Online Power System Event Detection via Bidirectional Generative Adversarial Networks
Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. Th...
Saved in:
| Published in | IEEE transactions on power systems Vol. 37; no. 6; pp. 4807 - 4818 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-8950 1558-0679 1558-0679 |
| DOI | 10.1109/TPWRS.2022.3153591 |
Cover
| Abstract | Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. This paper develops a bidirectional anomaly generative adversarial network (GAN)-based algorithm to detect power system events using streaming PMU data, which does not rely on a huge amount of event labels. By introducing conditional entropy constraint in the objective function of GAN and graph signal processing-based PMU sorting technique, our proposed algorithm significantly outperforms state-of-the-art event detection algorithms in terms of accuracy. To facilitate the adoption of the proposed algorithm, a prototype online platform is also developed using Apache Hadoop, Kafka, and Spark to enable real-time event detection. The accuracy and computational efficiency of the proposed algorithm are validated using a large-scale real-world PMU dataset from the Eastern Interconnection of the United States. |
|---|---|
| AbstractList | Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. This paper develops a bidirectional anomaly generative adversarial network (GAN)-based algorithm to detect power system events using streaming PMU data, which does not rely on a huge amount of event labels. By introducing conditional entropy constraint in the objective function of GAN and graph signal processing-based PMU sorting technique, our proposed algorithm significantly outperforms state-of-the-art event detection algorithms in terms of accuracy. To facilitate the adoption of the proposed algorithm, a prototype online platform is also developed using Apache Hadoop, Kafka, and Spark to enable real-time event detection. The accuracy and computational efficiency of the proposed algorithm are validated using a large-scale real-world PMU dataset from the Eastern Interconnection of the United States. Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep learning algorithms show great promise in identifying power system events, they require a large volume of high-quality event labels for training. This paper develops a bidirectional anomaly generative adversarial network (GAN)-based algorithm to detect power system events using streaming PMU data, which does not rely on a huge amount of event labels. By introducing conditional entropy constraint in the objective function of GAN and graph signal processing-based PMU sorting technique, our proposed algorithm significantly outperforms state-of-the-art event detection algorithms in terms of accuracy. To facilitate the adoption of the proposed algorithm, a prototype online platform is also developed using Apache Hadoop, Kafka, and Spark to enable real-time event detection. Here, the accuracy and computational efficiency of the proposed algorithm are validated using a large-scale real-world PMU dataset from the Eastern Interconnection of the United States. |
| Author | Cheng, Yuanbin Yu, Nanpeng Yamashita, Koji Foggo, Brandon |
| Author_xml | – sequence: 1 givenname: Yuanbin surname: Cheng fullname: Cheng, Yuanbin email: ychen871@ucr.edu organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA – sequence: 2 givenname: Nanpeng orcidid: 0000-0001-5086-5465 surname: Yu fullname: Yu, Nanpeng email: nyu@ece.ucr.edu organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA – sequence: 3 givenname: Brandon orcidid: 0000-0002-8547-391X surname: Foggo fullname: Foggo, Brandon email: bfogg001@ucr.edu organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA – sequence: 4 givenname: Koji orcidid: 0000-0002-1892-2455 surname: Yamashita fullname: Yamashita, Koji email: kyamashi@ucr.edu organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA |
| BackLink | https://www.osti.gov/servlets/purl/1867798$$D View this record in Osti.gov |
| BookMark | eNptkc1uEzEUhS1UJNLCC8BmBOtJr-0Z_yxLKaVSRSvaiqXleG6Ey9QOtpMob4_DVF1ErCz7nu_qnONjchRiQELeU5hTCvr0_vbnj7s5A8bmnPa81_QVmdG-Vy0IqY_IDJTqW6V7eEOOc34EAFEHM_JwE0YfsLmNW0zN3S4XfGouNhhK8wULuuJjaDbeNp_94NN0t2NziQGTLX6DzdmwwZRt8vX5O5ZtTL_zW_J6aceM757PE_Lw9eL-_Ft7fXN5dX523TouRGm7fuGc4AO3tAMNXDMnEKjVrltYCwNjFrGXwPiCq0GqJbJBd8qqbgC3GBw_IXzauw4ru9vacTSr5J9s2hkKZt-MKattymbfjHluplIfJyrm4k12vub85WIINZ6hSkipVRV9mkSrFP-sMRfzGNepZq_LJJPQSdXJqlKTyqWYc8KlqdvsvqSSrB9fXPz7n0MX7AA9tP5f6MMEeUR8AbRkVAjG_wKpk51q |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2024_125059 crossref_primary_10_1142_S021821302450009X crossref_primary_10_3390_en17020516 crossref_primary_10_3390_en16114406 crossref_primary_10_1016_j_enbuild_2024_114206 crossref_primary_10_3390_en16041713 crossref_primary_10_1109_TPWRS_2022_3231262 crossref_primary_10_1109_OJIA_2024_3426281 crossref_primary_10_1016_j_ijepes_2025_110627 |
| Cites_doi | 10.1109/iSPEC48194.2019.8975286 10.1109/TSG.2015.2478421 10.1007/s40565-018-0423-3 10.1109/SmartGridComm47815.2020.9302947 10.1109/CVPR.2016.90 10.1109/TSG.2020.3046602 10.1109/TBDATA.2019.2920350 10.1109/PowerTech46648.2021.9494800 10.1016/j.ijepes.2018.10.024 10.1109/TSG.2020.2971909 10.1109/TPWRS.2021.3093521 10.1109/JSYST.2019.2931879 10.1109/TSG.2017.2720543 10.1007/978-3-319-59050-9_12 10.1109/PESGM.2012.6344715 10.1016/j.rser.2017.05.134 10.1109/TII.2017.2731366 10.1109/TPWRS.2019.2957377 10.1109/ICDM.2018.00088 10.1007/978-3-030-20893-6_39 10.1109/TPWRS.2021.3080279 10.1109/TPWRS.2015.2413935 10.1109/TPWRS.2012.2192142 10.1007/978-3-030-30490-4_56 10.1109/PEMWA.2012.6316400 10.1109/ICCAD.2014.7001352 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| CorporateAuthor | Univ. of California, Riverside, CA (United States) |
| CorporateAuthor_xml | – name: Univ. of California, Riverside, CA (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1109/TPWRS.2022.3153591 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 4818 |
| ExternalDocumentID | oai:osti.gov:1867798 1867798 10_1109_TPWRS_2022_3153591 9721662 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: U.S. Department of Energy; Department of Energy grantid: DE-OE0000916 funderid: 10.13039/100000015 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M ABPTK OIOZB OTOTI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c366t-45bcc63d3a14090392c6e01a9c4baa0d22aee57023b38d78fe2d948a84d0cbdc3 |
| IEDL.DBID | UNPAY |
| ISSN | 0885-8950 1558-0679 |
| IngestDate | Sun Oct 26 02:45:09 EDT 2025 Fri May 19 01:41:01 EDT 2023 Fri Jul 25 12:21:31 EDT 2025 Wed Oct 01 02:20:54 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Wed Aug 27 02:29:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-45bcc63d3a14090392c6e01a9c4baa0d22aee57023b38d78fe2d948a84d0cbdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE OE0000916 |
| ORCID | 0000-0002-8547-391X 0000-0002-1892-2455 0000-0001-5086-5465 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/servlets/purl/1867798 |
| PQID | 2727047847 |
| PQPubID | 85441 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1109_tpwrs_2022_3153591 osti_scitechconnect_1867798 crossref_citationtrail_10_1109_TPWRS_2022_3153591 crossref_primary_10_1109_TPWRS_2022_3153591 proquest_journals_2727047847 ieee_primary_9721662 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 Kingma (ref37) 2015 ref14 ref36 ref11 ref10 Goodfellow (ref21) 2014; 2 (ref34) 2011 ref2 Radford (ref30) 2016 Gulrajani (ref28) 2017 ref17 ref16 ref38 ref19 ref18 Salimans (ref32) 2016 ref24 ref23 ref25 ref20 ref22 ref8 ref7 ref9 ref4 ref3 ref6 Li (ref31) 2017 ref5 Donahue (ref26) 2017 Arjovsky (ref27); 70 Monti (ref1) 2016 Kapoor (ref33) 2019 Lucic (ref29) 2018 |
| References_xml | – ident: ref14 doi: 10.1109/iSPEC48194.2019.8975286 – ident: ref6 doi: 10.1109/TSG.2015.2478421 – ident: ref2 doi: 10.1007/s40565-018-0423-3 – volume: 2 start-page: 2672 volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst. year: 2014 ident: ref21 article-title: Generative adversarial networks – ident: ref36 doi: 10.1109/SmartGridComm47815.2020.9302947 – ident: ref38 doi: 10.1109/CVPR.2016.90 – ident: ref15 doi: 10.1109/TSG.2020.3046602 – ident: ref10 doi: 10.1109/TBDATA.2019.2920350 – ident: ref13 doi: 10.1109/PowerTech46648.2021.9494800 – start-page: 1 volume-title: Proc. 3rd Int. Conf. Learn. Representations year: 2015 ident: ref37 article-title: Adam: A method for stochastic optimization – volume-title: Phasor Measurement Units and Wide Area Monitoring Systems year: 2016 ident: ref1 – start-page: 2234 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. year: 2016 ident: ref32 article-title: Improved techniques for training GANs – volume-title: Hands-On Artificial Intelligence for IoT: Expert Machine Learning and Deep Learning Techniques for Developing Smarter IoT Systems year: 2019 ident: ref33 – ident: ref19 doi: 10.1016/j.ijepes.2018.10.024 – ident: ref16 doi: 10.1109/TSG.2020.2971909 – ident: ref35 doi: 10.1109/TPWRS.2021.3093521 – ident: ref3 doi: 10.1109/JSYST.2019.2931879 – start-page: 1 volume-title: Proc. 4th Int. Conf. Learn. Representations year: 2016 ident: ref30 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – ident: ref5 doi: 10.1109/TSG.2017.2720543 – ident: ref22 doi: 10.1007/978-3-319-59050-9_12 – start-page: 1 volume-title: Proc. 5th Int. Conf. Learn. Representations year: 2017 ident: ref26 article-title: Adversarial feature learning – ident: ref18 doi: 10.1109/PESGM.2012.6344715 – ident: ref4 doi: 10.1016/j.rser.2017.05.134 – ident: ref7 doi: 10.1109/TII.2017.2731366 – ident: ref17 doi: 10.1109/TPWRS.2019.2957377 – volume: 70 start-page: 214 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref27 article-title: Wasserstein generative adversarial networks – ident: ref23 doi: 10.1109/ICDM.2018.00088 – ident: ref24 doi: 10.1007/978-3-030-20893-6_39 – start-page: 1 year: 2011 ident: ref34 article-title: IEEE Standard for Synchrophasor Data Transfer for Power Systems publication-title: IEEE Std. C37.118.2-2011 (Revision of IEEE Std C37.118-2005) – ident: ref20 doi: 10.1109/TPWRS.2021.3080279 – ident: ref12 doi: 10.1109/TPWRS.2015.2413935 – ident: ref11 doi: 10.1109/TPWRS.2012.2192142 – start-page: 698 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. year: 2018 ident: ref29 article-title: Are GANs created equal? a large-scale study – ident: ref25 doi: 10.1007/978-3-030-30490-4_56 – ident: ref8 doi: 10.1109/PEMWA.2012.6316400 – start-page: 5501 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. year: 2017 ident: ref31 article-title: ALICE: Towards understanding adversarial learning for joint distribution matching – ident: ref9 doi: 10.1109/ICCAD.2014.7001352 – start-page: 5769 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. year: 2017 ident: ref28 article-title: Improved training of wasserstein GANs |
| SSID | ssj0006679 |
| Score | 2.5169165 |
| Snippet | Accurate and speedy detection of power system events is critical to enhancing the reliability and resiliency of power systems. Although supervised deep... |
| SourceID | unpaywall osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4807 |
| SubjectTerms | Algorithms Event detection Generative adversarial networks Labels Machine learning Phasor measurement unit Phasor measurement units POWER TRANSMISSION AND DISTRIBUTION Reliability Signal processing Signal processing algorithms Sorting algorithms |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXoADr4IILcgHbjRbJ7Ed58ijVYXUqoKu6M3yK1LVVXbVzVK1vx6PnY26gBCn5OBIE8_Y84098w3Ae2asbZkucypMm7PS8rzhrM6pcwGvu9rYFo8GTk7F8ZR9veAXW7A_1sJ472PymZ_ga7zLd3O7wqOyg8g0gxvug1qKVKs17rpCJF49KXkuG07XBTK0OTg_-_HtewgFyzJEqLziTbHhhGJXlfCYhzW1gTMfrrqFvr3Rs9k9l3P0FE7WwqZMk6vJqjcTe_cbj-P__s0zeDJgT_IxGctz2PLdC3h8j5FwB6aJepScYfM0kujMySHmRJIvvo9pWx35eanJp8vkDONJIknk1bhzktjheanRrslpyjFfvoTp0eH55-N86LyQ20qIPmc8qFBUrtLIh0UDhrLC00I3lhmtqStL7T2vg783lXS1bH3pGia1ZI5a42z1Cra7eedfA-GGt1bXVDJeMVcV2hcxKA2BpNchtsygWKtC2YGWHLtjzFQMT2ijovoUqk8N6svgw_jNIpFy_HP0Dk7-OHKY9wx2UeMqIA2ky7WYV2R7FQn-GpnB3toQ1LCql6oMYA_ZjFidwf5oHH-I0C9urpcbIrz5uwi78AhHpdLGPdjur1f-bcA4vXkXjfsX8En3KQ priority: 102 providerName: IEEE |
| Title | Online Power System Event Detection via Bidirectional Generative Adversarial Networks |
| URI | https://ieeexplore.ieee.org/document/9721662 https://www.proquest.com/docview/2727047847 https://www.osti.gov/servlets/purl/1867798 |
| UnpaywallVersion | submittedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 1558-0679 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LbxMxEIctSA_AgVdBLC2VD9zAjddr7-NYoFWFRBRBI8rJ8mulqtE2ym6o2r8ej-1EDUgITquVvFqvZpL5zWj8DUJvuTam5YoRWuqWcGYEaQSvCLXW63VbadNCaeDLpDyd8c_n4jxhcvrUVnnlnTv0VEJd0u--Hy9Wy_k4oNea-j7aKYXX3SO0M5tMj35EmShI3YRxrD4-1gSqI-sTMrQZD4vrJaC5GfMpqihEk29FoTBWxV_gvVtC88GqW6ibazWf34k5J0_i8KI-oAqh1eTycDXoQ3P7G8jx3z7nKXqcpCc-ir7yDN1z3XP06A6QcBfNInkUT2F2Go40c3wMLZH4kxtC11aHf14o_OEixsJQSMSRXQ1_nDgMeO4VuDWexBbz_gWanRyffTwlafACMUVZDoQLb8GysIUCHBb1EsqUjuaqMVwrRS1jyjlR-XCvi9pWdeuYbXitam6p0dYUL9Gou-rcK4SFFq1RFa25KLgtcuXykJP6PNIpn1pmKF8bQppEJYfhGHMZshPayLPp96_fJBhPJuNl6N3mmUVkcvx19S7Yd7My4IpKlqE9MIz0QgNouQbaiswgk1UytL92A5l-1L1kXusBzIhXGXq_cY0_thC8bWsLr_9v-R56CLfxxOM-Gg3LlXvjpc-gD8L5xIPk-b8A-_wApQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heqA9tKW0IoWCD72VLE5iJ86Rp5aWXaF2V-Vm-RUJdZVdsdmi9tfjRzZiC0I9JQdbmnjGnm-cmW8APhOpVEVEGuNcVjFJFY1LSooYa23xui6kqtzVwGCY98fk6zW9XoODrhbGGOOTz0zPvfp_-XqqFu6q7NAzzbgD9wUlhNBQrdWdu3kemPUYozErKV6WyODycHT18_sPGwymqY1RaUbLZMUN-b4q9jG1u2oFaW4s6pn4cycmkwdO5_wNDJbihlyTX71FI3vq7z9Mjv_7PW_hdYs-0VEwl01YM_U7ePWAk3ALxoF8FF259mkoEJqjM5cViU5N4xO3avT7RqDjm-AO_V0iCvTV7uxEvsfzXDjLRsOQZT5_D-Pzs9FJP257L8Qqy_MmJtQqMc90JhwjFrYoSuUGJ6JURAqBdZoKY2hhPb7MmC5YZVJdEiYY0VhJrbIPsF5Pa7MNiEpaKVFgRmhGdJYIk_iw1IaSRtjoMoJkqQquWmJy1x9jwn2Agkvu1ced-nirvgi-dHNmgZbj2dFbbvG7ke26R7DjNM4t1nCEucplFqmGe4q_kkWwuzQE3u7rOU8t3HN8RqSI4KAzjkciNLO72_mKCB-fFmEfNvqjwSW_vBh-24GXbkYodNyF9eZ2YT5ZxNPIPW_o9wUN-nY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9QwEIct2B6gB14FNbRFPnADdx3HzuNYoFWFxGoFXVFOll-RKlbpapOlgr8ej-1ddamE4BRFchRHM8n8ZjT5BqHXXBvTcsUILXVLODOCNIJXhFrr9bqttGmhNPBpUp7P-MdLcZkwOX1qq7z2zh16KqEu6Xffjxer5Xwc0GtNfR_tlMLr7hHamU2mJ9-iTBSkbsI4Vh8fawLVkfUfMrQZD4ubJaC5GfMpqihEk29FoTBWxR_gvltC88GqW6ifN2o-vxVzzh7H4UV9QBVCq8n349Wgj82vP0CO__Y4T9CjJD3xSfSVp-ie656h3VtAwj00i-RRPIXZaTjSzPEptETiD24IXVsd_nGl8LurGAtDIRFHdjV8OHEY8NwrcGs8iS3m_XM0Ozu9eH9O0uAFYoqyHAgX3oJlYQsFOCzqJZQpHc1VY7hWilrGlHOi8uFeF7Wt6tYx2_Ba1dxSo60pXqBRd925fYSFFq1RFa25KLgtcuXykJP6PNIpn1pmKF8bQppEJYfhGHMZshPayIvp189fJBhPJuNl6M3mmkVkcvx19R7Yd7My4IpKlqEDMIz0QgNouQbaiswgk1UydLh2A5le6l4yr_UAZsSrDL3duMadLQRv29rCy_9bfoAewmn84_EQjYblyh156TPoV8nnfwP9r_-V |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Power+System+Event+Detection+via+Bidirectional+Generative+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Cheng%2C+Yuanbin&rft.au=Yu%2C+Nanpeng&rft.au=Foggo%2C+Brandon&rft.au=Yamashita%2C+Koji&rft.date=2022-11-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=37&rft.issue=6&rft.spage=4807&rft.epage=4818&rft_id=info:doi/10.1109%2FTPWRS.2022.3153591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2022_3153591 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |