Online Power System Event Detection via Bidirectional Generative Adversarial Networks

Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 37; no. 6; pp. 4807 - 4818
Main Authors Cheng, Yuanbin, Yu, Nanpeng, Foggo, Brandon, Yamashita, Koji
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8950
1558-0679
1558-0679
DOI10.1109/TPWRS.2022.3153591

Cover

Abstract Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. This paper develops a bidirectional anomaly generative adversarial network (GAN)-based algorithm to detect power system events using streaming PMU data, which does not rely on a huge amount of event labels. By introducing conditional entropy constraint in the objective function of GAN and graph signal processing-based PMU sorting technique, our proposed algorithm significantly outperforms state-of-the-art event detection algorithms in terms of accuracy. To facilitate the adoption of the proposed algorithm, a prototype online platform is also developed using Apache Hadoop, Kafka, and Spark to enable real-time event detection. The accuracy and computational efficiency of the proposed algorithm are validated using a large-scale real-world PMU dataset from the Eastern Interconnection of the United States.
AbstractList Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. This paper develops a bidirectional anomaly generative adversarial network (GAN)-based algorithm to detect power system events using streaming PMU data, which does not rely on a huge amount of event labels. By introducing conditional entropy constraint in the objective function of GAN and graph signal processing-based PMU sorting technique, our proposed algorithm significantly outperforms state-of-the-art event detection algorithms in terms of accuracy. To facilitate the adoption of the proposed algorithm, a prototype online platform is also developed using Apache Hadoop, Kafka, and Spark to enable real-time event detection. The accuracy and computational efficiency of the proposed algorithm are validated using a large-scale real-world PMU dataset from the Eastern Interconnection of the United States.
Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. This paper develops a bidirectional anomaly generative adversarial network (GAN)-based algorithm to detect power system events using streaming PMU data, which does not rely on a huge amount of event labels. By introducing conditional entropy constraint in the objective function of GAN and graph signal processing-based PMU sorting technique, our proposed algorithm significantly outperforms state-of-the-art event detection algorithms in terms of accuracy. To facilitate the adoption of the proposed algorithm, a prototype online platform is also developed using Apache Hadoop, Kafka, and Spark to enable real-time event detection. Here, the accuracy and computational efficiency of the proposed algorithm are validated using a large-scale real-world PMU dataset from the Eastern Interconnection of the United States.
Author Cheng, Yuanbin
Yu, Nanpeng
Yamashita, Koji
Foggo, Brandon
Author_xml – sequence: 1
  givenname: Yuanbin
  surname: Cheng
  fullname: Cheng, Yuanbin
  email: ychen871@ucr.edu
  organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
– sequence: 2
  givenname: Nanpeng
  orcidid: 0000-0001-5086-5465
  surname: Yu
  fullname: Yu, Nanpeng
  email: nyu@ece.ucr.edu
  organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
– sequence: 3
  givenname: Brandon
  orcidid: 0000-0002-8547-391X
  surname: Foggo
  fullname: Foggo, Brandon
  email: bfogg001@ucr.edu
  organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
– sequence: 4
  givenname: Koji
  orcidid: 0000-0002-1892-2455
  surname: Yamashita
  fullname: Yamashita, Koji
  email: kyamashi@ucr.edu
  organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
BackLink https://www.osti.gov/servlets/purl/1867798$$D View this record in Osti.gov
BookMark eNptkc1uEzEUhS1UJNLCC8BmBOtJr-0Z_yxLKaVSRSvaiqXleG6Ey9QOtpMob4_DVF1ErCz7nu_qnONjchRiQELeU5hTCvr0_vbnj7s5A8bmnPa81_QVmdG-Vy0IqY_IDJTqW6V7eEOOc34EAFEHM_JwE0YfsLmNW0zN3S4XfGouNhhK8wULuuJjaDbeNp_94NN0t2NziQGTLX6DzdmwwZRt8vX5O5ZtTL_zW_J6aceM757PE_Lw9eL-_Ft7fXN5dX523TouRGm7fuGc4AO3tAMNXDMnEKjVrltYCwNjFrGXwPiCq0GqJbJBd8qqbgC3GBw_IXzauw4ru9vacTSr5J9s2hkKZt-MKattymbfjHluplIfJyrm4k12vub85WIINZ6hSkipVRV9mkSrFP-sMRfzGNepZq_LJJPQSdXJqlKTyqWYc8KlqdvsvqSSrB9fXPz7n0MX7AA9tP5f6MMEeUR8AbRkVAjG_wKpk51q
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_apenergy_2024_125059
crossref_primary_10_1142_S021821302450009X
crossref_primary_10_3390_en17020516
crossref_primary_10_3390_en16114406
crossref_primary_10_1016_j_enbuild_2024_114206
crossref_primary_10_3390_en16041713
crossref_primary_10_1109_TPWRS_2022_3231262
crossref_primary_10_1109_OJIA_2024_3426281
crossref_primary_10_1016_j_ijepes_2025_110627
Cites_doi 10.1109/iSPEC48194.2019.8975286
10.1109/TSG.2015.2478421
10.1007/s40565-018-0423-3
10.1109/SmartGridComm47815.2020.9302947
10.1109/CVPR.2016.90
10.1109/TSG.2020.3046602
10.1109/TBDATA.2019.2920350
10.1109/PowerTech46648.2021.9494800
10.1016/j.ijepes.2018.10.024
10.1109/TSG.2020.2971909
10.1109/TPWRS.2021.3093521
10.1109/JSYST.2019.2931879
10.1109/TSG.2017.2720543
10.1007/978-3-319-59050-9_12
10.1109/PESGM.2012.6344715
10.1016/j.rser.2017.05.134
10.1109/TII.2017.2731366
10.1109/TPWRS.2019.2957377
10.1109/ICDM.2018.00088
10.1007/978-3-030-20893-6_39
10.1109/TPWRS.2021.3080279
10.1109/TPWRS.2015.2413935
10.1109/TPWRS.2012.2192142
10.1007/978-3-030-30490-4_56
10.1109/PEMWA.2012.6316400
10.1109/ICCAD.2014.7001352
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
CorporateAuthor Univ. of California, Riverside, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Riverside, CA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1109/TPWRS.2022.3153591
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 4818
ExternalDocumentID oai:osti.gov:1867798
1867798
10_1109_TPWRS_2022_3153591
9721662
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Energy; Department of Energy
  grantid: DE-OE0000916
  funderid: 10.13039/100000015
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ABPTK
OIOZB
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c366t-45bcc63d3a14090392c6e01a9c4baa0d22aee57023b38d78fe2d948a84d0cbdc3
IEDL.DBID UNPAY
ISSN 0885-8950
1558-0679
IngestDate Sun Oct 26 02:45:09 EDT 2025
Fri May 19 01:41:01 EDT 2023
Fri Jul 25 12:21:31 EDT 2025
Wed Oct 01 02:20:54 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Wed Aug 27 02:29:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-45bcc63d3a14090392c6e01a9c4baa0d22aee57023b38d78fe2d948a84d0cbdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
OE0000916
ORCID 0000-0002-8547-391X
0000-0002-1892-2455
0000-0001-5086-5465
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/servlets/purl/1867798
PQID 2727047847
PQPubID 85441
PageCount 12
ParticipantIDs unpaywall_primary_10_1109_tpwrs_2022_3153591
osti_scitechconnect_1867798
crossref_citationtrail_10_1109_TPWRS_2022_3153591
crossref_primary_10_1109_TPWRS_2022_3153591
proquest_journals_2727047847
ieee_primary_9721662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
Kingma (ref37) 2015
ref14
ref36
ref11
ref10
Goodfellow (ref21) 2014; 2
(ref34) 2011
ref2
Radford (ref30) 2016
Gulrajani (ref28) 2017
ref17
ref16
ref38
ref19
ref18
Salimans (ref32) 2016
ref24
ref23
ref25
ref20
ref22
ref8
ref7
ref9
ref4
ref3
ref6
Li (ref31) 2017
ref5
Donahue (ref26) 2017
Arjovsky (ref27); 70
Monti (ref1) 2016
Kapoor (ref33) 2019
Lucic (ref29) 2018
References_xml – ident: ref14
  doi: 10.1109/iSPEC48194.2019.8975286
– ident: ref6
  doi: 10.1109/TSG.2015.2478421
– ident: ref2
  doi: 10.1007/s40565-018-0423-3
– volume: 2
  start-page: 2672
  volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst.
  year: 2014
  ident: ref21
  article-title: Generative adversarial networks
– ident: ref36
  doi: 10.1109/SmartGridComm47815.2020.9302947
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref15
  doi: 10.1109/TSG.2020.3046602
– ident: ref10
  doi: 10.1109/TBDATA.2019.2920350
– ident: ref13
  doi: 10.1109/PowerTech46648.2021.9494800
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref37
  article-title: Adam: A method for stochastic optimization
– volume-title: Phasor Measurement Units and Wide Area Monitoring Systems
  year: 2016
  ident: ref1
– start-page: 2234
  volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst.
  year: 2016
  ident: ref32
  article-title: Improved techniques for training GANs
– volume-title: Hands-On Artificial Intelligence for IoT: Expert Machine Learning and Deep Learning Techniques for Developing Smarter IoT Systems
  year: 2019
  ident: ref33
– ident: ref19
  doi: 10.1016/j.ijepes.2018.10.024
– ident: ref16
  doi: 10.1109/TSG.2020.2971909
– ident: ref35
  doi: 10.1109/TPWRS.2021.3093521
– ident: ref3
  doi: 10.1109/JSYST.2019.2931879
– start-page: 1
  volume-title: Proc. 4th Int. Conf. Learn. Representations
  year: 2016
  ident: ref30
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– ident: ref5
  doi: 10.1109/TSG.2017.2720543
– ident: ref22
  doi: 10.1007/978-3-319-59050-9_12
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Representations
  year: 2017
  ident: ref26
  article-title: Adversarial feature learning
– ident: ref18
  doi: 10.1109/PESGM.2012.6344715
– ident: ref4
  doi: 10.1016/j.rser.2017.05.134
– ident: ref7
  doi: 10.1109/TII.2017.2731366
– ident: ref17
  doi: 10.1109/TPWRS.2019.2957377
– volume: 70
  start-page: 214
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref27
  article-title: Wasserstein generative adversarial networks
– ident: ref23
  doi: 10.1109/ICDM.2018.00088
– ident: ref24
  doi: 10.1007/978-3-030-20893-6_39
– start-page: 1
  year: 2011
  ident: ref34
  article-title: IEEE Standard for Synchrophasor Data Transfer for Power Systems
  publication-title: IEEE Std. C37.118.2-2011 (Revision of IEEE Std C37.118-2005)
– ident: ref20
  doi: 10.1109/TPWRS.2021.3080279
– ident: ref12
  doi: 10.1109/TPWRS.2015.2413935
– ident: ref11
  doi: 10.1109/TPWRS.2012.2192142
– start-page: 698
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  year: 2018
  ident: ref29
  article-title: Are GANs created equal? a large-scale study
– ident: ref25
  doi: 10.1007/978-3-030-30490-4_56
– ident: ref8
  doi: 10.1109/PEMWA.2012.6316400
– start-page: 5501
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref31
  article-title: ALICE: Towards understanding adversarial learning for joint distribution matching
– ident: ref9
  doi: 10.1109/ICCAD.2014.7001352
– start-page: 5769
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref28
  article-title: Improved training of wasserstein GANs
SSID ssj0006679
Score 2.5169165
Snippet Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep...
SourceID unpaywall
osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4807
SubjectTerms Algorithms
Event detection
Generative adversarial networks
Labels
Machine learning
Phasor measurement unit
Phasor measurement units
POWER TRANSMISSION AND DISTRIBUTION
Reliability
Signal processing
Signal processing algorithms
Sorting algorithms
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXoADr4IILcgHbjRbJ7Ed58ijVYXUqoKu6M3yK1LVVXbVzVK1vx6PnY26gBCn5OBIE8_Y84098w3Ae2asbZkucypMm7PS8rzhrM6pcwGvu9rYFo8GTk7F8ZR9veAXW7A_1sJ472PymZ_ga7zLd3O7wqOyg8g0gxvug1qKVKs17rpCJF49KXkuG07XBTK0OTg_-_HtewgFyzJEqLziTbHhhGJXlfCYhzW1gTMfrrqFvr3Rs9k9l3P0FE7WwqZMk6vJqjcTe_cbj-P__s0zeDJgT_IxGctz2PLdC3h8j5FwB6aJepScYfM0kujMySHmRJIvvo9pWx35eanJp8vkDONJIknk1bhzktjheanRrslpyjFfvoTp0eH55-N86LyQ20qIPmc8qFBUrtLIh0UDhrLC00I3lhmtqStL7T2vg783lXS1bH3pGia1ZI5a42z1Cra7eedfA-GGt1bXVDJeMVcV2hcxKA2BpNchtsygWKtC2YGWHLtjzFQMT2ijovoUqk8N6svgw_jNIpFy_HP0Dk7-OHKY9wx2UeMqIA2ky7WYV2R7FQn-GpnB3toQ1LCql6oMYA_ZjFidwf5oHH-I0C9urpcbIrz5uwi78AhHpdLGPdjur1f-bcA4vXkXjfsX8En3KQ
  priority: 102
  providerName: IEEE
Title Online Power System Event Detection via Bidirectional Generative Adversarial Networks
URI https://ieeexplore.ieee.org/document/9721662
https://www.proquest.com/docview/2727047847
https://www.osti.gov/servlets/purl/1867798
UnpaywallVersion submittedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 1558-0679
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LbxMxEIctSA_AgVdBLC2VD9zAjddr7-NYoFWFRBRBI8rJ8mulqtE2ym6o2r8ej-1EDUgITquVvFqvZpL5zWj8DUJvuTam5YoRWuqWcGYEaQSvCLXW63VbadNCaeDLpDyd8c_n4jxhcvrUVnnlnTv0VEJd0u--Hy9Wy_k4oNea-j7aKYXX3SO0M5tMj35EmShI3YRxrD4-1gSqI-sTMrQZD4vrJaC5GfMpqihEk29FoTBWxV_gvVtC88GqW6ibazWf34k5J0_i8KI-oAqh1eTycDXoQ3P7G8jx3z7nKXqcpCc-ir7yDN1z3XP06A6QcBfNInkUT2F2Go40c3wMLZH4kxtC11aHf14o_OEixsJQSMSRXQ1_nDgMeO4VuDWexBbz_gWanRyffTwlafACMUVZDoQLb8GysIUCHBb1EsqUjuaqMVwrRS1jyjlR-XCvi9pWdeuYbXitam6p0dYUL9Gou-rcK4SFFq1RFa25KLgtcuXykJP6PNIpn1pmKF8bQppEJYfhGHMZshPayLPp96_fJBhPJuNl6N3mmUVkcvx19S7Yd7My4IpKlqE9MIz0QgNouQbaiswgk1UytL92A5l-1L1kXusBzIhXGXq_cY0_thC8bWsLr_9v-R56CLfxxOM-Gg3LlXvjpc-gD8L5xIPk-b8A-_wApQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heqA9tKW0IoWCD72VLE5iJ86Rp5aWXaF2V-Vm-RUJdZVdsdmi9tfjRzZiC0I9JQdbmnjGnm-cmW8APhOpVEVEGuNcVjFJFY1LSooYa23xui6kqtzVwGCY98fk6zW9XoODrhbGGOOTz0zPvfp_-XqqFu6q7NAzzbgD9wUlhNBQrdWdu3kemPUYozErKV6WyODycHT18_sPGwymqY1RaUbLZMUN-b4q9jG1u2oFaW4s6pn4cycmkwdO5_wNDJbihlyTX71FI3vq7z9Mjv_7PW_hdYs-0VEwl01YM_U7ePWAk3ALxoF8FF259mkoEJqjM5cViU5N4xO3avT7RqDjm-AO_V0iCvTV7uxEvsfzXDjLRsOQZT5_D-Pzs9FJP257L8Qqy_MmJtQqMc90JhwjFrYoSuUGJ6JURAqBdZoKY2hhPb7MmC5YZVJdEiYY0VhJrbIPsF5Pa7MNiEpaKVFgRmhGdJYIk_iw1IaSRtjoMoJkqQquWmJy1x9jwn2Agkvu1ced-nirvgi-dHNmgZbj2dFbbvG7ke26R7DjNM4t1nCEucplFqmGe4q_kkWwuzQE3u7rOU8t3HN8RqSI4KAzjkciNLO72_mKCB-fFmEfNvqjwSW_vBh-24GXbkYodNyF9eZ2YT5ZxNPIPW_o9wUN-nY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9QwEIct2B6gB14FNbRFPnADdx3HzuNYoFWFxGoFXVFOll-RKlbpapOlgr8ej-1ddamE4BRFchRHM8n8ZjT5BqHXXBvTcsUILXVLODOCNIJXhFrr9bqttGmhNPBpUp7P-MdLcZkwOX1qq7z2zh16KqEu6Xffjxer5Xwc0GtNfR_tlMLr7hHamU2mJ9-iTBSkbsI4Vh8fawLVkfUfMrQZD4ubJaC5GfMpqihEk29FoTBWxR_gvltC88GqW6ifN2o-vxVzzh7H4UV9QBVCq8n349Wgj82vP0CO__Y4T9CjJD3xSfSVp-ie656h3VtAwj00i-RRPIXZaTjSzPEptETiD24IXVsd_nGl8LurGAtDIRFHdjV8OHEY8NwrcGs8iS3m_XM0Ozu9eH9O0uAFYoqyHAgX3oJlYQsFOCzqJZQpHc1VY7hWilrGlHOi8uFeF7Wt6tYx2_Ba1dxSo60pXqBRd925fYSFFq1RFa25KLgtcuXykJP6PNIpn1pmKF8bQppEJYfhGHMZshPayIvp189fJBhPJuNl6M3mmkVkcvx19R7Yd7My4IpKlqEDMIz0QgNouQbaiswgk1UydLh2A5le6l4yr_UAZsSrDL3duMadLQRv29rCy_9bfoAewmn84_EQjYblyh156TPoV8nnfwP9r_-V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Power+System+Event+Detection+via+Bidirectional+Generative+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Cheng%2C+Yuanbin&rft.au=Yu%2C+Nanpeng&rft.au=Foggo%2C+Brandon&rft.au=Yamashita%2C+Koji&rft.date=2022-11-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=37&rft.issue=6&rft.spage=4807&rft.epage=4818&rft_id=info:doi/10.1109%2FTPWRS.2022.3153591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2022_3153591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon