Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine
► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The genetic algorithm is applied for selecting the learning parameters of neural network. ► Our algorithm is performed better than existing algorithm...
Saved in:
| Published in | Expert systems with applications Vol. 39; no. 12; pp. 10943 - 10951 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.09.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2012.03.030 |
Cover
| Abstract | ► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The genetic algorithm is applied for selecting the learning parameters of neural network. ► Our algorithm is performed better than existing algorithms in two bench mark data sets. ► The application on load-haul-dump machine shows satisfactory results in comparison with other methods.
In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters like learning rate (η) and momentum (μ). The input variables of the neural network model were selected by maximizing the mean entropy value. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a load-haul-dump (LHD) machine operated at a coal mine in Alaska, USA. Past time-to-failure data for the LHD machine were collected, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2=0.94) in the failure prediction of a LHD machine. |
|---|---|
| AbstractList | ► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The genetic algorithm is applied for selecting the learning parameters of neural network. ► Our algorithm is performed better than existing algorithms in two bench mark data sets. ► The application on load-haul-dump machine shows satisfactory results in comparison with other methods.
In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters like learning rate (η) and momentum (μ). The input variables of the neural network model were selected by maximizing the mean entropy value. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a load-haul-dump (LHD) machine operated at a coal mine in Alaska, USA. Past time-to-failure data for the LHD machine were collected, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2=0.94) in the failure prediction of a LHD machine. In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters like learning rate (IDT) and momentum ( mu ). The input variables of the neural network model were selected by maximizing the mean entropy value. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a load-haul-dump (LHD) machine operated at a coal mine in Alaska, USA. Past time-to-failure data for the LHD machine were collected, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2 = 0.94) in the failure prediction of a LHD machine. |
| Author | Chatterjee, Snehamoy Bandopadhyay, Sukumar |
| Author_xml | – sequence: 1 givenname: Snehamoy surname: Chatterjee fullname: Chatterjee, Snehamoy email: snehamoy@gmail.com organization: Department of Mining Engineering, National Institute of Technology, Rourkela 769 008, Orissa, India – sequence: 2 givenname: Sukumar surname: Bandopadhyay fullname: Bandopadhyay, Sukumar organization: Department of Mining Engineering, University of Alaska, Fairbanks, AK, USA |
| BookMark | eNqFkUGLFDEQhYOs4OzqH_CUo5ceK0l3p1u8LIurwoIgeg7VSXomYzoZk7TLgj_ezI4nDysU1OV9j6r3LslFiMES8prBlgHr3x62Nt_jlgPjWxB14BnZsEGKppejuCAbGDvZtEy2L8hlzgcAJgHkhvz-ar3DyXlXHqjNxS1YXAx0zS7sKNKdDbY4TdHvYnJlvzQTZmsopuJmpx16GuyaHle5j-nHO3odKB6P3umzU4nVxkc0zR5X35h1OdIF9d4F-5I8n9Fn--rvviLfbz98u_nU3H35-Pnm-q7Rou9L03HdtRxhwKkFaYScDHaj1AO3Uz-ICUdhjLSsR4N87nrRa83ncR5BMpi7UVyRN2ffY4o_1_qlWlzW1nsMNq5Z1SwYQAeC_18KYuBtPaOt0uEs1SnmnOystCuPP5eEzlepOnWjDurUjTp1o0DUgYryf9Bjqsmnh6eh92fI1qh-OZtU1s4GbY1LVhdlonsK_wM38aw8 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2015_10_046 crossref_primary_10_1155_2017_6916575 crossref_primary_10_1111_mice_12117 crossref_primary_10_1080_17480930_2016_1262499 crossref_primary_10_3390_w6061642 crossref_primary_10_1016_j_asoc_2019_105873 crossref_primary_10_1016_j_ijsrc_2020_03_018 crossref_primary_10_1016_j_apm_2016_07_006 crossref_primary_10_1016_j_jii_2019_03_001 crossref_primary_10_1016_j_ress_2014_12_002 crossref_primary_10_1016_j_ijepes_2014_11_028 crossref_primary_10_3390_en14175496 crossref_primary_10_1111_grs_12233 crossref_primary_10_1002_qre_1686 crossref_primary_10_3390_w14121917 crossref_primary_10_1007_s10479_015_1863_z crossref_primary_10_3390_app12094718 crossref_primary_10_1007_s40899_017_0160_1 crossref_primary_10_1016_j_procir_2018_03_065 crossref_primary_10_3390_math10224263 crossref_primary_10_1002_qre_1844 crossref_primary_10_1109_TR_2015_2440531 crossref_primary_10_1016_j_engfailanal_2020_104542 crossref_primary_10_1016_j_ress_2013_08_004 crossref_primary_10_1080_15715124_2019_1705317 crossref_primary_10_1007_s00607_015_0459_4 crossref_primary_10_3390_w14182815 crossref_primary_10_1016_j_ins_2016_01_102 crossref_primary_10_1115_1_4035433 crossref_primary_10_1631_jzus_C12a0241 crossref_primary_10_1016_j_eswa_2014_07_039 crossref_primary_10_3390_w14223714 crossref_primary_10_1002_qre_1773 crossref_primary_10_3390_min6020051 crossref_primary_10_1007_s00170_017_1039_x crossref_primary_10_1016_j_eswa_2021_114952 crossref_primary_10_1007_s12892_017_0090_0 crossref_primary_10_3390_w15030522 crossref_primary_10_1016_j_eswa_2019_113139 crossref_primary_10_1016_j_eswa_2013_04_038 crossref_primary_10_1007_s11356_023_27248_y crossref_primary_10_1088_1757_899X_1104_1_012006 crossref_primary_10_1016_j_agrformet_2022_109000 crossref_primary_10_3390_math11071675 crossref_primary_10_1007_s10706_016_0081_z crossref_primary_10_1016_j_ress_2013_06_039 crossref_primary_10_1016_j_jvolgeores_2019_06_006 crossref_primary_10_3390_info6010049 crossref_primary_10_1016_j_eswa_2012_08_018 crossref_primary_10_1080_02626667_2018_1483581 crossref_primary_10_1080_17480930_2015_1123599 crossref_primary_10_1111_exsy_13360 crossref_primary_10_3390_app12052622 crossref_primary_10_1007_s00521_023_08734_3 crossref_primary_10_1007_s13198_014_0310_x crossref_primary_10_17531_ein_2016_4_17 crossref_primary_10_1142_S0218539317500139 |
| Cites_doi | 10.1016/S0957-4174(00)00019-1 10.1109/4235.661548 10.1016/j.eswa.2007.12.029 10.1016/S1568-4946(02)00059-5 10.1002/qre.4680110206 10.1080/10170669.1997.10432936 10.1016/j.eswa.2009.09.070 10.1016/S0360-8352(02)00036-0 10.1109/59.744545 10.1007/s11004-010-9276-7 10.1016/j.eswa.2007.03.014 10.1016/j.eswa.2008.02.053 10.1016/j.eswa.2006.08.032 10.1016/S0360-8352(98)00066-7 10.1016/j.eswa.2009.08.024 10.1016/S0951-8320(00)00102-2 10.1016/j.mcm.2005.02.008 10.1080/03052150601044823 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd |
| Copyright_xml | – notice: 2012 Elsevier Ltd |
| DBID | AAYXX CITATION 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2012.03.030 |
| DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Engineering Research Database Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 10951 |
| ExternalDocumentID | 10_1016_j_eswa_2012_03_030 S0957417412005003 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACLOT ACNTT ACRPL ACVFH ADCNI ADJOM ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF R2- SBC SET SEW WUQ XPP ZMT ~HD 7QO 8FD ABUFD FR3 P64 7SC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c366t-52c542a08ab407d37bda597c82eb683ba93dd7e16ada2f5636cc2f9f90710f593 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Sat Sep 27 23:59:24 EDT 2025 Tue Oct 07 09:42:39 EDT 2025 Wed Oct 01 03:51:36 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Fri Feb 23 02:26:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Systems reliability Entropy Learning parameters Genetic algorithm Variable selection |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-52c542a08ab407d37bda597c82eb683ba93dd7e16ada2f5636cc2f9f90710f593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1038244074 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1701005032 proquest_miscellaneous_1038244074 crossref_citationtrail_10_1016_j_eswa_2012_03_030 crossref_primary_10_1016_j_eswa_2012_03_030 elsevier_sciencedirect_doi_10_1016_j_eswa_2012_03_030 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-15 |
| PublicationDateYYYYMMDD | 2012-09-15 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wei, Ma, Hong-Jun, Wang, Yun-Tao (b0120) 2003; 3 Chang, P. T., Lin, K. P., & Pai, P. F. (2004). Hybrid learning fuzzy neural models in forecasting engine systems reliability. In Bishop (b0010) 1998 MacKay (b0090) 2003 Yeh, Lin, Chung (b0140) 2010; 37 Dengiz, Atiparmak, Smith (b0030) 1997; 1 Congdon, C. B. (1995). A comparison of genetic algorithm and other machine learning systems on a complex classification task from common disease research. PhD thesis, Computer Science and Engineering Division, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. Willighagen, E. (2005). R based genetic algorithm for binary and floating point chromosomes. Su, Tong, Leou (b0100) 1997; 4 Limas, M. C. (2006). A MORE flexible neural network package. Hagan, Demuth, Beale (b0035) 1995 Honarkhah, Caers (b0060) 2010; 42 Box, Jenkins (b0015) 1976 Amjady, Ehsan (b0005) 1999; 14 Li, Balazs, Parks (b0065) 2007; 39 Pai (b0095) 2006; 43 Hu, Si, Yang (b0135) 2010; 37 Lu, Lu, Kloarik (b0085) 2001; 72 Holland (b0055) 1975 Yi-Hui (b0145) 2007; 33 . Xu, Xie, Tang (b0115) 2003; 2 Zheng (b0150) 2009; 36 Fonseca, Knapp (b0130) 2000; 19 Haykins (b0040) 1999 Ho, Xie (b0050) 1998; 35 Liu, Kuo, Sastri (b0075) 1995; 11 Lolas, Olatunbosun (b0080) 2008; 34 El-Sebakhy (b0125) 2009; 36 Ho, Xie, Goh (b0045) 2002; 42 (pp. 2361–2366). Amjady (10.1016/j.eswa.2012.03.030_b0005) 1999; 14 Lu (10.1016/j.eswa.2012.03.030_b0085) 2001; 72 Box (10.1016/j.eswa.2012.03.030_b0015) 1976 Hu (10.1016/j.eswa.2012.03.030_b0135) 2010; 37 Lolas (10.1016/j.eswa.2012.03.030_b0080) 2008; 34 MacKay (10.1016/j.eswa.2012.03.030_b0090) 2003 Wei (10.1016/j.eswa.2012.03.030_b0120) 2003; 3 Ho (10.1016/j.eswa.2012.03.030_b0045) 2002; 42 10.1016/j.eswa.2012.03.030_b0020 Yeh (10.1016/j.eswa.2012.03.030_b0140) 2010; 37 Liu (10.1016/j.eswa.2012.03.030_b0075) 1995; 11 Li (10.1016/j.eswa.2012.03.030_b0065) 2007; 39 Xu (10.1016/j.eswa.2012.03.030_b0115) 2003; 2 Ho (10.1016/j.eswa.2012.03.030_b0050) 1998; 35 Su (10.1016/j.eswa.2012.03.030_b0100) 1997; 4 Holland (10.1016/j.eswa.2012.03.030_b0055) 1975 Dengiz (10.1016/j.eswa.2012.03.030_b0030) 1997; 1 10.1016/j.eswa.2012.03.030_b0025 10.1016/j.eswa.2012.03.030_b0110 Honarkhah (10.1016/j.eswa.2012.03.030_b0060) 2010; 42 Pai (10.1016/j.eswa.2012.03.030_b0095) 2006; 43 Hagan (10.1016/j.eswa.2012.03.030_b0035) 1995 10.1016/j.eswa.2012.03.030_b0070 El-Sebakhy (10.1016/j.eswa.2012.03.030_b0125) 2009; 36 Zheng (10.1016/j.eswa.2012.03.030_b0150) 2009; 36 Fonseca (10.1016/j.eswa.2012.03.030_b0130) 2000; 19 Yi-Hui (10.1016/j.eswa.2012.03.030_b0145) 2007; 33 Bishop (10.1016/j.eswa.2012.03.030_b0010) 1998 Haykins (10.1016/j.eswa.2012.03.030_b0040) 1999 |
| References_xml | – volume: 19 start-page: 45 year: 2000 end-page: 57 ident: b0130 article-title: An expert system for reliability centered maintenance in the chemical industry publication-title: Expert Systems with Applications – year: 1995 ident: b0035 article-title: Neural network design – volume: 36 start-page: 4013 year: 2009 end-page: 4020 ident: b0125 article-title: Software reliability identification using functional networks: A comparative study publication-title: Expert Systems with Applications – volume: 35 start-page: 213 year: 1998 end-page: 216 ident: b0050 article-title: The use of ARIMA models for reliability forecasting and analysis publication-title: Computers and Industrial Engineering – volume: 37 start-page: 2550 year: 2010 end-page: 2562 ident: b0135 article-title: System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization publication-title: Expert Systems with Applications – reference: Limas, M. C. (2006). A MORE flexible neural network package. < – volume: 34 start-page: 2360 year: 2008 end-page: 2369 ident: b0080 article-title: Prediction of vehicle reliability performance using artificial neural networks publication-title: Expert Systems with Applications – reference: Chang, P. T., Lin, K. P., & Pai, P. F. (2004). Hybrid learning fuzzy neural models in forecasting engine systems reliability. In – volume: 36 start-page: 2116 year: 2009 end-page: 2122 ident: b0150 article-title: Predicting software reliability with neural network ensembles publication-title: Expert Systems with Applications – volume: 14 start-page: 287 year: 1999 end-page: 292 ident: b0005 article-title: Evaluation of power systems reliability by artificial neural network publication-title: IEEE Transaction on Power Systems – year: 1975 ident: b0055 article-title: Adaptation in natural and artificial systems – volume: 42 start-page: 371 year: 2002 end-page: 375 ident: b0045 article-title: A comparative study of neural network and Box-Jenkins ARIMA modeling in time series forecasting publication-title: Computers and Industrial Engineering – year: 2003 ident: b0090 article-title: Information theory, inference, and learning algorithms – volume: 1 start-page: 179 year: 1997 end-page: 188 ident: b0030 article-title: Local search genetic algorithm for optimization of highly reliable communications networks publication-title: IEEE Transactions on Evolutionary Computation – volume: 72 start-page: 39 year: 2001 end-page: 45 ident: b0085 article-title: Multivariate performance reliability prediction in real-time publication-title: Reliability Engineering and System Safety – volume: 39 start-page: 147 year: 2007 end-page: 161 ident: b0065 article-title: Engineering design optimization using species-conserving genetic algorithms publication-title: Engineering Optimization – year: 1998 ident: b0010 article-title: Neural networks for pattern recognition – volume: 42 start-page: 487 year: 2010 end-page: 517 ident: b0060 article-title: Stochastic simulation of patterns using distance-based pattern modeling publication-title: Mathematical Geosciences – volume: 3 start-page: 1704 year: 2003 end-page: 1707 ident: b0120 article-title: An application of multi-population genetic algorithm for optimization of adversaries’ tactics and strategies in battlefield simulation publication-title: International Conference on Machine Learning and Cybernetics – reference: Congdon, C. B. (1995). A comparison of genetic algorithm and other machine learning systems on a complex classification task from common disease research. PhD thesis, Computer Science and Engineering Division, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. – reference: Willighagen, E. (2005). R based genetic algorithm for binary and floating point chromosomes. < – year: 1976 ident: b0015 article-title: Time series analysis: Forecasting and control – reference: >. – reference: (pp. 2361–2366). – volume: 33 start-page: 1090 year: 2007 end-page: 1096 ident: b0145 article-title: Evolutionary neural network modeling for forecasting the field failure data of repairable systems publication-title: Expert Systems with Applications – volume: 4 start-page: 419 year: 1997 end-page: 430 ident: b0100 article-title: Combining time series and neural network approaches publication-title: Journal of the Chinese Institute of Industrial Engineers – volume: 37 start-page: 3537 year: 2010 end-page: 3544 ident: b0140 article-title: Performance analysis of cellular automata Monte Carlo Simulation for estimating network reliability publication-title: Expert Systems with Applications – year: 1999 ident: b0040 article-title: Neural networks: A comprehensive foundation – volume: 43 start-page: 262 year: 2006 end-page: 274 ident: b0095 article-title: System reliability forecasting by support vector machine with genetic algorithms publication-title: Mathematical and Computer Modeling – volume: 2 start-page: 255 year: 2003 end-page: 268 ident: b0115 article-title: Application of neural networks in forecasting engine systems reliability publication-title: Application of Soft Computation Journal – volume: 11 start-page: 107 year: 1995 end-page: 112 ident: b0075 article-title: An exploratory study of a neural network approach for reliability data analysis publication-title: Quality and Reliability Engineering International – year: 1976 ident: 10.1016/j.eswa.2012.03.030_b0015 – volume: 19 start-page: 45 issue: 1 year: 2000 ident: 10.1016/j.eswa.2012.03.030_b0130 article-title: An expert system for reliability centered maintenance in the chemical industry publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(00)00019-1 – volume: 3 start-page: 1704 issue: 2–5 year: 2003 ident: 10.1016/j.eswa.2012.03.030_b0120 article-title: An application of multi-population genetic algorithm for optimization of adversaries’ tactics and strategies in battlefield simulation publication-title: International Conference on Machine Learning and Cybernetics – ident: 10.1016/j.eswa.2012.03.030_b0020 – year: 1999 ident: 10.1016/j.eswa.2012.03.030_b0040 – volume: 1 start-page: 179 issue: 3 year: 1997 ident: 10.1016/j.eswa.2012.03.030_b0030 article-title: Local search genetic algorithm for optimization of highly reliable communications networks publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.661548 – year: 2003 ident: 10.1016/j.eswa.2012.03.030_b0090 – volume: 36 start-page: 2116 issue: 2 year: 2009 ident: 10.1016/j.eswa.2012.03.030_b0150 article-title: Predicting software reliability with neural network ensembles publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.12.029 – volume: 2 start-page: 255 issue: 4 year: 2003 ident: 10.1016/j.eswa.2012.03.030_b0115 article-title: Application of neural networks in forecasting engine systems reliability publication-title: Application of Soft Computation Journal doi: 10.1016/S1568-4946(02)00059-5 – volume: 11 start-page: 107 year: 1995 ident: 10.1016/j.eswa.2012.03.030_b0075 article-title: An exploratory study of a neural network approach for reliability data analysis publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.4680110206 – volume: 4 start-page: 419 year: 1997 ident: 10.1016/j.eswa.2012.03.030_b0100 article-title: Combining time series and neural network approaches publication-title: Journal of the Chinese Institute of Industrial Engineers doi: 10.1080/10170669.1997.10432936 – year: 1998 ident: 10.1016/j.eswa.2012.03.030_b0010 – volume: 37 start-page: 3537 issue: 5 year: 2010 ident: 10.1016/j.eswa.2012.03.030_b0140 article-title: Performance analysis of cellular automata Monte Carlo Simulation for estimating network reliability publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.09.070 – volume: 42 start-page: 371 year: 2002 ident: 10.1016/j.eswa.2012.03.030_b0045 article-title: A comparative study of neural network and Box-Jenkins ARIMA modeling in time series forecasting publication-title: Computers and Industrial Engineering doi: 10.1016/S0360-8352(02)00036-0 – volume: 14 start-page: 287 year: 1999 ident: 10.1016/j.eswa.2012.03.030_b0005 article-title: Evaluation of power systems reliability by artificial neural network publication-title: IEEE Transaction on Power Systems doi: 10.1109/59.744545 – volume: 42 start-page: 487 year: 2010 ident: 10.1016/j.eswa.2012.03.030_b0060 article-title: Stochastic simulation of patterns using distance-based pattern modeling publication-title: Mathematical Geosciences doi: 10.1007/s11004-010-9276-7 – volume: 34 start-page: 2360 issue: 4 year: 2008 ident: 10.1016/j.eswa.2012.03.030_b0080 article-title: Prediction of vehicle reliability performance using artificial neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.03.014 – volume: 36 start-page: 4013 issue: 2 year: 2009 ident: 10.1016/j.eswa.2012.03.030_b0125 article-title: Software reliability identification using functional networks: A comparative study publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.02.053 – year: 1975 ident: 10.1016/j.eswa.2012.03.030_b0055 – volume: 33 start-page: 1090 issue: 4 year: 2007 ident: 10.1016/j.eswa.2012.03.030_b0145 article-title: Evolutionary neural network modeling for forecasting the field failure data of repairable systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.08.032 – ident: 10.1016/j.eswa.2012.03.030_b0110 – volume: 35 start-page: 213 issue: 1–2 year: 1998 ident: 10.1016/j.eswa.2012.03.030_b0050 article-title: The use of ARIMA models for reliability forecasting and analysis publication-title: Computers and Industrial Engineering doi: 10.1016/S0360-8352(98)00066-7 – ident: 10.1016/j.eswa.2012.03.030_b0025 – volume: 37 start-page: 2550 issue: 3 year: 2010 ident: 10.1016/j.eswa.2012.03.030_b0135 article-title: System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.08.024 – ident: 10.1016/j.eswa.2012.03.030_b0070 – volume: 72 start-page: 39 year: 2001 ident: 10.1016/j.eswa.2012.03.030_b0085 article-title: Multivariate performance reliability prediction in real-time publication-title: Reliability Engineering and System Safety doi: 10.1016/S0951-8320(00)00102-2 – volume: 43 start-page: 262 year: 2006 ident: 10.1016/j.eswa.2012.03.030_b0095 article-title: System reliability forecasting by support vector machine with genetic algorithms publication-title: Mathematical and Computer Modeling doi: 10.1016/j.mcm.2005.02.008 – year: 1995 ident: 10.1016/j.eswa.2012.03.030_b0035 – volume: 39 start-page: 147 issue: 2 year: 2007 ident: 10.1016/j.eswa.2012.03.030_b0065 article-title: Engineering design optimization using species-conserving genetic algorithms publication-title: Engineering Optimization doi: 10.1080/03052150601044823 |
| SSID | ssj0017007 |
| Score | 2.3375192 |
| Snippet | ► We developed a genetic algorithm-based neural network reliability model. ► The automatic input variables is improved the performance of the model. ► The... In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10943 |
| SubjectTerms | Benchmarking Entropy Expert systems Genetic algorithm Genetics Learning parameters Mathematical models Mean time to failure Neural networks Systems reliability Variable selection |
| Title | Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine |
| URI | https://dx.doi.org/10.1016/j.eswa.2012.03.030 https://www.proquest.com/docview/1038244074 https://www.proquest.com/docview/1701005032 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA-il72sq6uo6w4R9iZxJk2atHsbBmV0WS-r4C0kTaojYyvaQQTZv33fa1pxl2UOQqG0JP3IS95H8nu_EPItcCSoLBXLEq6YBJsGejDlLLFJ6WySuFJgNvLPczW9lGdX6dUKmfS5MAir7HR_1Omttu7uDLvWHN7PZsNf4ByAOYQDJ0Yi46eUGncxOPr9CvNA-jkd-fY0w9Jd4kzEeIXHJ-QewvlAcdQiof9vnP5R063tOflEPnZOIx3H79ogK6HaJOv9hgy0G5-fyQsCjCPx9jNF-oyYl0gR3H5NLYXOgjmL1M6v64dZc3PH0Ih5ij8cmSQo8lu2pxYd_p2OK_pmjZs2NTxmXlvPbuxizjx0BnrX4jHDFrk8Ob6YTFm3vQIrhFINhKBFKhM7yqyDqM4L7byF8KLIkuBUJpzNhfc6cGU9CC5VAiHWZV7m6JWUaS62yWpVV2GHUCe191luLZdcased1aEE50KPZKG8KHYJ79vVFB33OG6BMTc9yOzWoCwMysKMBByjXXL4Wuc-Mm8sLZ324jJ_9R8DpmFpvYNetgYGFq6W2CrUi0eDzPHg-4CLtaSMhnAWGXWSvXe-_wv5gFeIQOHpPlltHhbhK7g5jRu0_XhA1sanP6bnfwDAY_28 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA6iD7sv7s1F3VUj7JvEmSRt0vom4jDuqi_OwLyFpEl1ZGxFO4iw7G_3nF7EFZkHoVBok15yknNJvvOFkF-BI0FlrlgiuGIR2DTQgzFnworcWSFcLjEb-excDcfR70k8WSJHXS4Mwipb3d_o9Fpbt1d6bWv2bqfT3gU4B2AO4cCJkZrxcyWKhcYIbP_fM84D-ed0Q7inGRZvM2cakFe4f0DyIZwQlPs1FPpt6_RKT9fGZ_CZrLZeIz1sPuwLWQrFV_Kp25GBtgP0G_mLCOOGefuRIn9Gk5hIEd1-SS2F3oJJi9TOLsu7aXV1w9CKeYp_3FBJUCS4rE81PPyAHhb0xSI3rUp4zKy0nl3Z-Yx56A30pgZkhjUyHhyPjoas3V-BZVKpCmLQLI6E7SfWQVjnpXbeQnyRJSI4lUhnU-m9DlxZD5KLlUSMdZ7mKboleZzK72S5KIuwTqiLtPdJai2PeKQdd1aHHLwL3Y8y5WW2QXjXriZrycdxD4yZ6VBm1wZlYVAWpi_h6G-Qvec6tw31xsLScScu818HMmAbFtbb7WRrYGThcoktQjm_N0gdD84P-FgLymiIZ5FSR2y-8_075MNwdHZqTk_O__wgH_EOwlF4_JMsV3fzsAU-T-W26z79BJLn_1E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+estimation+using+a+genetic+algorithm-based+artificial+neural+network%3A+An+application+to+a+load-haul-dump+machine&rft.jtitle=Expert+systems+with+applications&rft.au=Chatterjee%2C+Snehamoy&rft.au=Bandopadhyay%2C+Sukumar&rft.date=2012-09-15&rft.issn=0957-4174&rft.volume=39&rft.issue=12&rft.spage=10943&rft.epage=10951&rft_id=info:doi/10.1016%2Fj.eswa.2012.03.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2012_03_030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |