An empirical recipe for inelastic hydrogen-atom collisions in non-LTE calculations
Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-t...
Saved in:
| Published in | Astronomy and astrophysics (Berlin) Vol. 618; p. A141 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
EDP Sciences
01.10.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0004-6361 1432-0746 1432-0746 |
| DOI | 10.1051/0004-6361/201630352 |
Cover
| Abstract | Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-to-date atomic data of the elements under study, which are still subject to large uncertainties. Aims. We investigate the role of hydrogen collisions in NLTE spectral line synthesis, and introduce a new general empirical recipe to determine inelastic charge transfer (CT) and bound-bound hydrogen collisional rates. This recipe is based on fitting the energy functional dependence of published quantum collisional rate coefficients of several neutral elements (BeI, Na I, Mg I, Al I, Si I and Ca I) using simple polynomial equations. Methods. We perform thorough NLTE abundance calculation tests using our method for four different atoms, Na, Mg, Al and Si, for a broad range of stellar parameters. We then compare the results to calculations computed using the published quantum rates for all the corresponding elements. We also compare to results computed using excitation collisional rates via the commonly used Drawin equation for different fudge factors, SMH, applied. Results. We demonstrate that our proposed method is able to reproduce the NLTE abundance corrections performed with the quantum rates for different spectral types and metallicities for representative Na I and Al I lines to within ≤0.05 dex and ≤0.03 dex, respectively. For Mg I and Si I lines, the method performs better for the cool giants and dwarfs, while larger discrepancies up to 0.2 dex could be obtained for some lines for the subgiants and warm dwarfs. We obtained larger NLTE correction differences between models incorporating Drawin rates relative to the quantum models by up to 0.4 dex. These large discrepancies are potentially due to ignoring either or both CT and ionization collisional processes by hydrogen in our Drawin models. Conclusions. Our general empirical fitting method (EFM) for estimating hydrogen collision rates performs well in its ability to reproduce, within narrow uncertainties, the abundance corrections computed with models incorporating quantum collisional rates. It performs generally best for the cool and warm dwarfs, with slightly larger discrepancies obtained for the giants and subgiants. It could possibly be extended in the future to transitions of the same elements for which quantum calculations do not exist, or, in the absence of published quantum calculations, to other elements as well. |
|---|---|
| AbstractList | Context
. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-to-date atomic data of the elements under study, which are still subject to large uncertainties.
Aims
. We investigate the role of hydrogen collisions in NLTE spectral line synthesis, and introduce a new general empirical recipe to determine inelastic charge transfer (CT) and bound-bound hydrogen collisional rates. This recipe is based on fitting the energy functional dependence of published quantum collisional rate coefficients of several neutral elements (Be
I
, Na
I
, Mg
I
, Al
I
, Si
I
and Ca
I
) using simple polynomial equations.
Methods
. We perform thorough NLTE abundance calculation tests using our method for four different atoms, Na, Mg, Al and Si, for a broad range of stellar parameters. We then compare the results to calculations computed using the published quantum rates for all the corresponding elements. We also compare to results computed using excitation collisional rates via the commonly used Drawin equation for different fudge factors,
S
M
H
, applied.
Results
. We demonstrate that our proposed method is able to reproduce the NLTE abundance corrections performed with the quantum rates for different spectral types and metallicities for representative Na
I
and Al
I
lines to within ≤0.05 dex and ≤0.03 dex, respectively. For Mg
I
and Si
I
lines, the method performs better for the cool giants and dwarfs, while larger discrepancies up to 0.2 dex could be obtained for some lines for the subgiants and warm dwarfs. We obtained larger NLTE correction differences between models incorporating Drawin rates relative to the quantum models by up to 0.4 dex. These large discrepancies are potentially due to ignoring either or both CT and ionization collisional processes by hydrogen in our Drawin models.
Conclusions
. Our general empirical fitting method (EFM) for estimating hydrogen collision rates performs well in its ability to reproduce, within narrow uncertainties, the abundance corrections computed with models incorporating quantum collisional rates. It performs generally best for the cool and warm dwarfs, with slightly larger discrepancies obtained for the giants and subgiants. It could possibly be extended in the future to transitions of the same elements for which quantum calculations do not exist, or, in the absence of published quantum calculations, to other elements as well. Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires accurate modeling of their stellar spectra with non-local thermodynamic equilibrium (NLTE) radiative transfer methods. This entails using up-to-date atomic data of the elements under study, which are still subject to large uncertainties. Aims. We investigate the role of hydrogen collisions in NLTE spectral line synthesis, and introduce a new general empirical recipe to determine inelastic charge transfer (CT) and bound-bound hydrogen collisional rates. This recipe is based on fitting the energy functional dependence of published quantum collisional rate coefficients of several neutral elements (BeI, Na I, Mg I, Al I, Si I and Ca I) using simple polynomial equations. Methods. We perform thorough NLTE abundance calculation tests using our method for four different atoms, Na, Mg, Al and Si, for a broad range of stellar parameters. We then compare the results to calculations computed using the published quantum rates for all the corresponding elements. We also compare to results computed using excitation collisional rates via the commonly used Drawin equation for different fudge factors, SMH, applied. Results. We demonstrate that our proposed method is able to reproduce the NLTE abundance corrections performed with the quantum rates for different spectral types and metallicities for representative Na I and Al I lines to within ≤0.05 dex and ≤0.03 dex, respectively. For Mg I and Si I lines, the method performs better for the cool giants and dwarfs, while larger discrepancies up to 0.2 dex could be obtained for some lines for the subgiants and warm dwarfs. We obtained larger NLTE correction differences between models incorporating Drawin rates relative to the quantum models by up to 0.4 dex. These large discrepancies are potentially due to ignoring either or both CT and ionization collisional processes by hydrogen in our Drawin models. Conclusions. Our general empirical fitting method (EFM) for estimating hydrogen collision rates performs well in its ability to reproduce, within narrow uncertainties, the abundance corrections computed with models incorporating quantum collisional rates. It performs generally best for the cool and warm dwarfs, with slightly larger discrepancies obtained for the giants and subgiants. It could possibly be extended in the future to transitions of the same elements for which quantum calculations do not exist, or, in the absence of published quantum calculations, to other elements as well. |
| Author | Merle, T. Gebran, M. Ezzeddine, R. Thévenin, F. Plez, B. Van der Swaelmen, M. |
| Author_xml | – sequence: 1 givenname: R. surname: Ezzeddine fullname: Ezzeddine, R. organization: Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, UMR 5299 Montpellier, France – sequence: 2 givenname: T. surname: Merle fullname: Merle, T. organization: Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Brussels, Belgium – sequence: 3 givenname: B. surname: Plez fullname: Plez, B. organization: Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, UMR 5299 Montpellier, France – sequence: 4 givenname: M. surname: Gebran fullname: Gebran, M. organization: Department of Physics and Astronomy, Notre Dame University-Louaize, PO Box 72, Zouk Mikaël, Lebanon – sequence: 5 givenname: F. surname: Thévenin fullname: Thévenin, F. organization: Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, UMR7293, CS 34229, 06304 Nice Cedex 4, France – sequence: 6 givenname: M. surname: Van der Swaelmen fullname: Van der Swaelmen, M. organization: Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Brussels, Belgium |
| BackLink | https://hal.science/hal-02323937$$DView record in HAL |
| BookMark | eNqNkMtOwzAQRS1UJErhC9hky8LUjh9JllUfFCkICZWH2FiuY1ODm1R2CvTvSQgqEhtYjWZ0z8y9cwx6ZVVqAM4wusCI4SFCiEJOOB7GCHOCCIsPQB9TEkOUUN4D_b3iCByH8NK0MU5JH9yOykivN9ZbJV3ktbIbHZnKR7bUTobaqmi1K3z1rEso62odqco5G2xVhkYSNT5gvphGDay2Ttbt_AQcGumCPv2uA3A3my7Gc5jfXF6NRzlUhPMa0gwppgq9TLEhmSk01mnKKTPLgiVU06XhmKGCIUMYo5SkDCfKNGlUzJE2igwA7fZuy43cvUvnxMbbtfQ7gZFo_yLa1KJNLfZ_abDzDlvJH6CSVsxHuWhnKCYxyUjyhhtt1mmVr0Lw2ghl66-UtZfW_XGH_GL_5w52lA21_tgj0r8KnpCEiRQ9iPnT5PF-PJmJa_IJhHqVhg |
| CitedBy_id | crossref_primary_10_1051_0004_6361_202039484 crossref_primary_10_1051_0004_6361_201935101 crossref_primary_10_1051_0004_6361_202142195 crossref_primary_10_1146_annurev_astro_052722_103557 crossref_primary_10_1051_0004_6361_202452079 crossref_primary_10_3847_1538_4357_ab97ba |
| Cites_doi | 10.1051/0004-6361:20078837 10.1134/S1063773716050078 10.1098/rspa.1921.0029 10.1051/0004-6361:200809452 10.1051/0004-6361/201629202 10.1007/BF01392774 10.1093/mnras/stx2580 10.1088/0370-1328/79/6/304 10.1051/0004-6361/201628659 10.3847/1538-4357/aa98da 10.1080/14786440408637241 10.1086/147445 10.1051/0004-6361/201525846 10.1007/3-540-55256-1_280 10.1134/S1063773716080028 10.1086/149790 10.1093/mnras/276.3.859 10.3847/1538-4357/aa88cb 10.1051/0004-6361/201526319 10.1063/1.4973457 10.1051/0004-6361/201525914 10.1016/j.chemphys.2015.06.003 10.1088/0031-8949/1993/T47/030 10.1051/0004-6361/201015126 10.1086/506564 10.1146/annurev.astro.42.053102.134001 10.1088/1742-6596/194/4/042029 10.1051/0004-6361/201016095 10.1002/asna.200811080 10.1051/0004-6361/201116745 10.1051/0004-6361/201322389 10.1103/PhysRevA.85.032704 10.1103/PhysRevA.93.042705 10.1051/0004-6361/201731285 10.1007/BF01379963 10.1086/307578 10.1093/mnras/290.1.102 10.1071/AS98336 10.1111/j.1365-2966.2011.19540.x 10.1051/0004-6361/201220761 10.1051/0004-6361:20031582 10.1051/0004-6361:20066232 10.1051/0004-6361/201732365 10.1051/0004-6361/201015152 10.1051/0004-6361/201731882 10.1007/BF01392775 10.1051/0004-6361/201731015 10.1088/0067-0049/216/1/1 10.1007/978-3-642-47425-5 10.1088/0004-637X/764/2/115 10.1051/0004-6361/201424714 10.1051/0004-6361:200809724 10.1002/asna.201612384 10.1134/1.1327637 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | BSCLL AAYXX CITATION 1XC VOOES ADTOC UNPAY |
| DOI | 10.1051/0004-6361/201630352 |
| DatabaseName | Istex CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1432-0746 |
| ExternalDocumentID | 10.1051/0004-6361/201630352 oai:HAL:hal-02323937v1 10_1051_0004_6361_201630352 ark_67375_80W_HZDXVCDF_M |
| GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM ABDNZ ABDPE ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ BSCLL CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 AAOGA AAYXX ABNSH ACRPL ADNMO AGQPQ CITATION 1XC ABUFD VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c366t-490c5cdeb81f39fde1e88645fbd574e4bf6150d50f3554438517cf746c260efc3 |
| IEDL.DBID | UNPAY |
| ISSN | 0004-6361 1432-0746 |
| IngestDate | Sun Oct 26 03:58:13 EDT 2025 Tue Oct 14 20:46:40 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Wed Oct 01 04:37:19 EDT 2025 Wed Oct 30 10:00:23 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://www.edpsciences.org/en/authors/copyright-and-licensing Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-490c5cdeb81f39fde1e88645fbd574e4bf6150d50f3554438517cf746c260efc3 |
| Notes | e-mail: ranae@mit.edu href:https://www.aanda.org/articles/aa/abs/2018/10/aa30352-16/aa30352-16.html ark:/67375/80W-HZDXVCDF-M bibcode:2018A%26A...618A.141E istex:AE59E519F87CD3C54B1D74B91F4B24928369EB71 Tables A.1–A.4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/618/A141 publisher-ID:aa30352-16 dkey:10.1051/0004-6361/201630352 |
| ORCID | 0000-0002-8504-8470 0000-0002-0398-4434 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.aanda.org/articles/aa/pdf/2018/10/aa30352-16.pdf |
| ParticipantIDs | unpaywall_primary_10_1051_0004_6361_201630352 hal_primary_oai_HAL_hal_02323937v1 crossref_citationtrail_10_1051_0004_6361_201630352 crossref_primary_10_1051_0004_6361_201630352 istex_primary_ark_67375_80W_HZDXVCDF_M |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Astronomy and astrophysics (Berlin) |
| PublicationYear | 2018 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| References | Barklem (R10) 1998; 15 Merle (R44) 2015; 577 Drawin (R30) 1969b; 225 Belyaev (R17) 2017; 606 Yakovleva (R63) 2018; 473 Gustafsson (R35) 2008; 486 Heiter (R36) 2015; 582 Steffen (R55) 1990; 239 R60 R25 Baumueller (R14) 1996; 307 Nordlander (R46) 2017; 597 Zatsarinny (R64) 2009; 194 Barklem (R11) 2010; 519 Belyaev (R18) 2017a; 608 R1 Shi (R52) 2008; 486 Belyaev (R20) 2012; 85 Peterson (R48) 2015; 216 Castelli (R27) 2010; 520 Barklem (R9) 1997; 290 Anstee (R5) 1995; 276 Gehren (R32) 2004; 413 Steinmetz (R56) 2006; 132 Mashonkina (R41) 2016a; 42 Lambert (R37) 1993; 47 Belyaev (R19) 2017b; 606 Barklem (R12) 2011; 530 Seaton (R50) 1962a; 79 Asplund (R6) 2005; 43 Baumueller (R15) 1997; 325 Drawin (R29) 1969a; 225 Saha (R49) 1921; 99 Mashonkina (R39) 2013; 550 Thévenin (R57) 1999; 521 Belyaev (R21) 2014; 572 Mashonkina (R40) 2000; 44 Steenbock (R54) 1992; 401 Mitrushchenkov (R45) 2017; 146 Merle (R43) 2011; 418 van Regemorter (R61) 1962; 136 Andrievsky (R3) 2007; 464 Lind (R38) 2011; 528 Mashonkina (R42) 2016b; 42 Bergemann (R24) 2017; 847 Belyaev (R22) 2017; 851 Allende Prieto (R2) 2008; 329 Barklem (R7) 2016; 93 Carlsson (R26) 1992; 26 Gilmore (R33) 2012; 147 Belyaev (R16) 2013; 560 Bergemann (R23) 2013; 764 Steenbock (R53) 1984; 130 Guitou (R34) 2015; 462 Barklem (R8) 2018; 612 Travis (R59) 1968; 154 R51 Thomson (R58) 1912; 23 Drawin (R28) 1968; 211 R13 Osorio (R47) 2015; 579 Andrievsky (R4) 2008; 481 Ezzeddine (R31) 2016; 337 Yakovleva (R62) 2016; 593 |
| References_xml | – volume: 481 start-page: 481 year: 2008 ident: R4 publication-title: A&A doi: 10.1051/0004-6361:20078837 – ident: R13 – volume: 42 start-page: 366 year: 2016a ident: R41 publication-title: Astron. Lett. doi: 10.1134/S1063773716050078 – volume: 99 start-page: 135 year: 1921 ident: R49 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1921.0029 – volume: 325 start-page: 1088 year: 1997 ident: R15 publication-title: A&A – volume: 147 start-page: 25 year: 2012 ident: R33 publication-title: The Messenger – volume: 486 start-page: 303 year: 2008 ident: R52 publication-title: A&A doi: 10.1051/0004-6361:200809452 – volume: 597 start-page: A6 year: 2017 ident: R46 publication-title: A&A doi: 10.1051/0004-6361/201629202 – volume: 225 start-page: 470 year: 1969a ident: R29 publication-title: Z. Angew. Phys. doi: 10.1007/BF01392774 – volume: 473 start-page: 3810 year: 2018 ident: R63 publication-title: MNRAS doi: 10.1093/mnras/stx2580 – volume: 79 start-page: 1105 year: 1962a ident: R50 publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/79/6/304 – volume: 593 start-page: A27 year: 2016 ident: R62 publication-title: A&A doi: 10.1051/0004-6361/201628659 – volume: 851 start-page: 59 year: 2017 ident: R22 publication-title: ApJ doi: 10.3847/1538-4357/aa98da – ident: R1 – volume: 23 start-page: 499 year: 1912 ident: R58 publication-title: Philos. Mag. doi: 10.1080/14786440408637241 – volume: 136 start-page: 906 year: 1962 ident: R61 publication-title: ApJ doi: 10.1086/147445 – volume: 579 start-page: A53 year: 2015 ident: R47 publication-title: A&A doi: 10.1051/0004-6361/201525846 – volume: 401 start-page: 57 year: 1992 ident: R54 publication-title: Lect. Notes Phys. doi: 10.1007/3-540-55256-1_280 – volume: 42 start-page: 606 year: 2016b ident: R42 publication-title: Astron. Lett. doi: 10.1134/S1063773716080028 – volume: 154 start-page: 689 year: 1968 ident: R59 publication-title: ApJ doi: 10.1086/149790 – volume: 276 start-page: 859 year: 1995 ident: R5 publication-title: MNRAS doi: 10.1093/mnras/276.3.859 – volume: 847 start-page: 15 year: 2017 ident: R24 publication-title: ApJ doi: 10.3847/1538-4357/aa88cb – volume: 582 start-page: A49 year: 2015 ident: R36 publication-title: A&A doi: 10.1051/0004-6361/201526319 – volume: 146 start-page: 014304 year: 2017 ident: R45 publication-title: J. Chem. Phys. doi: 10.1063/1.4973457 – volume: 577 start-page: A113 year: 2015 ident: R44 publication-title: A&A doi: 10.1051/0004-6361/201525914 – volume: 239 start-page: 443 year: 1990 ident: R55 publication-title: A&A – volume: 462 start-page: 94 year: 2015 ident: R34 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2015.06.003 – volume: 47 start-page: 186 year: 1993 ident: R37 publication-title: Phys. Scr. Volume T doi: 10.1088/0031-8949/1993/T47/030 – volume: 520 start-page: A57 year: 2010 ident: R27 publication-title: A&A doi: 10.1051/0004-6361/201015126 – volume: 132 start-page: 1645 year: 2006 ident: R56 publication-title: AJ doi: 10.1086/506564 – volume: 43 start-page: 481 year: 2005 ident: R6 publication-title: ARA&A doi: 10.1146/annurev.astro.42.053102.134001 – volume: 130 start-page: 319 year: 1984 ident: R53 publication-title: A&A – volume: 194 start-page: 042029 year: 2009 ident: R64 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/194/4/042029 – volume: 528 start-page: A103 year: 2011 ident: R38 publication-title: A&A doi: 10.1051/0004-6361/201016095 – volume: 329 start-page: 1018 year: 2008 ident: R2 publication-title: Astron. Nachr. doi: 10.1002/asna.200811080 – volume: 530 start-page: A94 year: 2011 ident: R12 publication-title: A&A doi: 10.1051/0004-6361/201116745 – volume: 560 start-page: A60 year: 2013 ident: R16 publication-title: A&A doi: 10.1051/0004-6361/201322389 – volume: 85 start-page: 032704 year: 2012 ident: R20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.032704 – ident: R25 – volume: 93 start-page: 042705 year: 2016 ident: R7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.042705 – volume: 606 start-page: A106 year: 2017 ident: R17 publication-title: A&A doi: 10.1051/0004-6361/201731285 – volume: 211 start-page: 404 year: 1968 ident: R28 publication-title: Z. Angew. Phys. doi: 10.1007/BF01379963 – volume: 521 start-page: 753 year: 1999 ident: R57 publication-title: ApJ doi: 10.1086/307578 – volume: 290 start-page: 102 year: 1997 ident: R9 publication-title: MNRAS doi: 10.1093/mnras/290.1.102 – volume: 15 start-page: 336 year: 1998 ident: R10 publication-title: PASA doi: 10.1071/AS98336 – volume: 418 start-page: 863 year: 2011 ident: R43 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19540.x – volume: 550 start-page: A28 year: 2013 ident: R39 publication-title: A&A doi: 10.1051/0004-6361/201220761 – volume: 413 start-page: 1045 year: 2004 ident: R32 publication-title: A&A doi: 10.1051/0004-6361:20031582 – volume: 464 start-page: 1081 year: 2007 ident: R3 publication-title: A&A doi: 10.1051/0004-6361:20066232 – volume: 307 start-page: 961 year: 1996 ident: R14 publication-title: A&A – volume: 612 start-page: A90 year: 2018 ident: R8 publication-title: A&A doi: 10.1051/0004-6361/201732365 – volume: 519 start-page: A20 year: 2010 ident: R11 publication-title: A&A doi: 10.1051/0004-6361/201015152 – volume: 608 start-page: A33 year: 2017a ident: R18 publication-title: A&A doi: 10.1051/0004-6361/201731882 – volume: 225 start-page: 483 year: 1969b ident: R30 publication-title: Z. Angew. Phys. doi: 10.1007/BF01392775 – volume: 606 start-page: A147 year: 2017b ident: R19 publication-title: A&A doi: 10.1051/0004-6361/201731015 – volume: 26 start-page: 499 year: 1992 ident: R26 publication-title: ASP Conf. Ser. – volume: 216 start-page: 1 year: 2015 ident: R48 publication-title: ApJS doi: 10.1088/0067-0049/216/1/1 – ident: R60 doi: 10.1007/978-3-642-47425-5 – volume: 764 start-page: 115 year: 2013 ident: R23 publication-title: ApJ doi: 10.1088/0004-637X/764/2/115 – volume: 572 start-page: A103 year: 2014 ident: R21 publication-title: A&A doi: 10.1051/0004-6361/201424714 – volume: 486 start-page: 951 year: 2008 ident: R35 publication-title: A&A doi: 10.1051/0004-6361:200809724 – volume: 337 start-page: 850 year: 2016 ident: R31 publication-title: Astron. Nachr. doi: 10.1002/asna.201612384 – volume: 44 start-page: 790 year: 2000 ident: R40 publication-title: Astron. Rep. doi: 10.1134/1.1327637 – ident: R51 |
| SSID | ssj0002183 |
| Score | 2.373841 |
| Snippet | Context. Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires... Context . Determination of high-precision abundances of late-type stars has been and always will be an important goal of spectroscopic studies, which requires... |
| SourceID | unpaywall hal crossref istex |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | A141 |
| SubjectTerms | Astrophysics atomic processes line: formation Physics stars: abundances stars: atmospheres stars: late-type |
| Title | An empirical recipe for inelastic hydrogen-atom collisions in non-LTE calculations |
| URI | https://api.istex.fr/ark:/67375/80W-HZDXVCDF-M/fulltext.pdf https://hal.science/hal-02323937 https://www.aanda.org/articles/aa/pdf/2018/10/aa30352-16.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 618 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 1432-0746 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002183 issn: 0004-6361 databaseCode: GI~ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5aWyHggcsArVwmC6E94TYX51KJl2hbKWibJrRCQUKR7dgaWptGvQDlgd_OOUkaAQ8IeHOSYzvJOba_Yx9_BniWKeFFA2W5oyPDhTHYD2b-gONQ7KhMu9LEtMH59CwcjcXrSTDZgRfbvTAUVinJh644guvgsL6U_SKz6Km7MbZzvPSJx5O7YQ9vt6ATBojE29AZn50n7yvEK3joV3SpwqcASxFuSYcCt988pyLDsrBfBqbWJYVFduhPf70J19d5ITdf5HT609gzvA0ft29dhZxc9dYr1dPffiN0_N_PugO3alDKkirDXdgx-S7sJUuaJp_PNuyAlelqFmS5C9fOq9Q9eJPkzMyKTyXRCCOmjMIwxMEMwSviciyPXW6yxRzNlKN7P2Nkd-V29iWKsHye85OLY4aZdX2O2PI-jIfHF4cjXh_TwLUfhisuBo4OdGZU7Fp_YDPjmjgORWBVFkTCCGWJdD4LHEvYRviI8YgLSYQafSljtf8A2lid2QPmEdpBUGdjcgtjV0rjaewyZGyV8jzVBW-ro1TXHOZ0lMY0LdfSA5fW0kVKik0bxXbheZOpqCg8_iz-FJXfSBL99ig5Seke4htijIs-u104KG2jEZOLKwqRi4I0dt6low9Hk7eHR8P0tAu8MZ6_qf3hP8o_ghtkPVV44WNorxZr8wRh0krtQ-vlq-_7dZv4AdWqBnQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9trRDsgY8BWvmShdCecJsPx00lXqJtVYW2aUIrFCQU2Y6tobVp1I9B-eu5S9IIeEDAm5Oc7SR3tn9nn38GeJVpEfQH2nHP9C0X1mI_mIUDjkOxpzPjKxvTBuezczkai7eTaLIDb7Z7YSisUpEPXXEE18FhPaV6RebQU_djbOd4GRKPJ_dlF2_vQltGiMRb0B6fXyQfK8QruAwrulQRUoClkFvSocjvNc-pSFkW9svAtHtFYZFt-tPf9uD2Oi_U5quaTn8ae4b34PP2rauQk-vueqW75vtvhI7_-1n34W4NSllSZXgAOzbfh4NkSdPk89mGHbIyXc2CLPfh1kWVegjvkpzZWfGlJBphxJRRWIY4mCF4RVyO5bGrTbaYo5lydO9njOyu3M6-RBGWz3N-ennCMLOpzxFbPoLx8OTyaMTrYxq4CaVccTHwTGQyq2PfhQOXWd_GsRSR01nUF1ZoR6TzWeQ5wjYiRIxHXEhCGvSlrDPhY2hhdfYAWEBoB0Gdi8ktjH2lbGCwy1Cx0zoIdAeCrY5SU3OY01Ea07RcS498WksXKSk2bRTbgddNpqKi8Piz-EtUfiNJ9Nuj5DSle4hviDGuf-N34LC0jUZMLa4pRK4fpbH3IR19Op68Pzoepmcd4I3x_E3tT_5R_incIeupwgufQWu1WNvnCJNW-kXdGn4AtA8FRQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+recipe+for+inelastic+hydrogen-atom+collisions+in+non-LTE+calculations&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Ezzeddine%2C+R.&rft.au=Merle%2C+T.&rft.au=Plez%2C+B.&rft.au=Gebran%2C+M.&rft.date=2018-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=618&rft.spage=A141&rft_id=info:doi/10.1051%2F0004-6361%2F201630352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_201630352 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |