Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine

► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The genetic algorithm is applied for selecting the learning parameters of neural network. ► Our algorithm is performed better than existing algorithm...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 39; no. 12; pp. 10943 - 10951
Main Authors Chatterjee, Snehamoy, Bandopadhyay, Sukumar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2012
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2012.03.030

Cover

Abstract ► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The genetic algorithm is applied for selecting the learning parameters of neural network. ► Our algorithm is performed better than existing algorithms in two bench mark data sets. ► The application on load-haul-dump machine shows satisfactory results in comparison with other methods. In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters like learning rate (η) and momentum (μ). The input variables of the neural network model were selected by maximizing the mean entropy value. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a load-haul-dump (LHD) machine operated at a coal mine in Alaska, USA. Past time-to-failure data for the LHD machine were collected, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2=0.94) in the failure prediction of a LHD machine.
AbstractList ► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The genetic algorithm is applied for selecting the learning parameters of neural network. ► Our algorithm is performed better than existing algorithms in two bench mark data sets. ► The application on load-haul-dump machine shows satisfactory results in comparison with other methods. In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters like learning rate (η) and momentum (μ). The input variables of the neural network model were selected by maximizing the mean entropy value. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a load-haul-dump (LHD) machine operated at a coal mine in Alaska, USA. Past time-to-failure data for the LHD machine were collected, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2=0.94) in the failure prediction of a LHD machine.
In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters like learning rate (IDT) and momentum ( mu ). The input variables of the neural network model were selected by maximizing the mean entropy value. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a load-haul-dump (LHD) machine operated at a coal mine in Alaska, USA. Past time-to-failure data for the LHD machine were collected, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2 = 0.94) in the failure prediction of a LHD machine.
Author Chatterjee, Snehamoy
Bandopadhyay, Sukumar
Author_xml – sequence: 1
  givenname: Snehamoy
  surname: Chatterjee
  fullname: Chatterjee, Snehamoy
  email: snehamoy@gmail.com
  organization: Department of Mining Engineering, National Institute of Technology, Rourkela 769 008, Orissa, India
– sequence: 2
  givenname: Sukumar
  surname: Bandopadhyay
  fullname: Bandopadhyay, Sukumar
  organization: Department of Mining Engineering, University of Alaska, Fairbanks, AK, USA
BookMark eNqFkUGLFDEQhYOs4OzqH_CUo5ceK0l3p1u8LIurwoIgeg7VSXomYzoZk7TLgj_ezI4nDysU1OV9j6r3LslFiMES8prBlgHr3x62Nt_jlgPjWxB14BnZsEGKppejuCAbGDvZtEy2L8hlzgcAJgHkhvz-ar3DyXlXHqjNxS1YXAx0zS7sKNKdDbY4TdHvYnJlvzQTZmsopuJmpx16GuyaHle5j-nHO3odKB6P3umzU4nVxkc0zR5X35h1OdIF9d4F-5I8n9Fn--rvviLfbz98u_nU3H35-Pnm-q7Rou9L03HdtRxhwKkFaYScDHaj1AO3Uz-ICUdhjLSsR4N87nrRa83ncR5BMpi7UVyRN2ffY4o_1_qlWlzW1nsMNq5Z1SwYQAeC_18KYuBtPaOt0uEs1SnmnOystCuPP5eEzlepOnWjDurUjTp1o0DUgYryf9Bjqsmnh6eh92fI1qh-OZtU1s4GbY1LVhdlonsK_wM38aw8
CitedBy_id crossref_primary_10_1016_j_eswa_2015_10_046
crossref_primary_10_1155_2017_6916575
crossref_primary_10_1111_mice_12117
crossref_primary_10_1080_17480930_2016_1262499
crossref_primary_10_3390_w6061642
crossref_primary_10_1016_j_asoc_2019_105873
crossref_primary_10_1016_j_ijsrc_2020_03_018
crossref_primary_10_1016_j_apm_2016_07_006
crossref_primary_10_1016_j_jii_2019_03_001
crossref_primary_10_1016_j_ress_2014_12_002
crossref_primary_10_1016_j_ijepes_2014_11_028
crossref_primary_10_3390_en14175496
crossref_primary_10_1111_grs_12233
crossref_primary_10_1002_qre_1686
crossref_primary_10_3390_w14121917
crossref_primary_10_1007_s10479_015_1863_z
crossref_primary_10_3390_app12094718
crossref_primary_10_1007_s40899_017_0160_1
crossref_primary_10_1016_j_procir_2018_03_065
crossref_primary_10_3390_math10224263
crossref_primary_10_1002_qre_1844
crossref_primary_10_1109_TR_2015_2440531
crossref_primary_10_1016_j_engfailanal_2020_104542
crossref_primary_10_1016_j_ress_2013_08_004
crossref_primary_10_1080_15715124_2019_1705317
crossref_primary_10_1007_s00607_015_0459_4
crossref_primary_10_3390_w14182815
crossref_primary_10_1016_j_ins_2016_01_102
crossref_primary_10_1115_1_4035433
crossref_primary_10_1631_jzus_C12a0241
crossref_primary_10_1016_j_eswa_2014_07_039
crossref_primary_10_3390_w14223714
crossref_primary_10_1002_qre_1773
crossref_primary_10_3390_min6020051
crossref_primary_10_1007_s00170_017_1039_x
crossref_primary_10_1016_j_eswa_2021_114952
crossref_primary_10_1007_s12892_017_0090_0
crossref_primary_10_3390_w15030522
crossref_primary_10_1016_j_eswa_2019_113139
crossref_primary_10_1016_j_eswa_2013_04_038
crossref_primary_10_1007_s11356_023_27248_y
crossref_primary_10_1088_1757_899X_1104_1_012006
crossref_primary_10_1016_j_agrformet_2022_109000
crossref_primary_10_3390_math11071675
crossref_primary_10_1007_s10706_016_0081_z
crossref_primary_10_1016_j_ress_2013_06_039
crossref_primary_10_1016_j_jvolgeores_2019_06_006
crossref_primary_10_3390_info6010049
crossref_primary_10_1016_j_eswa_2012_08_018
crossref_primary_10_1080_02626667_2018_1483581
crossref_primary_10_1080_17480930_2015_1123599
crossref_primary_10_1111_exsy_13360
crossref_primary_10_3390_app12052622
crossref_primary_10_1007_s00521_023_08734_3
crossref_primary_10_1007_s13198_014_0310_x
crossref_primary_10_17531_ein_2016_4_17
crossref_primary_10_1142_S0218539317500139
Cites_doi 10.1016/S0957-4174(00)00019-1
10.1109/4235.661548
10.1016/j.eswa.2007.12.029
10.1016/S1568-4946(02)00059-5
10.1002/qre.4680110206
10.1080/10170669.1997.10432936
10.1016/j.eswa.2009.09.070
10.1016/S0360-8352(02)00036-0
10.1109/59.744545
10.1007/s11004-010-9276-7
10.1016/j.eswa.2007.03.014
10.1016/j.eswa.2008.02.053
10.1016/j.eswa.2006.08.032
10.1016/S0360-8352(98)00066-7
10.1016/j.eswa.2009.08.024
10.1016/S0951-8320(00)00102-2
10.1016/j.mcm.2005.02.008
10.1080/03052150601044823
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2012.03.030
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Engineering Research Database
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 10951
ExternalDocumentID 10_1016_j_eswa_2012_03_030
S0957417412005003
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACLOT
ACNTT
ACRPL
ACVFH
ADCNI
ADJOM
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7QO
8FD
ABUFD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c366t-52c542a08ab407d37bda597c82eb683ba93dd7e16ada2f5636cc2f9f90710f593
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sat Sep 27 23:59:24 EDT 2025
Tue Oct 07 09:42:39 EDT 2025
Wed Oct 01 03:51:36 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Systems reliability
Entropy
Learning parameters
Genetic algorithm
Variable selection
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-52c542a08ab407d37bda597c82eb683ba93dd7e16ada2f5636cc2f9f90710f593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1038244074
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1701005032
proquest_miscellaneous_1038244074
crossref_citationtrail_10_1016_j_eswa_2012_03_030
crossref_primary_10_1016_j_eswa_2012_03_030
elsevier_sciencedirect_doi_10_1016_j_eswa_2012_03_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-15
PublicationDateYYYYMMDD 2012-09-15
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wei, Ma, Hong-Jun, Wang, Yun-Tao (b0120) 2003; 3
Chang, P. T., Lin, K. P., & Pai, P. F. (2004). Hybrid learning fuzzy neural models in forecasting engine systems reliability. In
Bishop (b0010) 1998
MacKay (b0090) 2003
Yeh, Lin, Chung (b0140) 2010; 37
Dengiz, Atiparmak, Smith (b0030) 1997; 1
Congdon, C. B. (1995). A comparison of genetic algorithm and other machine learning systems on a complex classification task from common disease research. PhD thesis, Computer Science and Engineering Division, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
Willighagen, E. (2005). R based genetic algorithm for binary and floating point chromosomes.
Su, Tong, Leou (b0100) 1997; 4
Limas, M. C. (2006). A MORE flexible neural network package.
Hagan, Demuth, Beale (b0035) 1995
Honarkhah, Caers (b0060) 2010; 42
Box, Jenkins (b0015) 1976
Amjady, Ehsan (b0005) 1999; 14
Li, Balazs, Parks (b0065) 2007; 39
Pai (b0095) 2006; 43
Hu, Si, Yang (b0135) 2010; 37
Lu, Lu, Kloarik (b0085) 2001; 72
Holland (b0055) 1975
Yi-Hui (b0145) 2007; 33
.
Xu, Xie, Tang (b0115) 2003; 2
Zheng (b0150) 2009; 36
Fonseca, Knapp (b0130) 2000; 19
Haykins (b0040) 1999
Ho, Xie (b0050) 1998; 35
Liu, Kuo, Sastri (b0075) 1995; 11
Lolas, Olatunbosun (b0080) 2008; 34
El-Sebakhy (b0125) 2009; 36
Ho, Xie, Goh (b0045) 2002; 42
(pp. 2361–2366).
Amjady (10.1016/j.eswa.2012.03.030_b0005) 1999; 14
Lu (10.1016/j.eswa.2012.03.030_b0085) 2001; 72
Box (10.1016/j.eswa.2012.03.030_b0015) 1976
Hu (10.1016/j.eswa.2012.03.030_b0135) 2010; 37
Lolas (10.1016/j.eswa.2012.03.030_b0080) 2008; 34
MacKay (10.1016/j.eswa.2012.03.030_b0090) 2003
Wei (10.1016/j.eswa.2012.03.030_b0120) 2003; 3
Ho (10.1016/j.eswa.2012.03.030_b0045) 2002; 42
10.1016/j.eswa.2012.03.030_b0020
Yeh (10.1016/j.eswa.2012.03.030_b0140) 2010; 37
Liu (10.1016/j.eswa.2012.03.030_b0075) 1995; 11
Li (10.1016/j.eswa.2012.03.030_b0065) 2007; 39
Xu (10.1016/j.eswa.2012.03.030_b0115) 2003; 2
Ho (10.1016/j.eswa.2012.03.030_b0050) 1998; 35
Su (10.1016/j.eswa.2012.03.030_b0100) 1997; 4
Holland (10.1016/j.eswa.2012.03.030_b0055) 1975
Dengiz (10.1016/j.eswa.2012.03.030_b0030) 1997; 1
10.1016/j.eswa.2012.03.030_b0025
10.1016/j.eswa.2012.03.030_b0110
Honarkhah (10.1016/j.eswa.2012.03.030_b0060) 2010; 42
Pai (10.1016/j.eswa.2012.03.030_b0095) 2006; 43
Hagan (10.1016/j.eswa.2012.03.030_b0035) 1995
10.1016/j.eswa.2012.03.030_b0070
El-Sebakhy (10.1016/j.eswa.2012.03.030_b0125) 2009; 36
Zheng (10.1016/j.eswa.2012.03.030_b0150) 2009; 36
Fonseca (10.1016/j.eswa.2012.03.030_b0130) 2000; 19
Yi-Hui (10.1016/j.eswa.2012.03.030_b0145) 2007; 33
Bishop (10.1016/j.eswa.2012.03.030_b0010) 1998
Haykins (10.1016/j.eswa.2012.03.030_b0040) 1999
References_xml – volume: 19
  start-page: 45
  year: 2000
  end-page: 57
  ident: b0130
  article-title: An expert system for reliability centered maintenance in the chemical industry
  publication-title: Expert Systems with Applications
– year: 1995
  ident: b0035
  article-title: Neural network design
– volume: 36
  start-page: 4013
  year: 2009
  end-page: 4020
  ident: b0125
  article-title: Software reliability identification using functional networks: A comparative study
  publication-title: Expert Systems with Applications
– volume: 35
  start-page: 213
  year: 1998
  end-page: 216
  ident: b0050
  article-title: The use of ARIMA models for reliability forecasting and analysis
  publication-title: Computers and Industrial Engineering
– volume: 37
  start-page: 2550
  year: 2010
  end-page: 2562
  ident: b0135
  article-title: System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization
  publication-title: Expert Systems with Applications
– reference: Limas, M. C. (2006). A MORE flexible neural network package. <
– volume: 34
  start-page: 2360
  year: 2008
  end-page: 2369
  ident: b0080
  article-title: Prediction of vehicle reliability performance using artificial neural networks
  publication-title: Expert Systems with Applications
– reference: Chang, P. T., Lin, K. P., & Pai, P. F. (2004). Hybrid learning fuzzy neural models in forecasting engine systems reliability. In
– volume: 36
  start-page: 2116
  year: 2009
  end-page: 2122
  ident: b0150
  article-title: Predicting software reliability with neural network ensembles
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 287
  year: 1999
  end-page: 292
  ident: b0005
  article-title: Evaluation of power systems reliability by artificial neural network
  publication-title: IEEE Transaction on Power Systems
– year: 1975
  ident: b0055
  article-title: Adaptation in natural and artificial systems
– volume: 42
  start-page: 371
  year: 2002
  end-page: 375
  ident: b0045
  article-title: A comparative study of neural network and Box-Jenkins ARIMA modeling in time series forecasting
  publication-title: Computers and Industrial Engineering
– year: 2003
  ident: b0090
  article-title: Information theory, inference, and learning algorithms
– volume: 1
  start-page: 179
  year: 1997
  end-page: 188
  ident: b0030
  article-title: Local search genetic algorithm for optimization of highly reliable communications networks
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 72
  start-page: 39
  year: 2001
  end-page: 45
  ident: b0085
  article-title: Multivariate performance reliability prediction in real-time
  publication-title: Reliability Engineering and System Safety
– volume: 39
  start-page: 147
  year: 2007
  end-page: 161
  ident: b0065
  article-title: Engineering design optimization using species-conserving genetic algorithms
  publication-title: Engineering Optimization
– year: 1998
  ident: b0010
  article-title: Neural networks for pattern recognition
– volume: 42
  start-page: 487
  year: 2010
  end-page: 517
  ident: b0060
  article-title: Stochastic simulation of patterns using distance-based pattern modeling
  publication-title: Mathematical Geosciences
– volume: 3
  start-page: 1704
  year: 2003
  end-page: 1707
  ident: b0120
  article-title: An application of multi-population genetic algorithm for optimization of adversaries’ tactics and strategies in battlefield simulation
  publication-title: International Conference on Machine Learning and Cybernetics
– reference: Congdon, C. B. (1995). A comparison of genetic algorithm and other machine learning systems on a complex classification task from common disease research. PhD thesis, Computer Science and Engineering Division, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
– reference: Willighagen, E. (2005). R based genetic algorithm for binary and floating point chromosomes. <
– year: 1976
  ident: b0015
  article-title: Time series analysis: Forecasting and control
– reference: >.
– reference: (pp. 2361–2366).
– volume: 33
  start-page: 1090
  year: 2007
  end-page: 1096
  ident: b0145
  article-title: Evolutionary neural network modeling for forecasting the field failure data of repairable systems
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 419
  year: 1997
  end-page: 430
  ident: b0100
  article-title: Combining time series and neural network approaches
  publication-title: Journal of the Chinese Institute of Industrial Engineers
– volume: 37
  start-page: 3537
  year: 2010
  end-page: 3544
  ident: b0140
  article-title: Performance analysis of cellular automata Monte Carlo Simulation for estimating network reliability
  publication-title: Expert Systems with Applications
– year: 1999
  ident: b0040
  article-title: Neural networks: A comprehensive foundation
– volume: 43
  start-page: 262
  year: 2006
  end-page: 274
  ident: b0095
  article-title: System reliability forecasting by support vector machine with genetic algorithms
  publication-title: Mathematical and Computer Modeling
– volume: 2
  start-page: 255
  year: 2003
  end-page: 268
  ident: b0115
  article-title: Application of neural networks in forecasting engine systems reliability
  publication-title: Application of Soft Computation Journal
– volume: 11
  start-page: 107
  year: 1995
  end-page: 112
  ident: b0075
  article-title: An exploratory study of a neural network approach for reliability data analysis
  publication-title: Quality and Reliability Engineering International
– year: 1976
  ident: 10.1016/j.eswa.2012.03.030_b0015
– volume: 19
  start-page: 45
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2012.03.030_b0130
  article-title: An expert system for reliability centered maintenance in the chemical industry
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(00)00019-1
– volume: 3
  start-page: 1704
  issue: 2–5
  year: 2003
  ident: 10.1016/j.eswa.2012.03.030_b0120
  article-title: An application of multi-population genetic algorithm for optimization of adversaries’ tactics and strategies in battlefield simulation
  publication-title: International Conference on Machine Learning and Cybernetics
– ident: 10.1016/j.eswa.2012.03.030_b0020
– year: 1999
  ident: 10.1016/j.eswa.2012.03.030_b0040
– volume: 1
  start-page: 179
  issue: 3
  year: 1997
  ident: 10.1016/j.eswa.2012.03.030_b0030
  article-title: Local search genetic algorithm for optimization of highly reliable communications networks
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.661548
– year: 2003
  ident: 10.1016/j.eswa.2012.03.030_b0090
– volume: 36
  start-page: 2116
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2012.03.030_b0150
  article-title: Predicting software reliability with neural network ensembles
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.12.029
– volume: 2
  start-page: 255
  issue: 4
  year: 2003
  ident: 10.1016/j.eswa.2012.03.030_b0115
  article-title: Application of neural networks in forecasting engine systems reliability
  publication-title: Application of Soft Computation Journal
  doi: 10.1016/S1568-4946(02)00059-5
– volume: 11
  start-page: 107
  year: 1995
  ident: 10.1016/j.eswa.2012.03.030_b0075
  article-title: An exploratory study of a neural network approach for reliability data analysis
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.4680110206
– volume: 4
  start-page: 419
  year: 1997
  ident: 10.1016/j.eswa.2012.03.030_b0100
  article-title: Combining time series and neural network approaches
  publication-title: Journal of the Chinese Institute of Industrial Engineers
  doi: 10.1080/10170669.1997.10432936
– year: 1998
  ident: 10.1016/j.eswa.2012.03.030_b0010
– volume: 37
  start-page: 3537
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2012.03.030_b0140
  article-title: Performance analysis of cellular automata Monte Carlo Simulation for estimating network reliability
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.09.070
– volume: 42
  start-page: 371
  year: 2002
  ident: 10.1016/j.eswa.2012.03.030_b0045
  article-title: A comparative study of neural network and Box-Jenkins ARIMA modeling in time series forecasting
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/S0360-8352(02)00036-0
– volume: 14
  start-page: 287
  year: 1999
  ident: 10.1016/j.eswa.2012.03.030_b0005
  article-title: Evaluation of power systems reliability by artificial neural network
  publication-title: IEEE Transaction on Power Systems
  doi: 10.1109/59.744545
– volume: 42
  start-page: 487
  year: 2010
  ident: 10.1016/j.eswa.2012.03.030_b0060
  article-title: Stochastic simulation of patterns using distance-based pattern modeling
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-010-9276-7
– volume: 34
  start-page: 2360
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2012.03.030_b0080
  article-title: Prediction of vehicle reliability performance using artificial neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.03.014
– volume: 36
  start-page: 4013
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2012.03.030_b0125
  article-title: Software reliability identification using functional networks: A comparative study
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.053
– year: 1975
  ident: 10.1016/j.eswa.2012.03.030_b0055
– volume: 33
  start-page: 1090
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2012.03.030_b0145
  article-title: Evolutionary neural network modeling for forecasting the field failure data of repairable systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.08.032
– ident: 10.1016/j.eswa.2012.03.030_b0110
– volume: 35
  start-page: 213
  issue: 1–2
  year: 1998
  ident: 10.1016/j.eswa.2012.03.030_b0050
  article-title: The use of ARIMA models for reliability forecasting and analysis
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/S0360-8352(98)00066-7
– ident: 10.1016/j.eswa.2012.03.030_b0025
– volume: 37
  start-page: 2550
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2012.03.030_b0135
  article-title: System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.08.024
– ident: 10.1016/j.eswa.2012.03.030_b0070
– volume: 72
  start-page: 39
  year: 2001
  ident: 10.1016/j.eswa.2012.03.030_b0085
  article-title: Multivariate performance reliability prediction in real-time
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/S0951-8320(00)00102-2
– volume: 43
  start-page: 262
  year: 2006
  ident: 10.1016/j.eswa.2012.03.030_b0095
  article-title: System reliability forecasting by support vector machine with genetic algorithms
  publication-title: Mathematical and Computer Modeling
  doi: 10.1016/j.mcm.2005.02.008
– year: 1995
  ident: 10.1016/j.eswa.2012.03.030_b0035
– volume: 39
  start-page: 147
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2012.03.030_b0065
  article-title: Engineering design optimization using species-conserving genetic algorithms
  publication-title: Engineering Optimization
  doi: 10.1080/03052150601044823
SSID ssj0017007
Score 2.3375192
Snippet ► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The...
In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10943
SubjectTerms Benchmarking
Entropy
Expert systems
Genetic algorithm
Genetics
Learning parameters
Mathematical models
Mean time to failure
Neural networks
Systems reliability
Variable selection
Title Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine
URI https://dx.doi.org/10.1016/j.eswa.2012.03.030
https://www.proquest.com/docview/1038244074
https://www.proquest.com/docview/1701005032
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA-il72sq6uo6w4R9iZxJk2atHsbBmV0WS-r4C0kTaojYyvaQQTZv33fa1pxl2UOQqG0JP3IS95H8nu_EPItcCSoLBXLEq6YBJsGejDlLLFJ6WySuFJgNvLPczW9lGdX6dUKmfS5MAir7HR_1Omttu7uDLvWHN7PZsNf4ByAOYQDJ0Yi46eUGncxOPr9CvNA-jkd-fY0w9Jd4kzEeIXHJ-QewvlAcdQiof9vnP5R063tOflEPnZOIx3H79ogK6HaJOv9hgy0G5-fyQsCjCPx9jNF-oyYl0gR3H5NLYXOgjmL1M6v64dZc3PH0Ih5ij8cmSQo8lu2pxYd_p2OK_pmjZs2NTxmXlvPbuxizjx0BnrX4jHDFrk8Ob6YTFm3vQIrhFINhKBFKhM7yqyDqM4L7byF8KLIkuBUJpzNhfc6cGU9CC5VAiHWZV7m6JWUaS62yWpVV2GHUCe191luLZdcased1aEE50KPZKG8KHYJ79vVFB33OG6BMTc9yOzWoCwMysKMBByjXXL4Wuc-Mm8sLZ324jJ_9R8DpmFpvYNetgYGFq6W2CrUi0eDzPHg-4CLtaSMhnAWGXWSvXe-_wv5gFeIQOHpPlltHhbhK7g5jRu0_XhA1sanP6bnfwDAY_28
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA6iD7sv7s1F3VUj7JvEmSRt0vom4jDuqi_OwLyFpEl1ZGxFO4iw7G_3nF7EFZkHoVBok15yknNJvvOFkF-BI0FlrlgiuGIR2DTQgzFnworcWSFcLjEb-excDcfR70k8WSJHXS4Mwipb3d_o9Fpbt1d6bWv2bqfT3gU4B2AO4cCJkZrxcyWKhcYIbP_fM84D-ed0Q7inGRZvM2cakFe4f0DyIZwQlPs1FPpt6_RKT9fGZ_CZrLZeIz1sPuwLWQrFV_Kp25GBtgP0G_mLCOOGefuRIn9Gk5hIEd1-SS2F3oJJi9TOLsu7aXV1w9CKeYp_3FBJUCS4rE81PPyAHhb0xSI3rUp4zKy0nl3Z-Yx56A30pgZkhjUyHhyPjoas3V-BZVKpCmLQLI6E7SfWQVjnpXbeQnyRJSI4lUhnU-m9DlxZD5KLlUSMdZ7mKboleZzK72S5KIuwTqiLtPdJai2PeKQdd1aHHLwL3Y8y5WW2QXjXriZrycdxD4yZ6VBm1wZlYVAWpi_h6G-Qvec6tw31xsLScScu818HMmAbFtbb7WRrYGThcoktQjm_N0gdD84P-FgLymiIZ5FSR2y-8_075MNwdHZqTk_O__wgH_EOwlF4_JMsV3fzsAU-T-W26z79BJLn_1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+estimation+using+a+genetic+algorithm-based+artificial+neural+network%3A+An+application+to+a+load-haul-dump+machine&rft.jtitle=Expert+systems+with+applications&rft.au=Chatterjee%2C+Snehamoy&rft.au=Bandopadhyay%2C+Sukumar&rft.date=2012-09-15&rft.issn=0957-4174&rft.volume=39&rft.issue=12&rft.spage=10943&rft.epage=10951&rft_id=info:doi/10.1016%2Fj.eswa.2012.03.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2012_03_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon