An empirical recipe for inelastic hydrogen-atom collisions in non-LTE calculations

Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-t...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 618; p. A141
Main Authors Ezzeddine, R., Merle, T., Plez, B., Gebran, M., Thévenin, F., Van der Swaelmen, M.
Format Journal Article
LanguageEnglish
Published EDP Sciences 01.10.2018
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
1432-0746
DOI10.1051/0004-6361/201630352

Cover

Abstract Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-to-date atomic data of the elements under study, which are still subject to large uncertainties. Aims. We investigate the role of hydrogen collisions in NLTE spectral line synthesis, and introduce a new general empirical recipe to determine inelastic charge transfer (CT) and bound-bound hydrogen collisional rates. This recipe is based on fitting the energy functional dependence of published quantum collisional rate coefficients of several neutral elements (BeI, Na I, Mg I, Al I, Si I and Ca I) using simple polynomial equations. Methods. We perform thorough NLTE abundance calculation tests using our method for four different atoms, Na, Mg, Al and Si, for a broad range of stellar parameters. We then compare the results to calculations computed using the published quantum rates for all the corresponding elements. We also compare to results computed using excitation collisional rates via the commonly used Drawin equation for different fudge factors, SMH, applied. Results. We demonstrate that our proposed method is able to reproduce the NLTE abundance corrections performed with the quantum rates for different spectral types and metallicities for representative Na I and Al I lines to within ≤0.05 dex and ≤0.03 dex, respectively. For Mg I and Si I lines, the method performs better for the cool giants and dwarfs, while larger discrepancies up to 0.2 dex could be obtained for some lines for the subgiants and warm dwarfs. We obtained larger NLTE correction differences between models incorporating Drawin rates relative to the quantum models by up to 0.4 dex. These large discrepancies are potentially due to ignoring either or both CT and ionization collisional processes by hydrogen in our Drawin models. Conclusions. Our general empirical fitting method (EFM) for estimating hydrogen collision rates performs well in its ability to reproduce, within narrow uncertainties, the abundance corrections computed with models incorporating quantum collisional rates. It performs generally best for the cool and warm dwarfs, with slightly larger discrepancies obtained for the giants and subgiants. It could possibly be extended in the future to transitions of the same elements for which quantum calculations do not exist, or, in the absence of published quantum calculations, to other elements as well.
AbstractList Context . Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-to-date atomic data of the elements under study, which are still subject to large uncertainties. Aims . We investigate the role of hydrogen collisions in NLTE spectral line synthesis, and introduce a new general empirical recipe to determine inelastic charge transfer (CT) and bound-bound hydrogen collisional rates. This recipe is based on fitting the energy functional dependence of published quantum collisional rate coefficients of several neutral elements (Be I , Na  I , Mg  I , Al  I , Si  I and Ca  I ) using simple polynomial equations. Methods . We perform thorough NLTE abundance calculation tests using our method for four different atoms, Na, Mg, Al and Si, for a broad range of stellar parameters. We then compare the results to calculations computed using the published quantum rates for all the corresponding elements. We also compare to results computed using excitation collisional rates via the commonly used Drawin equation for different fudge factors, S M H , applied. Results . We demonstrate that our proposed method is able to reproduce the NLTE abundance corrections performed with the quantum rates for different spectral types and metallicities for representative Na  I and Al  I lines to within ≤0.05 dex and ≤0.03 dex, respectively. For Mg  I and Si  I lines, the method performs better for the cool giants and dwarfs, while larger discrepancies up to 0.2 dex could be obtained for some lines for the subgiants and warm dwarfs. We obtained larger NLTE correction differences between models incorporating Drawin rates relative to the quantum models by up to 0.4 dex. These large discrepancies are potentially due to ignoring either or both CT and ionization collisional processes by hydrogen in our Drawin models. Conclusions . Our general empirical fitting method (EFM) for estimating hydrogen collision rates performs well in its ability to reproduce, within narrow uncertainties, the abundance corrections computed with models incorporating quantum collisional rates. It performs generally best for the cool and warm dwarfs, with slightly larger discrepancies obtained for the giants and subgiants. It could possibly be extended in the future to transitions of the same elements for which quantum calculations do not exist, or, in the absence of published quantum calculations, to other elements as well.
Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-to-date atomic data of the elements under study, which are still subject to large uncertainties. Aims. We investigate the role of hydrogen collisions in NLTE spectral line synthesis, and introduce a new general empirical recipe to determine inelastic charge transfer (CT) and bound-bound hydrogen collisional rates. This recipe is based on fitting the energy functional dependence of published quantum collisional rate coefficients of several neutral elements (BeI, Na I, Mg I, Al I, Si I and Ca I) using simple polynomial equations. Methods. We perform thorough NLTE abundance calculation tests using our method for four different atoms, Na, Mg, Al and Si, for a broad range of stellar parameters. We then compare the results to calculations computed using the published quantum rates for all the corresponding elements. We also compare to results computed using excitation collisional rates via the commonly used Drawin equation for different fudge factors, SMH, applied. Results. We demonstrate that our proposed method is able to reproduce the NLTE abundance corrections performed with the quantum rates for different spectral types and metallicities for representative Na I and Al I lines to within ≤0.05 dex and ≤0.03 dex, respectively. For Mg I and Si I lines, the method performs better for the cool giants and dwarfs, while larger discrepancies up to 0.2 dex could be obtained for some lines for the subgiants and warm dwarfs. We obtained larger NLTE correction differences between models incorporating Drawin rates relative to the quantum models by up to 0.4 dex. These large discrepancies are potentially due to ignoring either or both CT and ionization collisional processes by hydrogen in our Drawin models. Conclusions. Our general empirical fitting method (EFM) for estimating hydrogen collision rates performs well in its ability to reproduce, within narrow uncertainties, the abundance corrections computed with models incorporating quantum collisional rates. It performs generally best for the cool and warm dwarfs, with slightly larger discrepancies obtained for the giants and subgiants. It could possibly be extended in the future to transitions of the same elements for which quantum calculations do not exist, or, in the absence of published quantum calculations, to other elements as well.
Author Merle, T.
Gebran, M.
Ezzeddine, R.
Thévenin, F.
Plez, B.
Van der Swaelmen, M.
Author_xml – sequence: 1
  givenname: R.
  surname: Ezzeddine
  fullname: Ezzeddine, R.
  organization: Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, UMR 5299 Montpellier, France
– sequence: 2
  givenname: T.
  surname: Merle
  fullname: Merle, T.
  organization: Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Brussels, Belgium
– sequence: 3
  givenname: B.
  surname: Plez
  fullname: Plez, B.
  organization: Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, UMR 5299 Montpellier, France
– sequence: 4
  givenname: M.
  surname: Gebran
  fullname: Gebran, M.
  organization: Department of Physics and Astronomy, Notre Dame University-Louaize, PO Box 72, Zouk Mikaël, Lebanon
– sequence: 5
  givenname: F.
  surname: Thévenin
  fullname: Thévenin, F.
  organization: Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, UMR7293, CS 34229, 06304 Nice Cedex 4, France
– sequence: 6
  givenname: M.
  surname: Van der Swaelmen
  fullname: Van der Swaelmen, M.
  organization: Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Brussels, Belgium
BackLink https://hal.science/hal-02323937$$DView record in HAL
BookMark eNqNkMtOwzAQRS1UJErhC9hky8LUjh9JllUfFCkICZWH2FiuY1ODm1R2CvTvSQgqEhtYjWZ0z8y9cwx6ZVVqAM4wusCI4SFCiEJOOB7GCHOCCIsPQB9TEkOUUN4D_b3iCByH8NK0MU5JH9yOykivN9ZbJV3ktbIbHZnKR7bUTobaqmi1K3z1rEso62odqco5G2xVhkYSNT5gvphGDay2Ttbt_AQcGumCPv2uA3A3my7Gc5jfXF6NRzlUhPMa0gwppgq9TLEhmSk01mnKKTPLgiVU06XhmKGCIUMYo5SkDCfKNGlUzJE2igwA7fZuy43cvUvnxMbbtfQ7gZFo_yLa1KJNLfZ_abDzDlvJH6CSVsxHuWhnKCYxyUjyhhtt1mmVr0Lw2ghl66-UtZfW_XGH_GL_5w52lA21_tgj0r8KnpCEiRQ9iPnT5PF-PJmJa_IJhHqVhg
CitedBy_id crossref_primary_10_1051_0004_6361_202039484
crossref_primary_10_1051_0004_6361_201935101
crossref_primary_10_1051_0004_6361_202142195
crossref_primary_10_1146_annurev_astro_052722_103557
crossref_primary_10_1051_0004_6361_202452079
crossref_primary_10_3847_1538_4357_ab97ba
Cites_doi 10.1051/0004-6361:20078837
10.1134/S1063773716050078
10.1098/rspa.1921.0029
10.1051/0004-6361:200809452
10.1051/0004-6361/201629202
10.1007/BF01392774
10.1093/mnras/stx2580
10.1088/0370-1328/79/6/304
10.1051/0004-6361/201628659
10.3847/1538-4357/aa98da
10.1080/14786440408637241
10.1086/147445
10.1051/0004-6361/201525846
10.1007/3-540-55256-1_280
10.1134/S1063773716080028
10.1086/149790
10.1093/mnras/276.3.859
10.3847/1538-4357/aa88cb
10.1051/0004-6361/201526319
10.1063/1.4973457
10.1051/0004-6361/201525914
10.1016/j.chemphys.2015.06.003
10.1088/0031-8949/1993/T47/030
10.1051/0004-6361/201015126
10.1086/506564
10.1146/annurev.astro.42.053102.134001
10.1088/1742-6596/194/4/042029
10.1051/0004-6361/201016095
10.1002/asna.200811080
10.1051/0004-6361/201116745
10.1051/0004-6361/201322389
10.1103/PhysRevA.85.032704
10.1103/PhysRevA.93.042705
10.1051/0004-6361/201731285
10.1007/BF01379963
10.1086/307578
10.1093/mnras/290.1.102
10.1071/AS98336
10.1111/j.1365-2966.2011.19540.x
10.1051/0004-6361/201220761
10.1051/0004-6361:20031582
10.1051/0004-6361:20066232
10.1051/0004-6361/201732365
10.1051/0004-6361/201015152
10.1051/0004-6361/201731882
10.1007/BF01392775
10.1051/0004-6361/201731015
10.1088/0067-0049/216/1/1
10.1007/978-3-642-47425-5
10.1088/0004-637X/764/2/115
10.1051/0004-6361/201424714
10.1051/0004-6361:200809724
10.1002/asna.201612384
10.1134/1.1327637
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1051/0004-6361/201630352
DatabaseName Istex
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10.1051/0004-6361/201630352
oai:HAL:hal-02323937v1
10_1051_0004_6361_201630352
ark_67375_80W_HZDXVCDF_M
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
1XC
ABUFD
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c366t-490c5cdeb81f39fde1e88645fbd574e4bf6150d50f3554438517cf746c260efc3
IEDL.DBID UNPAY
ISSN 0004-6361
1432-0746
IngestDate Sun Oct 26 03:58:13 EDT 2025
Tue Oct 14 20:46:40 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Wed Oct 01 04:37:19 EDT 2025
Wed Oct 30 10:00:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-490c5cdeb81f39fde1e88645fbd574e4bf6150d50f3554438517cf746c260efc3
Notes e-mail: ranae@mit.edu
href:https://www.aanda.org/articles/aa/abs/2018/10/aa30352-16/aa30352-16.html
ark:/67375/80W-HZDXVCDF-M
bibcode:2018A%26A...618A.141E
istex:AE59E519F87CD3C54B1D74B91F4B24928369EB71
Tables A.1–A.4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/618/A141
publisher-ID:aa30352-16
dkey:10.1051/0004-6361/201630352
ORCID 0000-0002-8504-8470
0000-0002-0398-4434
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.aanda.org/articles/aa/pdf/2018/10/aa30352-16.pdf
ParticipantIDs unpaywall_primary_10_1051_0004_6361_201630352
hal_primary_oai_HAL_hal_02323937v1
crossref_citationtrail_10_1051_0004_6361_201630352
crossref_primary_10_1051_0004_6361_201630352
istex_primary_ark_67375_80W_HZDXVCDF_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2018
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Barklem (R10) 1998; 15
Merle (R44) 2015; 577
Drawin (R30) 1969b; 225
Belyaev (R17) 2017; 606
Yakovleva (R63) 2018; 473
Gustafsson (R35) 2008; 486
Heiter (R36) 2015; 582
Steffen (R55) 1990; 239
R60
R25
Baumueller (R14) 1996; 307
Nordlander (R46) 2017; 597
Zatsarinny (R64) 2009; 194
Barklem (R11) 2010; 519
Belyaev (R18) 2017a; 608
R1
Shi (R52) 2008; 486
Belyaev (R20) 2012; 85
Peterson (R48) 2015; 216
Castelli (R27) 2010; 520
Barklem (R9) 1997; 290
Anstee (R5) 1995; 276
Gehren (R32) 2004; 413
Steinmetz (R56) 2006; 132
Mashonkina (R41) 2016a; 42
Lambert (R37) 1993; 47
Belyaev (R19) 2017b; 606
Barklem (R12) 2011; 530
Seaton (R50) 1962a; 79
Asplund (R6) 2005; 43
Baumueller (R15) 1997; 325
Drawin (R29) 1969a; 225
Saha (R49) 1921; 99
Mashonkina (R39) 2013; 550
Thévenin (R57) 1999; 521
Belyaev (R21) 2014; 572
Mashonkina (R40) 2000; 44
Steenbock (R54) 1992; 401
Mitrushchenkov (R45) 2017; 146
Merle (R43) 2011; 418
van Regemorter (R61) 1962; 136
Andrievsky (R3) 2007; 464
Lind (R38) 2011; 528
Mashonkina (R42) 2016b; 42
Bergemann (R24) 2017; 847
Belyaev (R22) 2017; 851
Allende Prieto (R2) 2008; 329
Barklem (R7) 2016; 93
Carlsson (R26) 1992; 26
Gilmore (R33) 2012; 147
Belyaev (R16) 2013; 560
Bergemann (R23) 2013; 764
Steenbock (R53) 1984; 130
Guitou (R34) 2015; 462
Barklem (R8) 2018; 612
Travis (R59) 1968; 154
R51
Thomson (R58) 1912; 23
Drawin (R28) 1968; 211
R13
Osorio (R47) 2015; 579
Andrievsky (R4) 2008; 481
Ezzeddine (R31) 2016; 337
Yakovleva (R62) 2016; 593
References_xml – volume: 481
  start-page: 481
  year: 2008
  ident: R4
  publication-title: A&A
  doi: 10.1051/0004-6361:20078837
– ident: R13
– volume: 42
  start-page: 366
  year: 2016a
  ident: R41
  publication-title: Astron. Lett.
  doi: 10.1134/S1063773716050078
– volume: 99
  start-page: 135
  year: 1921
  ident: R49
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1921.0029
– volume: 325
  start-page: 1088
  year: 1997
  ident: R15
  publication-title: A&A
– volume: 147
  start-page: 25
  year: 2012
  ident: R33
  publication-title: The Messenger
– volume: 486
  start-page: 303
  year: 2008
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361:200809452
– volume: 597
  start-page: A6
  year: 2017
  ident: R46
  publication-title: A&A
  doi: 10.1051/0004-6361/201629202
– volume: 225
  start-page: 470
  year: 1969a
  ident: R29
  publication-title: Z. Angew. Phys.
  doi: 10.1007/BF01392774
– volume: 473
  start-page: 3810
  year: 2018
  ident: R63
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2580
– volume: 79
  start-page: 1105
  year: 1962a
  ident: R50
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/79/6/304
– volume: 593
  start-page: A27
  year: 2016
  ident: R62
  publication-title: A&A
  doi: 10.1051/0004-6361/201628659
– volume: 851
  start-page: 59
  year: 2017
  ident: R22
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa98da
– ident: R1
– volume: 23
  start-page: 499
  year: 1912
  ident: R58
  publication-title: Philos. Mag.
  doi: 10.1080/14786440408637241
– volume: 136
  start-page: 906
  year: 1962
  ident: R61
  publication-title: ApJ
  doi: 10.1086/147445
– volume: 579
  start-page: A53
  year: 2015
  ident: R47
  publication-title: A&A
  doi: 10.1051/0004-6361/201525846
– volume: 401
  start-page: 57
  year: 1992
  ident: R54
  publication-title: Lect. Notes Phys.
  doi: 10.1007/3-540-55256-1_280
– volume: 42
  start-page: 606
  year: 2016b
  ident: R42
  publication-title: Astron. Lett.
  doi: 10.1134/S1063773716080028
– volume: 154
  start-page: 689
  year: 1968
  ident: R59
  publication-title: ApJ
  doi: 10.1086/149790
– volume: 276
  start-page: 859
  year: 1995
  ident: R5
  publication-title: MNRAS
  doi: 10.1093/mnras/276.3.859
– volume: 847
  start-page: 15
  year: 2017
  ident: R24
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa88cb
– volume: 582
  start-page: A49
  year: 2015
  ident: R36
  publication-title: A&A
  doi: 10.1051/0004-6361/201526319
– volume: 146
  start-page: 014304
  year: 2017
  ident: R45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4973457
– volume: 577
  start-page: A113
  year: 2015
  ident: R44
  publication-title: A&A
  doi: 10.1051/0004-6361/201525914
– volume: 239
  start-page: 443
  year: 1990
  ident: R55
  publication-title: A&A
– volume: 462
  start-page: 94
  year: 2015
  ident: R34
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2015.06.003
– volume: 47
  start-page: 186
  year: 1993
  ident: R37
  publication-title: Phys. Scr. Volume T
  doi: 10.1088/0031-8949/1993/T47/030
– volume: 520
  start-page: A57
  year: 2010
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361/201015126
– volume: 132
  start-page: 1645
  year: 2006
  ident: R56
  publication-title: AJ
  doi: 10.1086/506564
– volume: 43
  start-page: 481
  year: 2005
  ident: R6
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.42.053102.134001
– volume: 130
  start-page: 319
  year: 1984
  ident: R53
  publication-title: A&A
– volume: 194
  start-page: 042029
  year: 2009
  ident: R64
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/194/4/042029
– volume: 528
  start-page: A103
  year: 2011
  ident: R38
  publication-title: A&A
  doi: 10.1051/0004-6361/201016095
– volume: 329
  start-page: 1018
  year: 2008
  ident: R2
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.200811080
– volume: 530
  start-page: A94
  year: 2011
  ident: R12
  publication-title: A&A
  doi: 10.1051/0004-6361/201116745
– volume: 560
  start-page: A60
  year: 2013
  ident: R16
  publication-title: A&A
  doi: 10.1051/0004-6361/201322389
– volume: 85
  start-page: 032704
  year: 2012
  ident: R20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.032704
– ident: R25
– volume: 93
  start-page: 042705
  year: 2016
  ident: R7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.042705
– volume: 606
  start-page: A106
  year: 2017
  ident: R17
  publication-title: A&A
  doi: 10.1051/0004-6361/201731285
– volume: 211
  start-page: 404
  year: 1968
  ident: R28
  publication-title: Z. Angew. Phys.
  doi: 10.1007/BF01379963
– volume: 521
  start-page: 753
  year: 1999
  ident: R57
  publication-title: ApJ
  doi: 10.1086/307578
– volume: 290
  start-page: 102
  year: 1997
  ident: R9
  publication-title: MNRAS
  doi: 10.1093/mnras/290.1.102
– volume: 15
  start-page: 336
  year: 1998
  ident: R10
  publication-title: PASA
  doi: 10.1071/AS98336
– volume: 418
  start-page: 863
  year: 2011
  ident: R43
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19540.x
– volume: 550
  start-page: A28
  year: 2013
  ident: R39
  publication-title: A&A
  doi: 10.1051/0004-6361/201220761
– volume: 413
  start-page: 1045
  year: 2004
  ident: R32
  publication-title: A&A
  doi: 10.1051/0004-6361:20031582
– volume: 464
  start-page: 1081
  year: 2007
  ident: R3
  publication-title: A&A
  doi: 10.1051/0004-6361:20066232
– volume: 307
  start-page: 961
  year: 1996
  ident: R14
  publication-title: A&A
– volume: 612
  start-page: A90
  year: 2018
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/201732365
– volume: 519
  start-page: A20
  year: 2010
  ident: R11
  publication-title: A&A
  doi: 10.1051/0004-6361/201015152
– volume: 608
  start-page: A33
  year: 2017a
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361/201731882
– volume: 225
  start-page: 483
  year: 1969b
  ident: R30
  publication-title: Z. Angew. Phys.
  doi: 10.1007/BF01392775
– volume: 606
  start-page: A147
  year: 2017b
  ident: R19
  publication-title: A&A
  doi: 10.1051/0004-6361/201731015
– volume: 26
  start-page: 499
  year: 1992
  ident: R26
  publication-title: ASP Conf. Ser.
– volume: 216
  start-page: 1
  year: 2015
  ident: R48
  publication-title: ApJS
  doi: 10.1088/0067-0049/216/1/1
– ident: R60
  doi: 10.1007/978-3-642-47425-5
– volume: 764
  start-page: 115
  year: 2013
  ident: R23
  publication-title: ApJ
  doi: 10.1088/0004-637X/764/2/115
– volume: 572
  start-page: A103
  year: 2014
  ident: R21
  publication-title: A&A
  doi: 10.1051/0004-6361/201424714
– volume: 486
  start-page: 951
  year: 2008
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361:200809724
– volume: 337
  start-page: 850
  year: 2016
  ident: R31
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.201612384
– volume: 44
  start-page: 790
  year: 2000
  ident: R40
  publication-title: Astron. Rep.
  doi: 10.1134/1.1327637
– ident: R51
SSID ssj0002183
Score 2.373841
Snippet Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires...
Context . Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires...
SourceID unpaywall
hal
crossref
istex
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage A141
SubjectTerms Astrophysics
atomic processes
line: formation
Physics
stars: abundances
stars: atmospheres
stars: late-type
Title An empirical recipe for inelastic hydrogen-atom collisions in non-LTE calculations
URI https://api.istex.fr/ark:/67375/80W-HZDXVCDF-M/fulltext.pdf
https://hal.science/hal-02323937
https://www.aanda.org/articles/aa/pdf/2018/10/aa30352-16.pdf
UnpaywallVersion publishedVersion
Volume 618
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1432-0746
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002183
  issn: 0004-6361
  databaseCode: GI~
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5aWyHggcsArVwmC6E94TYX51KJl2hbKWibJrRCQUKR7dgaWptGvQDlgd_OOUkaAQ8IeHOSYzvJOba_Yx9_BniWKeFFA2W5oyPDhTHYD2b-gONQ7KhMu9LEtMH59CwcjcXrSTDZgRfbvTAUVinJh644guvgsL6U_SKz6Km7MbZzvPSJx5O7YQ9vt6ATBojE29AZn50n7yvEK3joV3SpwqcASxFuSYcCt988pyLDsrBfBqbWJYVFduhPf70J19d5ITdf5HT609gzvA0ft29dhZxc9dYr1dPffiN0_N_PugO3alDKkirDXdgx-S7sJUuaJp_PNuyAlelqFmS5C9fOq9Q9eJPkzMyKTyXRCCOmjMIwxMEMwSviciyPXW6yxRzNlKN7P2Nkd-V29iWKsHye85OLY4aZdX2O2PI-jIfHF4cjXh_TwLUfhisuBo4OdGZU7Fp_YDPjmjgORWBVFkTCCGWJdD4LHEvYRviI8YgLSYQafSljtf8A2lid2QPmEdpBUGdjcgtjV0rjaewyZGyV8jzVBW-ro1TXHOZ0lMY0LdfSA5fW0kVKik0bxXbheZOpqCg8_iz-FJXfSBL99ig5Seke4htijIs-u104KG2jEZOLKwqRi4I0dt6low9Hk7eHR8P0tAu8MZ6_qf3hP8o_ghtkPVV44WNorxZr8wRh0krtQ-vlq-_7dZv4AdWqBnQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9trRDsgY8BWvmShdCecJsPx00lXqJtVYW2aUIrFCQU2Y6tobVp1I9B-eu5S9IIeEDAm5Oc7SR3tn9nn38GeJVpEfQH2nHP9C0X1mI_mIUDjkOxpzPjKxvTBuezczkai7eTaLIDb7Z7YSisUpEPXXEE18FhPaV6RebQU_djbOd4GRKPJ_dlF2_vQltGiMRb0B6fXyQfK8QruAwrulQRUoClkFvSocjvNc-pSFkW9svAtHtFYZFt-tPf9uD2Oi_U5quaTn8ae4b34PP2rauQk-vueqW75vtvhI7_-1n34W4NSllSZXgAOzbfh4NkSdPk89mGHbIyXc2CLPfh1kWVegjvkpzZWfGlJBphxJRRWIY4mCF4RVyO5bGrTbaYo5lydO9njOyu3M6-RBGWz3N-ennCMLOpzxFbPoLx8OTyaMTrYxq4CaVccTHwTGQyq2PfhQOXWd_GsRSR01nUF1ZoR6TzWeQ5wjYiRIxHXEhCGvSlrDPhY2hhdfYAWEBoB0Gdi8ktjH2lbGCwy1Cx0zoIdAeCrY5SU3OY01Ea07RcS498WksXKSk2bRTbgddNpqKi8Piz-EtUfiNJ9Nuj5DSle4hviDGuf-N34LC0jUZMLa4pRK4fpbH3IR19Op68Pzoepmcd4I3x_E3tT_5R_incIeupwgufQWu1WNvnCJNW-kXdGn4AtA8FRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+recipe+for+inelastic+hydrogen-atom+collisions+in+non-LTE+calculations&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Ezzeddine%2C+R.&rft.au=Merle%2C+T.&rft.au=Plez%2C+B.&rft.au=Gebran%2C+M.&rft.date=2018-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=618&rft.spage=A141&rft_id=info:doi/10.1051%2F0004-6361%2F201630352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_201630352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon