Constraints on beta functions in field theories

The \beta β -functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry and locality are generated under the renormalization group flow, and the exact renormalization group flow is characterized by the \beta β -fun...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 12; no. 2; p. 046
Main Authors Ma, Han, Lee, Sung-Sik
Format Journal Article
LanguageEnglish
Published SciPost 01.02.2022
Online AccessGet full text
ISSN2542-4653
2542-4653
DOI10.21468/SciPostPhys.12.2.046

Cover

Abstract The \beta β -functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry and locality are generated under the renormalization group flow, and the exact renormalization group flow is characterized by the \beta β -functions defined in the infinite dimensional space of couplings. In this paper, we show that the renormalization group flow is highly constrained so that the \beta β -functions defined in a measure zero subspace of couplings completely determine the \beta β -functions in the entire space of couplings. We provide a quantum renormalization group-based algorithm for reconstructing the full \beta β -functions from the \beta β -functions defined in the subspace. As examples, we derive the full \beta β -functions for the O(N) O ( N ) vector model and the O_L(N) \times O_R(N) O L ( N ) × O R ( N ) matrix model entirely from the \beta β -functions defined in the subspace of single-trace couplings.
AbstractList The \beta β -functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry and locality are generated under the renormalization group flow, and the exact renormalization group flow is characterized by the \beta β -functions defined in the infinite dimensional space of couplings. In this paper, we show that the renormalization group flow is highly constrained so that the \beta β -functions defined in a measure zero subspace of couplings completely determine the \beta β -functions in the entire space of couplings. We provide a quantum renormalization group-based algorithm for reconstructing the full \beta β -functions from the \beta β -functions defined in the subspace. As examples, we derive the full \beta β -functions for the O(N) O ( N ) vector model and the O_L(N) \times O_R(N) O L ( N ) × O R ( N ) matrix model entirely from the \beta β -functions defined in the subspace of single-trace couplings.
The $\beta$-functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry and locality are generated under the renormalization group flow, and the exact renormalization group flow is characterized by the $\beta$-functions defined in the infinite dimensional space of couplings. In this paper, we show that the renormalization group flow is highly constrained so that the $\beta$-functions defined in a measure zero subspace of couplings completely determine the $\beta$-functions in the entire space of couplings. We provide a quantum renormalization group-based algorithm for reconstructing the full $\beta$-functions from the $\beta$-functions defined in the subspace. As examples, we derive the full $\beta$-functions for the $O(N)$ vector model and the $O_L(N) \times O_R(N)$ matrix model entirely from the $\beta$-functions defined in the subspace of single-trace couplings.
ArticleNumber 046
Author Ma, Han
Lee, Sung-Sik
Author_xml – sequence: 1
  givenname: Han
  surname: Ma
  fullname: Ma, Han
  organization: Perimeter Institute
– sequence: 2
  givenname: Sung-Sik
  surname: Lee
  fullname: Lee, Sung-Sik
  organization: McMaster University, Perimeter Institute
BookMark eNqFkF1LwzAUQIMoOOd-gtA_0C03X23xSYYfg4ED9TmkaeIyalOSDNm_t9tEhj74dC_3cs7DuULnne8MQjeApwSYKGcv2q18TKv1Lk6BTMkUM3GGRoQzkjPB6fnJfokmMW4wxgSgAsFHaDb3XUxBuS7FzHdZbZLK7LbTyQ2PzHWZdaZtsrQ2PjgTr9GFVW00k-85Rm8P96_zp3z5_LiY3y1zTYVIucBYMGEbXKmaUUONoQIKUmhTlYXFpW0UYK4o1A3mthSgS1aSpjCYV0KJmo7R4uhtvNrIPrgPFXbSKycPBx_epQrJ6dZIANtQWnDAoFlRF7WlmGk67MpqImBwiaNr2_Vq96na9kcIWB4qyqhdP1Tsh4oSiCRyqDiA_Ajq4GMMxv7lTuqfcre_OO2S2hfdl27_ob8A2UeQNA
CitedBy_id crossref_primary_10_1103_PhysRevD_108_024054
crossref_primary_10_21468_SciPostPhys_15_3_111
crossref_primary_10_1103_PhysRevE_111_015304
Cites_doi 10.1088/1126-6708/2009/10/079
10.1103/PhysRev.95.1300
10.1007/BF01649434
10.1088/0305-4470/30/13/019
10.1103/PhysRevD.95.066003
10.1007/jhep06(2011)031
10.1007/jhep10(2018)108
10.1016/0370-2693(88)90054-8
10.1007/jhep06(2020)070
10.1002/prop.201400007
10.1016/0550-3213(84)90287-6
10.1007/JHEP06(2011)031
10.1007/JHEP09(2019)055
10.1007/jhep09(2016)044
10.1016/0375-9601(79)90567-x
10.1007/jhep10(2012)160
10.1103/PhysRevD.2.1541
10.1016/0370-2693(93)90726-X
10.1016/0550-3213(91)80030-P
10.1007/jhep01(2014)076
10.1016/s0370-2693(98)01270-2
10.1007/978-3-319-31352-8_4
10.1063/1.59653
10.1103/PhysicsPhysiqueFizika.2.263
10.1103/RevModPhys.47.773
10.1103/PhysRevD.68.044011
10.1103/PhysRevD.83.071701
10.1103/physrevx.7.031051
10.1142/S0217751X95001273
10.1016/j.nuclphysb.2012.04.023
10.21468/scipostphys.5.5.050
10.1088/0305-4470/36/8/305
10.1007/JHEP08(2011)051
10.1016/s0370-2693(98)00377-3
10.1103/PhysRevD.80.125005
10.1016/j.physrep.2014.12.003
10.1016/S0550-3213(02)00257-2
10.4310/atmp.1998.v2.n2.a2
10.1063/1.532860
10.1088/0305-4470/21/22/015
10.1088/0264-9381/19/22/306
10.1007/JHEP12(2011)099
10.1088/1126-6708/2000/08/003
https://doi.org/10.1016/j.nuclphysb.2013.12.002
10.1103/PhysRevD.89.106012
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.21468/SciPostPhys.12.2.046
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_11fd3375101c47b7bf304c3c47afc261
10.21468/scipostphys.12.2.046
10_21468_SciPostPhys_12_2_046
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ADTOC
UNPAY
ID FETCH-LOGICAL-c366t-600646fd09ab43e3ee361727ce987f08fda105a31bd05f861c8482d7e0596a6b3
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Fri Oct 03 12:43:43 EDT 2025
Sun Oct 26 04:16:35 EDT 2025
Tue Jul 01 03:21:56 EDT 2025
Thu Apr 24 23:09:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-600646fd09ab43e3ee361727ce987f08fda105a31bd05f861c8482d7e0596a6b3
OpenAccessLink https://doaj.org/article/11fd3375101c47b7bf304c3c47afc261
ParticipantIDs doaj_primary_oai_doaj_org_article_11fd3375101c47b7bf304c3c47afc261
unpaywall_primary_10_21468_scipostphys_12_2_046
crossref_primary_10_21468_SciPostPhys_12_2_046
crossref_citationtrail_10_21468_SciPostPhys_12_2_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2022
Publisher SciPost
Publisher_xml – name: SciPost
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref23
  doi: 10.1088/1126-6708/2009/10/079
– ident: ref1
  doi: 10.1103/PhysRev.95.1300
– ident: ref4
  doi: 10.1007/BF01649434
– ident: ref12
  doi: 10.1088/0305-4470/30/13/019
– ident: ref31
  doi: 10.1103/PhysRevD.95.066003
– ident: ref37
  doi: 10.1007/jhep06(2011)031
– ident: ref44
  doi: 10.1007/jhep10(2018)108
– ident: ref9
  doi: 10.1016/0370-2693(88)90054-8
– ident: ref28
  doi: 10.1007/jhep06(2020)070
– ident: ref27
  doi: 10.1002/prop.201400007
– ident: ref6
  doi: 10.1016/0550-3213(84)90287-6
– ident: ref24
  doi: 10.1007/JHEP06(2011)031
– ident: ref13
  doi: 10.1007/JHEP09(2019)055
– ident: ref29
  doi: 10.1007/jhep09(2016)044
– ident: ref39
  doi: 10.1016/0375-9601(79)90567-x
– ident: ref14
  doi: 10.1007/jhep10(2012)160
– ident: ref3
  doi: 10.1103/PhysRevD.2.1541
– ident: ref7
  doi: 10.1016/0370-2693(93)90726-X
– ident: ref8
  doi: 10.1016/0550-3213(91)80030-P
– ident: ref15
  doi: 10.1007/jhep01(2014)076
– ident: ref20
  doi: 10.1016/s0370-2693(98)01270-2
– ident: ref26
  doi: 10.1007/978-3-319-31352-8_4
– ident: ref17
  doi: 10.1063/1.59653
– ident: ref2
  doi: 10.1103/PhysicsPhysiqueFizika.2.263
– ident: ref5
  doi: 10.1103/RevModPhys.47.773
– ident: ref32
  doi: 10.1103/PhysRevD.68.044011
– ident: ref33
  doi: 10.1103/PhysRevD.83.071701
– ident: ref43
  doi: 10.1103/physrevx.7.031051
– ident: ref35
  doi: 10.1142/S0217751X95001273
– ident: ref36
  doi: 10.1016/j.nuclphysb.2012.04.023
– ident: ref45
  doi: 10.21468/scipostphys.5.5.050
– ident: ref41
  doi: 10.1088/0305-4470/36/8/305
– ident: ref25
  doi: 10.1007/JHEP08(2011)051
– ident: ref18
  doi: 10.1016/s0370-2693(98)00377-3
– ident: ref42
  doi: 10.1103/PhysRevD.80.125005
– ident: ref11
  doi: 10.1016/j.physrep.2014.12.003
– ident: ref16
  doi: 10.1016/S0550-3213(02)00257-2
– ident: ref19
  doi: 10.4310/atmp.1998.v2.n2.a2
– ident: ref38
  doi: 10.1063/1.532860
– ident: ref40
  doi: 10.1088/0305-4470/21/22/015
– ident: ref22
  doi: 10.1088/0264-9381/19/22/306
– ident: ref10
  doi: 10.1007/JHEP12(2011)099
– ident: ref21
  doi: 10.1088/1126-6708/2000/08/003
– ident: ref30
  doi: https://doi.org/10.1016/j.nuclphysb.2013.12.002
– ident: ref34
  doi: 10.1103/PhysRevD.89.106012
SSID ssj0002119165
Score 2.2229688
Snippet The \beta β -functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry...
The $\beta$-functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 046
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mhogP_hYnKn3wtVubpGn7OMUxBIcPTuZTSdIExNEN1yH615tLuzH1QfZWSq9JL9fed-ndfQDXIuZGMap8FcnAZ0YKX5BU-tTINDAipMxRJzwM-WDE7sfRuAHRshYGK1Gnda0BpiljZVDXmjlS12JOJO7dkQ7-l5zlZgtaPLIQvAmt0fCx94JEchEjPvYMq6p1Kvn6prN1-R9-yLXr34WdRTETnx9iMlnzMf19eF7OrkoteessStlRX78aN248_QPYq1Gn16vM5BAaujiCbZf9qebH0EXaTkcWUc69aeFJXQoPPZ4zSu-18Fyim-eqHm1ofQKj_t3T7cCvmRR8RTkvfY7Ig5s8SIVkVFOtqUMuSqdJbILE5MLiLEFDmQeRSXioEpaQPNZIziO4pKfQLKaFPgMvJiRULE8YkYIlJhA6CRUGujaWMRGN28CWes1U3WYcH2CS2XDD6SNb00cWkoxkVh9t6KzEZlWfjf8EbnDRVhdjm2x3wqo-q986G96YnNIYvzuKxTKWhgZMUXssjLKxYxu6qyX_O-ya2ayGPd9Y4gKa5ftCX1rsUsqr2lK_AX2U8Gs
  priority: 102
  providerName: Unpaywall
Title Constraints on beta functions in field theories
URI https://scipost.org/10.21468/SciPostPhys.12.2.046/pdf
https://doaj.org/article/11fd3375101c47b7bf304c3c47afc261
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2542-4653
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002119165
  issn: 2542-4653
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2542-4653
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002119165
  issn: 2542-4653
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yEfVB_MT5MfLga9c2SZP0UcUxBIcPDuZTSdIEhNEN1yH-9-bSOgo-7MW3Uhquubv27hfu7ofQnRLcGUZNZDKdRMxpFSmS64g6nSdOpZQF6oSXCR9P2fMsm3WovqAmrBkP3CguTlNXUirAdQwTWmjnAbih_lo5Qxrgk8i8A6bgHxzmlvGsadkB7moZ-28F-G-hsBIOAMkwgaS3E4zCzP5DtL-ulur7S83nnUAzOkZHbYaI75s3O0E7tjpFe6FS06zOUAwUm4HYoV7hRYW1rRWG6BQcCH9UOBSl4dCh6GHwOZqOnt4ex1HLehAZynkdccgSuCuTXGlGLbWWhizD2FwKl0hXKp8TKZrqMsmc5KmRTJJSWCDSUVzTC9SrFpW9RFgQ4pVWSka0YtIlysrUACj1uMNlVPQR-91-YdqR4LCBeeGhQdBa0dFakZKCFF5rfTTcLFs2MzG2LXgA3W4ehpHW4YY3dNEauthm6D6KN5b5KxY6mL3YZVfs1X-IvUYHBDoeQqH2DerVn2t76_OQWg-Cyw3Q7nTyev_-A--F3KE
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mhogP_hYnKn3wtVubpGn7OMUxBIcPTuZTSdIExNEN1yH615tLuzH1QfZWSq9JL9fed-ndfQDXIuZGMap8FcnAZ0YKX5BU-tTINDAipMxRJzwM-WDE7sfRuAHRshYGK1Gnda0BpiljZVDXmjlS12JOJO7dkQ7-l5zlZgtaPLIQvAmt0fCx94JEchEjPvYMq6p1Kvn6prN1-R9-yLXr34WdRTETnx9iMlnzMf19eF7OrkoteessStlRX78aN248_QPYq1Gn16vM5BAaujiCbZf9qebH0EXaTkcWUc69aeFJXQoPPZ4zSu-18Fyim-eqHm1ofQKj_t3T7cCvmRR8RTkvfY7Ig5s8SIVkVFOtqUMuSqdJbILE5MLiLEFDmQeRSXioEpaQPNZIziO4pKfQLKaFPgMvJiRULE8YkYIlJhA6CRUGujaWMRGN28CWes1U3WYcH2CS2XDD6SNb00cWkoxkVh9t6KzEZlWfjf8EbnDRVhdjm2x3wqo-q986G96YnNIYvzuKxTKWhgZMUXssjLKxYxu6qyX_O-ya2ayGPd9Y4gKa5ftCX1rsUsqr2lK_AX2U8Gs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+beta+functions+in+field+theories&rft.jtitle=SciPost+physics&rft.au=Han+Ma%2C+Sung-Sik+Lee&rft.date=2022-02-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=12&rft.issue=2&rft.spage=046&rft_id=info:doi/10.21468%2FSciPostPhys.12.2.046&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_11fd3375101c47b7bf304c3c47afc261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon