Constraints on beta functions in field theories
The \beta β -functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry and locality are generated under the renormalization group flow, and the exact renormalization group flow is characterized by the \beta β -fun...
Saved in:
| Published in | SciPost physics Vol. 12; no. 2; p. 046 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
SciPost
01.02.2022
|
| Online Access | Get full text |
| ISSN | 2542-4653 2542-4653 |
| DOI | 10.21468/SciPostPhys.12.2.046 |
Cover
| Abstract | The
\beta
β
-functions
describe how couplings run under the renormalization group flow in field
theories. In general, all couplings that respect the symmetry and
locality are generated under the renormalization group flow, and the
exact renormalization group flow is characterized by the
\beta
β
-functions
defined in the infinite dimensional space of couplings. In this paper,
we show that the renormalization group flow is highly constrained so
that the
\beta
β
-functions
defined in a measure zero subspace of couplings completely determine the
\beta
β
-functions
in the entire space of couplings. We provide a quantum renormalization
group-based algorithm for reconstructing the full
\beta
β
-functions
from the
\beta
β
-functions
defined in the subspace. As examples, we derive the full
\beta
β
-functions
for the
O(N)
O
(
N
)
vector model and the
O_L(N) \times O_R(N)
O
L
(
N
)
×
O
R
(
N
)
matrix model entirely from the
\beta
β
-functions
defined in the subspace of single-trace couplings. |
|---|---|
| AbstractList | The
\beta
β
-functions
describe how couplings run under the renormalization group flow in field
theories. In general, all couplings that respect the symmetry and
locality are generated under the renormalization group flow, and the
exact renormalization group flow is characterized by the
\beta
β
-functions
defined in the infinite dimensional space of couplings. In this paper,
we show that the renormalization group flow is highly constrained so
that the
\beta
β
-functions
defined in a measure zero subspace of couplings completely determine the
\beta
β
-functions
in the entire space of couplings. We provide a quantum renormalization
group-based algorithm for reconstructing the full
\beta
β
-functions
from the
\beta
β
-functions
defined in the subspace. As examples, we derive the full
\beta
β
-functions
for the
O(N)
O
(
N
)
vector model and the
O_L(N) \times O_R(N)
O
L
(
N
)
×
O
R
(
N
)
matrix model entirely from the
\beta
β
-functions
defined in the subspace of single-trace couplings. The $\beta$-functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry and locality are generated under the renormalization group flow, and the exact renormalization group flow is characterized by the $\beta$-functions defined in the infinite dimensional space of couplings. In this paper, we show that the renormalization group flow is highly constrained so that the $\beta$-functions defined in a measure zero subspace of couplings completely determine the $\beta$-functions in the entire space of couplings. We provide a quantum renormalization group-based algorithm for reconstructing the full $\beta$-functions from the $\beta$-functions defined in the subspace. As examples, we derive the full $\beta$-functions for the $O(N)$ vector model and the $O_L(N) \times O_R(N)$ matrix model entirely from the $\beta$-functions defined in the subspace of single-trace couplings. |
| ArticleNumber | 046 |
| Author | Ma, Han Lee, Sung-Sik |
| Author_xml | – sequence: 1 givenname: Han surname: Ma fullname: Ma, Han organization: Perimeter Institute – sequence: 2 givenname: Sung-Sik surname: Lee fullname: Lee, Sung-Sik organization: McMaster University, Perimeter Institute |
| BookMark | eNqFkF1LwzAUQIMoOOd-gtA_0C03X23xSYYfg4ED9TmkaeIyalOSDNm_t9tEhj74dC_3cs7DuULnne8MQjeApwSYKGcv2q18TKv1Lk6BTMkUM3GGRoQzkjPB6fnJfokmMW4wxgSgAsFHaDb3XUxBuS7FzHdZbZLK7LbTyQ2PzHWZdaZtsrQ2PjgTr9GFVW00k-85Rm8P96_zp3z5_LiY3y1zTYVIucBYMGEbXKmaUUONoQIKUmhTlYXFpW0UYK4o1A3mthSgS1aSpjCYV0KJmo7R4uhtvNrIPrgPFXbSKycPBx_epQrJ6dZIANtQWnDAoFlRF7WlmGk67MpqImBwiaNr2_Vq96na9kcIWB4qyqhdP1Tsh4oSiCRyqDiA_Ajq4GMMxv7lTuqfcre_OO2S2hfdl27_ob8A2UeQNA |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_108_024054 crossref_primary_10_21468_SciPostPhys_15_3_111 crossref_primary_10_1103_PhysRevE_111_015304 |
| Cites_doi | 10.1088/1126-6708/2009/10/079 10.1103/PhysRev.95.1300 10.1007/BF01649434 10.1088/0305-4470/30/13/019 10.1103/PhysRevD.95.066003 10.1007/jhep06(2011)031 10.1007/jhep10(2018)108 10.1016/0370-2693(88)90054-8 10.1007/jhep06(2020)070 10.1002/prop.201400007 10.1016/0550-3213(84)90287-6 10.1007/JHEP06(2011)031 10.1007/JHEP09(2019)055 10.1007/jhep09(2016)044 10.1016/0375-9601(79)90567-x 10.1007/jhep10(2012)160 10.1103/PhysRevD.2.1541 10.1016/0370-2693(93)90726-X 10.1016/0550-3213(91)80030-P 10.1007/jhep01(2014)076 10.1016/s0370-2693(98)01270-2 10.1007/978-3-319-31352-8_4 10.1063/1.59653 10.1103/PhysicsPhysiqueFizika.2.263 10.1103/RevModPhys.47.773 10.1103/PhysRevD.68.044011 10.1103/PhysRevD.83.071701 10.1103/physrevx.7.031051 10.1142/S0217751X95001273 10.1016/j.nuclphysb.2012.04.023 10.21468/scipostphys.5.5.050 10.1088/0305-4470/36/8/305 10.1007/JHEP08(2011)051 10.1016/s0370-2693(98)00377-3 10.1103/PhysRevD.80.125005 10.1016/j.physrep.2014.12.003 10.1016/S0550-3213(02)00257-2 10.4310/atmp.1998.v2.n2.a2 10.1063/1.532860 10.1088/0305-4470/21/22/015 10.1088/0264-9381/19/22/306 10.1007/JHEP12(2011)099 10.1088/1126-6708/2000/08/003 https://doi.org/10.1016/j.nuclphysb.2013.12.002 10.1103/PhysRevD.89.106012 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.21468/SciPostPhys.12.2.046 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2542-4653 |
| ExternalDocumentID | oai_doaj_org_article_11fd3375101c47b7bf304c3c47afc261 10.21468/scipostphys.12.2.046 10_21468_SciPostPhys_12_2_046 |
| GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c366t-600646fd09ab43e3ee361727ce987f08fda105a31bd05f861c8482d7e0596a6b3 |
| IEDL.DBID | DOA |
| ISSN | 2542-4653 |
| IngestDate | Fri Oct 03 12:43:43 EDT 2025 Sun Oct 26 04:16:35 EDT 2025 Tue Jul 01 03:21:56 EDT 2025 Thu Apr 24 23:09:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-600646fd09ab43e3ee361727ce987f08fda105a31bd05f861c8482d7e0596a6b3 |
| OpenAccessLink | https://doaj.org/article/11fd3375101c47b7bf304c3c47afc261 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_11fd3375101c47b7bf304c3c47afc261 unpaywall_primary_10_21468_scipostphys_12_2_046 crossref_primary_10_21468_SciPostPhys_12_2_046 crossref_citationtrail_10_21468_SciPostPhys_12_2_046 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | SciPost physics |
| PublicationYear | 2022 |
| Publisher | SciPost |
| Publisher_xml | – name: SciPost |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref23 doi: 10.1088/1126-6708/2009/10/079 – ident: ref1 doi: 10.1103/PhysRev.95.1300 – ident: ref4 doi: 10.1007/BF01649434 – ident: ref12 doi: 10.1088/0305-4470/30/13/019 – ident: ref31 doi: 10.1103/PhysRevD.95.066003 – ident: ref37 doi: 10.1007/jhep06(2011)031 – ident: ref44 doi: 10.1007/jhep10(2018)108 – ident: ref9 doi: 10.1016/0370-2693(88)90054-8 – ident: ref28 doi: 10.1007/jhep06(2020)070 – ident: ref27 doi: 10.1002/prop.201400007 – ident: ref6 doi: 10.1016/0550-3213(84)90287-6 – ident: ref24 doi: 10.1007/JHEP06(2011)031 – ident: ref13 doi: 10.1007/JHEP09(2019)055 – ident: ref29 doi: 10.1007/jhep09(2016)044 – ident: ref39 doi: 10.1016/0375-9601(79)90567-x – ident: ref14 doi: 10.1007/jhep10(2012)160 – ident: ref3 doi: 10.1103/PhysRevD.2.1541 – ident: ref7 doi: 10.1016/0370-2693(93)90726-X – ident: ref8 doi: 10.1016/0550-3213(91)80030-P – ident: ref15 doi: 10.1007/jhep01(2014)076 – ident: ref20 doi: 10.1016/s0370-2693(98)01270-2 – ident: ref26 doi: 10.1007/978-3-319-31352-8_4 – ident: ref17 doi: 10.1063/1.59653 – ident: ref2 doi: 10.1103/PhysicsPhysiqueFizika.2.263 – ident: ref5 doi: 10.1103/RevModPhys.47.773 – ident: ref32 doi: 10.1103/PhysRevD.68.044011 – ident: ref33 doi: 10.1103/PhysRevD.83.071701 – ident: ref43 doi: 10.1103/physrevx.7.031051 – ident: ref35 doi: 10.1142/S0217751X95001273 – ident: ref36 doi: 10.1016/j.nuclphysb.2012.04.023 – ident: ref45 doi: 10.21468/scipostphys.5.5.050 – ident: ref41 doi: 10.1088/0305-4470/36/8/305 – ident: ref25 doi: 10.1007/JHEP08(2011)051 – ident: ref18 doi: 10.1016/s0370-2693(98)00377-3 – ident: ref42 doi: 10.1103/PhysRevD.80.125005 – ident: ref11 doi: 10.1016/j.physrep.2014.12.003 – ident: ref16 doi: 10.1016/S0550-3213(02)00257-2 – ident: ref19 doi: 10.4310/atmp.1998.v2.n2.a2 – ident: ref38 doi: 10.1063/1.532860 – ident: ref40 doi: 10.1088/0305-4470/21/22/015 – ident: ref22 doi: 10.1088/0264-9381/19/22/306 – ident: ref10 doi: 10.1007/JHEP12(2011)099 – ident: ref21 doi: 10.1088/1126-6708/2000/08/003 – ident: ref30 doi: https://doi.org/10.1016/j.nuclphysb.2013.12.002 – ident: ref34 doi: 10.1103/PhysRevD.89.106012 |
| SSID | ssj0002119165 |
| Score | 2.2229688 |
| Snippet | The
\beta
β
-functions
describe how couplings run under the renormalization group flow in field
theories. In general, all couplings that respect the symmetry... The $\beta$-functions describe how couplings run under the renormalization group flow in field theories. In general, all couplings that respect the symmetry... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 046 |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mhogP_hYnKn3wtVubpGn7OMUxBIcPTuZTSdIExNEN1yH615tLuzH1QfZWSq9JL9fed-ndfQDXIuZGMap8FcnAZ0YKX5BU-tTINDAipMxRJzwM-WDE7sfRuAHRshYGK1Gnda0BpiljZVDXmjlS12JOJO7dkQ7-l5zlZgtaPLIQvAmt0fCx94JEchEjPvYMq6p1Kvn6prN1-R9-yLXr34WdRTETnx9iMlnzMf19eF7OrkoteessStlRX78aN248_QPYq1Gn16vM5BAaujiCbZf9qebH0EXaTkcWUc69aeFJXQoPPZ4zSu-18Fyim-eqHm1ofQKj_t3T7cCvmRR8RTkvfY7Ig5s8SIVkVFOtqUMuSqdJbILE5MLiLEFDmQeRSXioEpaQPNZIziO4pKfQLKaFPgMvJiRULE8YkYIlJhA6CRUGujaWMRGN28CWes1U3WYcH2CS2XDD6SNb00cWkoxkVh9t6KzEZlWfjf8EbnDRVhdjm2x3wqo-q986G96YnNIYvzuKxTKWhgZMUXssjLKxYxu6qyX_O-ya2ayGPd9Y4gKa5ftCX1rsUsqr2lK_AX2U8Gs priority: 102 providerName: Unpaywall |
| Title | Constraints on beta functions in field theories |
| URI | https://scipost.org/10.21468/SciPostPhys.12.2.046/pdf https://doaj.org/article/11fd3375101c47b7bf304c3c47afc261 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yEfVB_MT5MfLga9c2SZP0UcUxBIcPDuZTSdIEhNEN1yH-9-bSOgo-7MW3Uhquubv27hfu7ofQnRLcGUZNZDKdRMxpFSmS64g6nSdOpZQF6oSXCR9P2fMsm3WovqAmrBkP3CguTlNXUirAdQwTWmjnAbih_lo5Qxrgk8i8A6bgHxzmlvGsadkB7moZ-28F-G-hsBIOAMkwgaS3E4zCzP5DtL-ulur7S83nnUAzOkZHbYaI75s3O0E7tjpFe6FS06zOUAwUm4HYoV7hRYW1rRWG6BQcCH9UOBSl4dCh6GHwOZqOnt4ex1HLehAZynkdccgSuCuTXGlGLbWWhizD2FwKl0hXKp8TKZrqMsmc5KmRTJJSWCDSUVzTC9SrFpW9RFgQ4pVWSka0YtIlysrUACj1uMNlVPQR-91-YdqR4LCBeeGhQdBa0dFakZKCFF5rfTTcLFs2MzG2LXgA3W4ehpHW4YY3dNEauthm6D6KN5b5KxY6mL3YZVfs1X-IvUYHBDoeQqH2DerVn2t76_OQWg-Cyw3Q7nTyev_-A--F3KE |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mhogP_hYnKn3wtVubpGn7OMUxBIcPTuZTSdIExNEN1yH615tLuzH1QfZWSq9JL9fed-ndfQDXIuZGMap8FcnAZ0YKX5BU-tTINDAipMxRJzwM-WDE7sfRuAHRshYGK1Gnda0BpiljZVDXmjlS12JOJO7dkQ7-l5zlZgtaPLIQvAmt0fCx94JEchEjPvYMq6p1Kvn6prN1-R9-yLXr34WdRTETnx9iMlnzMf19eF7OrkoteessStlRX78aN248_QPYq1Gn16vM5BAaujiCbZf9qebH0EXaTkcWUc69aeFJXQoPPZ4zSu-18Fyim-eqHm1ofQKj_t3T7cCvmRR8RTkvfY7Ig5s8SIVkVFOtqUMuSqdJbILE5MLiLEFDmQeRSXioEpaQPNZIziO4pKfQLKaFPgMvJiRULE8YkYIlJhA6CRUGujaWMRGN28CWes1U3WYcH2CS2XDD6SNb00cWkoxkVh9t6KzEZlWfjf8EbnDRVhdjm2x3wqo-q986G96YnNIYvzuKxTKWhgZMUXssjLKxYxu6qyX_O-ya2ayGPd9Y4gKa5ftCX1rsUsqr2lK_AX2U8Gs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+beta+functions+in+field+theories&rft.jtitle=SciPost+physics&rft.au=Han+Ma%2C+Sung-Sik+Lee&rft.date=2022-02-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=12&rft.issue=2&rft.spage=046&rft_id=info:doi/10.21468%2FSciPostPhys.12.2.046&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_11fd3375101c47b7bf304c3c47afc261 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |