10.048_bib0580
– volume: 8
  start-page: 419
  year: 1973
  ident: 10.1016/j.asoc.2015.10.048_bib0560
  article-title: An adaptive optimization system applied to machine synthesis
  publication-title: Mech. Mach. Theory
  doi: 10.1016/0094-114X(73)90018-9
– volume: 116
  start-page: 405
  year: 1994
  ident: 10.1016/j.asoc.2015.10.048_bib0550
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 186
  start-page: 1407
  year: 2007
  ident: 10.1016/j.asoc.2015.10.048_bib0420
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.134
– year: 2012
  ident: 10.1016/j.asoc.2015.10.048_bib0615
– volume: 43
  start-page: 1769
  year: 2011
  ident: 10.1016/j.asoc.2015.10.048_bib0370
  article-title: An efficient algorithm for constrained global optimization and application to mechanical engineering design: league championship algorithm (LCA)
  publication-title: Comput. Des.
– start-page: 69
  year: 1998
  ident: 10.1016/j.asoc.2015.10.048_bib0385
  article-title: A modified particle swarm optimizer
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2015.10.048_bib0345
  article-title: Particle swarm optimization, neural networks
– volume: 22
  start-page: 458
  year: 2014
  ident: 10.1016/j.asoc.2015.10.048_bib0470
  article-title: Parametric identification of seismic isolators using differential evolution and particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.04.039
– start-page: 1945
  year: 1999
  ident: 10.1016/j.asoc.2015.10.048_bib0390
  article-title: Empirical study of particle swarm optimization
– volume: 82
  start-page: 781
  year: 2004
  ident: 10.1016/j.asoc.2015.10.048_bib0355
  article-title: A new structural optimization method based on the harmony search algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.01.002
– volume: 43
  start-page: 1565
  year: 2007
  ident: 10.1016/j.asoc.2015.10.048_bib0575
  article-title: Differential evolution strategy for constrained global optimization and application to practical engineering problems
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2006.892100
– start-page: 25
  year: 2006
  ident: 10.1016/j.asoc.2015.10.048_bib0605
  article-title: Modified differential evolution for constrained optimization
– volume: 32
  start-page: 319
  year: 2008
  ident: 10.1016/j.asoc.2015.10.048_bib0430
  article-title: Solving engineering optimization problems with the simple constrained particle swarm optimizer
  publication-title: Informatica
– volume: 34
  start-page: 36
  year: 2010
  ident: 10.1016/j.asoc.2015.10.048_bib0525
  article-title: A hybrid genetic algorithm for twice continuously differentiable NLP problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.09.006
– volume: 4
  start-page: 1181
  issue: 9
  year: 2012
  ident: 10.1016/j.asoc.2015.10.048_bib0480
  article-title: A survey of the state of the art in particle swarm optimization
  publication-title: Res. J. Appl. Sci. Eng. Technol.
– start-page: 135
  year: 1995
  ident: 10.1016/j.asoc.2015.10.048_bib0505
  article-title: A survey of constraint handling techniques in evolutionary computation methods
– start-page: 8
  year: 2008
  ident: 10.1016/j.asoc.2015.10.048_bib0425
– start-page: 1468
  year: 2002
  ident: 10.1016/j.asoc.2015.10.048_bib0540
  article-title: A constraint handling approach for the differential evolution algorithm
– volume: 36
  start-page: 219
  year: 2004
  ident: 10.1016/j.asoc.2015.10.048_bib0530
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optim.
  doi: 10.1080/03052150410001647966
– volume: 36
  start-page: 3880
  year: 2009
  ident: 10.1016/j.asoc.2015.10.048_bib0450
  article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.039
– volume: 112
  start-page: 223
  year: 1990
  ident: 10.1016/j.asoc.2015.10.048_bib0545
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912596
– volume: 10
  start-page: 629
  year: 2010
  ident: 10.1016/j.asoc.2015.10.048_bib0455
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2009.08.031
– volume: 98
  start-page: 1021
  issue: 3
  year: 1976
  ident: 10.1016/j.asoc.2015.10.048_bib0510
  article-title: Optimal design of a class of welded structures using geometric programming
  publication-title: J. Eng. Ind.
  doi: 10.1115/1.3438995
– start-page: 12
  year: 2012
  ident: 10.1016/j.asoc.2015.10.048_bib0495
  article-title: Accelerated particle swarm optimization and support vector machine for business optimization and applications
  publication-title: Netw. Digit. Technol.
– volume: 178
  start-page: 3043
  year: 2008
  ident: 10.1016/j.asoc.2015.10.048_bib0590
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inf. Sci. (NY).
  doi: 10.1016/j.ins.2008.02.014
– year: 2010
  ident: 10.1016/j.asoc.2015.10.048_bib0475
  article-title: Particle swarm optimization and intelligence: advances and applications
  publication-title: Inf. Sci. Ref.
– volume: 1
  start-page: 28
  year: 2006
  ident: 10.1016/j.asoc.2015.10.048_bib0350
  article-title: Ant colony optimization artificial ants as a computational intelligence technique
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– start-page: 131
  year: 2006
  ident: 10.1016/j.asoc.2015.10.048_bib0610
  article-title: Increasing successful offspring and diversity in differential evolution for engineering design
– volume: vol. 5792
  start-page: 169
  year: 2009
  ident: 10.1016/j.asoc.2015.10.048_bib0365
  article-title: Firefly algorithms for multimodal optimization
– volume: 41
  start-page: 947
  year: 2010
  ident: 10.1016/j.asoc.2015.10.048_bib0585
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0454-5
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2015.10.048_bib0340
  article-title: A new optimizer using particle swarm theory
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.asoc.2015.10.048_bib0375
  article-title: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– year: 2009
  ident: 10.1016/j.asoc.2015.10.048_bib0570
  article-title: Modified Bacterial Foraging Optimization for Engineering Design
SSID ssj0016928
Score 2.5539298
Snippet Flowchart of the improved accelerated particle swarm optimization. •A new improved accelerated particle swarm optimization algorithm is proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 455
SubjectTerms Diversity
Engineering problems
Memory
Meta-heuristic
Particle swarm optimization
Title Improved accelerated PSO algorithm for mechanical engineering optimization problems
URI https://dx.doi.org/10.1016/j.asoc.2015.10.048
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3SZtNk93kWIqlPqjFWugt7Cta6QutV3-7M8mmKkgPXhKy7EL4djMzX_hmhpBLGxgWGN3ylFRAUFpSeeD0mJcYFUeZryAkz6t99nlvFN6Oo3GFdMpcGJRVOttf2PTcWruRpkOzuZxMmkNgHnGYhFjRHMvtIm8PQ4FdDBqfa5kH40neXxUnezjbJc4UGi8JCKC8K2qgwgt7AP3lnH44nO4e2XGRIm0XL7NPKnZ-QHbLLgzUfZSHZFj8F7CGSq3BiWDtB0MHwwcqp88L4P4vMwqRKZ1ZTPLFPaH2uwghXYDNmLlkTOray7wfkVH3-qnT81yrBE-3OF953A-AtwCzZEpxYRMA3bfMiCgBvpAZnxkVSQkfIHpwzQMbZ7HNVCBky2gG12NSnS_m9oRQkUVcxdpXwMVCzYW0IjGhEDLgsIkqqRFWYpRqV0cc21lM01Iw9poiriniimOAa41crdcsiyoaG2dHJfTpr7OQgpnfsO70n-vOyDY88UJZdk6qq7cPewGhxkrV87NUJ1vtzuP9AO83d73-F0wl1O8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHthQ2rxsJyOqqAqUgtRW6hb5FSjqS1BWfjt3jVNAQgwsGRxbij7bd_dFd98RcmFDE4RGR56SCghKJJUHTi_wUqMSlvsKQvKl2meXtwfx7ZANK6RZ1sJgWqWz_YVNX1prN9JwaDbmo1GjB8wjidMYFc1Rbhd4-1rMQoEMrP6xyvMIeLpssIqzPZzuKmeKJC8JEGB-F6tjihc2AfrNO33zOK1tsulCRXpVfM0OqdjpLtkq2zBQdyv3SK_4MWANlVqDF0HxB0Mfew9Ujp9mQP6fJxRCUzqxWOWLm0LtlwohnYHRmLhqTOr6y7ztk0Hrut9se65Xgqcjzhce90MgLkAtA6W4sCmg7tvACJYCYciNHxjFpIQbiC5c89AmeWJzFQoZGR3A84BUp7OpPSRU5IyrRPsKyFisuZBWpCYWQoYcdlGlNRKUGGXaCYljP4txVmaMvWSIa4a44hjgWiOXqzXzQkbjz9mshD77cRgysPN_rDv657pzst7u33eyzk337phswBtepJmdkOri9d2eQtyxUGfLc_UJue_U7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+accelerated+PSO+algorithm+for+mechanical+engineering+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Ben+Guedria%2C+Najeh&rft.date=2016-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=40&rft.spage=455&rft.epage=467&rft_id=info:doi/10.1016%2Fj.asoc.2015.10.048&rft.externalDocID=S1568494615006900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon