An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample

[Display omitted] This paper’s Graphical abstract When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too many inputs are difficult to determine the numbers of hidden layer neurons, it influences the design structure of the network, the redundanc...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 48; pp. 373 - 384
Main Authors Jia, Weikuan, Zhao, Dean, Ding, Ling
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2016.07.037

Cover

Abstract [Display omitted] This paper’s Graphical abstract When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too many inputs are difficult to determine the numbers of hidden layer neurons, it influences the design structure of the network, the redundancies or correlative data will influence the training of the network, and relatively few number of samples make network train non-completed or over-fitted, thereby affecting the operating efficiency and recognition accuracy of neural network. For the problem of small sample classification, two aspects of RBF neural network are optimized. Firstly, the original data reduces their feature dimension by PLS algorithm, then the low dimensional data is used as network input, it regard as external optimization. And then, using genetic algorithm to optimize RBF, the optimization way adopts hybrid coding and simultaneous evolving for hidden layer neurons and connection weights, this step regard as internal optimization. By these two consecutive optimizations, an optimized RBF neural network algorithm based on PLS and GA (PLS-GA-RBF algorithm) for small sample is established, which facilitates the hidden layer of network design, and improves the network training speed and generalization ability, thereby improving the operating efficiency and recognition accuracy of the network. The new algorithm is ingenious combination of the advantages of three algorithms, it realize the external optimization by PLS and internal optimization by GA. PLS-GA-RBF algorithm can fit more complex nonlinear recognition problems, and is more suitable for the small sample classification, which with high feature dimension and fewer numbers. In order to verify the reliability of the PLS-GA-RBF algorithm, multiple instances is used to validate and analysis. In this paper, four different experiments are arranged; among them are three small sample test and one large sample test. The purpose of the arrangement large sample test is to compare of validation. The result is satisfactory, which means the new algorithm has unique superiority in dealing with the small sample. •The nature of small sample is well-analyzed.•PLS is employed to reduce feature dimension of small sample, which obtained the relatively ideal low-dimensional data as the inputs of neural network.•Unlike previous studies, the optimized GA-RBF algorithm is adopts the way of hybrid coding and simultaneous evolving for hidden layer neurons and connection weights.•By two consecutive optimization, combining the advantages of three algorithms of PLS, GA, and RBF, a reliable small sample classification algorithm (PLS-GA-RBF) is established.•Four different groups of experiments are arranged to valuate the classification ability of PLS-GA-RBF algorithm. Radial basis function (RBF) neural network can use linear learning algorithm to complete the work formerly handled by nonlinear learning algorithm, and maintain the high precision of the nonlinear algorithm. However, the results of RBF would be slightly unsatisfactory when dealing with small sample which has higher feature dimension and fewer numbers. Higher feature dimension will influence the design of neural network, and fewer numbers of samples will cause network training incomplete or over-fitted, both of which restrict the recognition precision of the neural network. RBF neural network has some drawbacks, for example, it is hard to determine the numbers, center and width of the hidden layer’s neurons, which constrain the success of training. To solve the above problems, partial least squares (PLS) and genetic algorithm(GA)are introduced into RBF neural network, and better recognition precision will be obtained, because PLS is good at dealing with the small sample data, it can reduce feature dimension and make low-dimensional data more interpretative. In addition, GA can optimize the network architecture, the weights between hidden layer and output layer of the RBF neural network can ease non-complete network training, the way of hybrid coding and simultaneous evolving is adopted, and then an accurate algorithm is established. By these two consecutive optimizations, the RBF neural network classification algorithm based on PLS and GA (PLS-GA-RBF) is proposed, in order to solve some recognition problems caused by small sample. Four experiments and comparisons with other four algorithms are carried out to verify the superiority of the proposed algorithm, and the results indicate a good picture of the PLS-GA-RBF algorithm, the operating efficiency and recognition accuracy are improved substantially. The new small sample classification algorithm is worthy of further promotion.
AbstractList [Display omitted] This paper’s Graphical abstract When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too many inputs are difficult to determine the numbers of hidden layer neurons, it influences the design structure of the network, the redundancies or correlative data will influence the training of the network, and relatively few number of samples make network train non-completed or over-fitted, thereby affecting the operating efficiency and recognition accuracy of neural network. For the problem of small sample classification, two aspects of RBF neural network are optimized. Firstly, the original data reduces their feature dimension by PLS algorithm, then the low dimensional data is used as network input, it regard as external optimization. And then, using genetic algorithm to optimize RBF, the optimization way adopts hybrid coding and simultaneous evolving for hidden layer neurons and connection weights, this step regard as internal optimization. By these two consecutive optimizations, an optimized RBF neural network algorithm based on PLS and GA (PLS-GA-RBF algorithm) for small sample is established, which facilitates the hidden layer of network design, and improves the network training speed and generalization ability, thereby improving the operating efficiency and recognition accuracy of the network. The new algorithm is ingenious combination of the advantages of three algorithms, it realize the external optimization by PLS and internal optimization by GA. PLS-GA-RBF algorithm can fit more complex nonlinear recognition problems, and is more suitable for the small sample classification, which with high feature dimension and fewer numbers. In order to verify the reliability of the PLS-GA-RBF algorithm, multiple instances is used to validate and analysis. In this paper, four different experiments are arranged; among them are three small sample test and one large sample test. The purpose of the arrangement large sample test is to compare of validation. The result is satisfactory, which means the new algorithm has unique superiority in dealing with the small sample. •The nature of small sample is well-analyzed.•PLS is employed to reduce feature dimension of small sample, which obtained the relatively ideal low-dimensional data as the inputs of neural network.•Unlike previous studies, the optimized GA-RBF algorithm is adopts the way of hybrid coding and simultaneous evolving for hidden layer neurons and connection weights.•By two consecutive optimization, combining the advantages of three algorithms of PLS, GA, and RBF, a reliable small sample classification algorithm (PLS-GA-RBF) is established.•Four different groups of experiments are arranged to valuate the classification ability of PLS-GA-RBF algorithm. Radial basis function (RBF) neural network can use linear learning algorithm to complete the work formerly handled by nonlinear learning algorithm, and maintain the high precision of the nonlinear algorithm. However, the results of RBF would be slightly unsatisfactory when dealing with small sample which has higher feature dimension and fewer numbers. Higher feature dimension will influence the design of neural network, and fewer numbers of samples will cause network training incomplete or over-fitted, both of which restrict the recognition precision of the neural network. RBF neural network has some drawbacks, for example, it is hard to determine the numbers, center and width of the hidden layer’s neurons, which constrain the success of training. To solve the above problems, partial least squares (PLS) and genetic algorithm(GA)are introduced into RBF neural network, and better recognition precision will be obtained, because PLS is good at dealing with the small sample data, it can reduce feature dimension and make low-dimensional data more interpretative. In addition, GA can optimize the network architecture, the weights between hidden layer and output layer of the RBF neural network can ease non-complete network training, the way of hybrid coding and simultaneous evolving is adopted, and then an accurate algorithm is established. By these two consecutive optimizations, the RBF neural network classification algorithm based on PLS and GA (PLS-GA-RBF) is proposed, in order to solve some recognition problems caused by small sample. Four experiments and comparisons with other four algorithms are carried out to verify the superiority of the proposed algorithm, and the results indicate a good picture of the PLS-GA-RBF algorithm, the operating efficiency and recognition accuracy are improved substantially. The new small sample classification algorithm is worthy of further promotion.
Author Jia, Weikuan
Zhao, Dean
Ding, Ling
Author_xml – sequence: 1
  givenname: Weikuan
  orcidid: 0000-0001-6242-3269
  surname: Jia
  fullname: Jia, Weikuan
  email: jwk_1982@163.com
  organization: School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
– sequence: 2
  givenname: Dean
  surname: Zhao
  fullname: Zhao, Dean
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 3
  givenname: Ling
  surname: Ding
  fullname: Ding, Ling
  organization: School of Computing and Technology, Asia Pacific University of Technology & Innovation, Kuala Lumpur 57000, Malaysia
BookMark eNp9kMtKBDEQRYMo-PwBV_mBbjvpRzrgRsUXDAii61CTrowZ050xiYru_HMz6kJcuKq7uKeoOrtkc_ITEnLIqpJVrDtalhC9LnnOZSXKqhYbZIf1ghey69lmzm3XF41sum2yG-OyykXJ-x3ycTJRv0p2tO840NvTCzrhcwCXR3r14ZGCW_hg08NI5xBzxU90BSHZXHEIMdH49AwBI4VpoAvMmNW_IOMD1Q5itMZqSDbj3tA4gnM0wrhyuE-2DLiIBz9zj9xfnN-dXRWzm8vrs5NZoeuuS0XTCj4wHEQjTD2AFF3bMqwNCNOjAcaR9XNWybnh0ErkEtqGczCdBom9kPUe6b_36uBjDGiUtunrohTAOsUqtVaplmqtUq1VqkqorDKj_A-6CnaE8PY_dPwNYX7qxWJQUVucNA42oE5q8PY__BP9rZLu
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_138760
crossref_primary_10_3390_e24111569
crossref_primary_10_1016_j_foodchem_2023_135996
crossref_primary_10_1088_1757_899X_452_4_042133
crossref_primary_10_1007_s11431_023_2489_1
crossref_primary_10_1016_j_asoc_2017_08_017
crossref_primary_10_1016_j_tourman_2021_104436
crossref_primary_10_3390_app13095299
crossref_primary_10_1016_j_saa_2017_04_001
crossref_primary_10_3390_sym12020205
crossref_primary_10_1088_1757_899X_311_1_012002
crossref_primary_10_1109_JSEN_2017_2772798
crossref_primary_10_3390_rs15122953
crossref_primary_10_1007_s40747_021_00637_x
crossref_primary_10_1007_s10489_021_02883_5
crossref_primary_10_1002_asmb_2787
crossref_primary_10_1177_0142331220923767
crossref_primary_10_1109_ACCESS_2022_3184318
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1016_j_amc_2023_128009
crossref_primary_10_1080_0954898X_2020_1849842
crossref_primary_10_3390_math10162886
crossref_primary_10_1007_s12652_020_02784_4
crossref_primary_10_1007_s40815_019_00758_z
crossref_primary_10_1080_10408398_2022_2128036
crossref_primary_10_1299_jamdsm_2023jamdsm0033
crossref_primary_10_1016_j_ijleo_2022_169917
crossref_primary_10_3390_e21080763
crossref_primary_10_1007_s00521_017_3076_7
crossref_primary_10_1088_1361_6498_aac392
crossref_primary_10_1016_j_jmsy_2020_04_016
crossref_primary_10_1155_2020_8873353
crossref_primary_10_1177_0954407019846378
crossref_primary_10_1177_1729881419855824
crossref_primary_10_1109_ACCESS_2021_3050548
crossref_primary_10_1007_s10333_022_00920_8
crossref_primary_10_1016_j_saa_2017_11_056
crossref_primary_10_1007_s10068_019_00683_9
crossref_primary_10_3390_jmse8030210
crossref_primary_10_1252_jcej_17we159
crossref_primary_10_1002_spy2_181
crossref_primary_10_35940_ijeat_D3485_0411422
crossref_primary_10_1109_TIE_2018_2835402
crossref_primary_10_1002_spy2_138
crossref_primary_10_1088_1742_6596_1430_1_012035
crossref_primary_10_1109_TEVC_2019_2895298
crossref_primary_10_1016_j_asoc_2019_105620
crossref_primary_10_1016_j_asoc_2019_105541
crossref_primary_10_3103_S0146411620020029
crossref_primary_10_1109_TIM_2020_3009337
Cites_doi 10.1007/s00521-013-1534-4
10.1007/s00521-011-0560-3
10.1162/neco.1989.1.2.281
10.1007/s10462-011-9225-y
10.1016/j.jprocont.2011.09.002
10.1016/j.neucom.2014.11.022
10.1109/5.784219
10.1016/S0955-7997(00)00037-0
10.1016/j.asoc.2013.02.003
10.1007/978-3-319-11541-2_4
10.1016/j.neucom.2014.09.072
10.1080/00207543.2011.574499
10.1016/j.asoc.2009.12.009
10.1366/000370208783412717
10.1088/0957-0233/18/7/038
10.1007/s00521-010-0416-2
10.1016/j.asoc.2014.03.039
10.1007/s10462-011-9270-6
10.1016/j.neucom.2013.09.001
10.1109/TNN.2002.806949
10.1109/TNN.2008.2002078
10.1587/elex.7.1014
10.1016/j.knosys.2012.09.004
10.1016/j.asoc.2013.02.004
10.1007/BF02478259
10.1111/j.1751-5823.2012.00182.x
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.07.037
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 384
ExternalDocumentID 10_1016_j_asoc_2016_07_037
S1568494616303726
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-4572d1ed747f3da976551e3fa7f8efa12e18b109bf2a59e29a5422af6ca9e8793
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:07 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords RBF neural network
PLS-GA-RBF algorithm
Genetic algorithm
Partial least squares
Small sample classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-4572d1ed747f3da976551e3fa7f8efa12e18b109bf2a59e29a5422af6ca9e8793
ORCID 0000-0001-6242-3269
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2016_07_037
crossref_primary_10_1016_j_asoc_2016_07_037
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_07_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
2016-11-00
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Powell (bib0020) 1985
Ramachandran, Balakrishnan (bib0030) 2000; 24
Byungwhan, Ji (bib0075) 2008; 62
Ji, Ye (bib0165) 2008; 19
Ding, Jia, Jin (bib0070) 2011; 20
Khedher, Ramírez, Górriz (bib0110) 2015; 151
Chou, Chen (bib0150) 2012; 50
Ding, Li, Su (bib0125) 2013; 39
Kuriscak, Marsalek, Stroffek (bib0010) 2015; 152
Machavaram, Shankar (bib0050) 2013; 13
Moody, Dkaren (bib0025) 1989
Waveform Database Generator (Version 2).
D. Aha, Waveform database generator (version 2) data set
Etemad, Arya (bib0040) 2014; 129
Mccllochw, Pitts (bib0005) 1943; 10
Sahambi, Khorasani (bib0080) 2003; 14
Song, Gao, Yang (bib0060) 2005; 28
Wang (bib0085) 2000
Koza (bib0115) 1992
Hu, Zhao, Liang (bib0100) 2012; 22
Venkadesh, Hoogenboom, Potter (bib0140) 2013; 13
Ma, Zhu (bib0065) 2013; 81
Loghmanian, Jamaluddin, Ahmad (bib0145) 2012; 21
El-Emam, Al-Rabeh (bib0155) 2011; 11
T. Dietterich, Musk (version 1) data set, 18–19.
musk "clean1" database.
Ding, Jia, Xu (bib0095) 2010; 38
Liu, Xiao, Mei (bib0035) 2012
Zhang (bib0180) 2003
V. Sigillito, Ionosphere data set
.
Jain, Seera, Lim (bib0015) 2014; 25
Fukunaga (bib0160) 1990
Gan, Duanmub, Wang (bib0090) 2013; 40
Maarouf, Sosa, Galván (bib0135) 2015; 36
Li, Meng, Gao (bib0105) 2007; 18
Piotrowski (bib0120) 2014; 21
Yao (bib0130) 1999; 87
Ding, Zhu, Jia (bib0055) 2012; 37
Ebrahimpour, Esmkhani, Faridi (bib0045) 2010; 7
Ding (10.1016/j.asoc.2016.07.037_bib0095) 2010; 38
Liu (10.1016/j.asoc.2016.07.037_bib0035) 2012
Gan (10.1016/j.asoc.2016.07.037_bib0090) 2013; 40
Koza (10.1016/j.asoc.2016.07.037_bib0115) 1992
El-Emam (10.1016/j.asoc.2016.07.037_bib0155) 2011; 11
Machavaram (10.1016/j.asoc.2016.07.037_bib0050) 2013; 13
Kuriscak (10.1016/j.asoc.2016.07.037_bib0010) 2015; 152
Maarouf (10.1016/j.asoc.2016.07.037_bib0135) 2015; 36
10.1016/j.asoc.2016.07.037_bib0170
Mccllochw (10.1016/j.asoc.2016.07.037_bib0005) 1943; 10
Hu (10.1016/j.asoc.2016.07.037_bib0100) 2012; 22
Jain (10.1016/j.asoc.2016.07.037_bib0015) 2014; 25
Sahambi (10.1016/j.asoc.2016.07.037_bib0080) 2003; 14
Yao (10.1016/j.asoc.2016.07.037_bib0130) 1999; 87
Byungwhan (10.1016/j.asoc.2016.07.037_bib0075) 2008; 62
Li (10.1016/j.asoc.2016.07.037_bib0105) 2007; 18
Venkadesh (10.1016/j.asoc.2016.07.037_bib0140) 2013; 13
10.1016/j.asoc.2016.07.037_bib0175
Ramachandran (10.1016/j.asoc.2016.07.037_bib0030) 2000; 24
Etemad (10.1016/j.asoc.2016.07.037_bib0040) 2014; 129
Chou (10.1016/j.asoc.2016.07.037_bib0150) 2012; 50
Moody (10.1016/j.asoc.2016.07.037_bib0025) 1989
Ding (10.1016/j.asoc.2016.07.037_bib0070) 2011; 20
Ding (10.1016/j.asoc.2016.07.037_bib0125) 2013; 39
Wang (10.1016/j.asoc.2016.07.037_bib0085) 2000
Loghmanian (10.1016/j.asoc.2016.07.037_bib0145) 2012; 21
Ji (10.1016/j.asoc.2016.07.037_bib0165) 2008; 19
Ebrahimpour (10.1016/j.asoc.2016.07.037_bib0045) 2010; 7
Ding (10.1016/j.asoc.2016.07.037_bib0055) 2012; 37
Song (10.1016/j.asoc.2016.07.037_bib0060) 2005; 28
Piotrowski (10.1016/j.asoc.2016.07.037_bib0120) 2014; 21
Powell (10.1016/j.asoc.2016.07.037_bib0020) 1985
Fukunaga (10.1016/j.asoc.2016.07.037_bib0160) 1990
Khedher (10.1016/j.asoc.2016.07.037_bib0110) 2015; 151
Ma (10.1016/j.asoc.2016.07.037_bib0065) 2013; 81
10.1016/j.asoc.2016.07.037_bib0185
Zhang (10.1016/j.asoc.2016.07.037_bib0180) 2003
References_xml – volume: 22
  start-page: 207
  year: 2012
  end-page: 217
  ident: bib0100
  article-title: Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model
  publication-title: J. Process Control
– year: 1990
  ident: bib0160
  article-title: Introduction to Statistical Pattern Recognition
– volume: 7
  start-page: 1014
  year: 2010
  end-page: 1019
  ident: bib0045
  article-title: Farsi handwritten digit recognition based on mixture of RBF experts
  publication-title: IEICE Electron. Express
– volume: 28
  start-page: 1915
  year: 2005
  end-page: 1922
  ident: bib0060
  article-title: Dimensionality reduction in statistical pattern recognition and low loss dimensionality reduction
  publication-title: Chinese Journal of Computers
– volume: 38
  start-page: 71
  year: 2010
  end-page: 75
  ident: bib0095
  article-title: Elman neural network algorithm based on PLS
  publication-title: Acta Electronica Sin.
– year: 1992
  ident: bib0115
  article-title: Genetic Programming on the Programming of Computers by Means of Natural Selection
– volume: 87
  start-page: 1423
  year: 1999
  end-page: 1447
  ident: bib0130
  article-title: Evolving artificial neural networks
  publication-title: Proc. IEEE
– volume: 152
  start-page: 27
  year: 2015
  end-page: 35
  ident: bib0010
  article-title: Biological context of Hebb learning in artificial neural networks, a review
  publication-title: Neurocomputing
– start-page: 18
  year: 2003
  end-page: 19
  ident: bib0180
  article-title: The Application of Artificial Neural Network in the Forecasting of Wheat Midge
– volume: 129
  start-page: 585
  year: 2014
  end-page: 595
  ident: bib0040
  article-title: Classification and translation of style and affect in human motion using RBF neural networks
  publication-title: Neurocomputing
– year: 2000
  ident: bib0085
  article-title: Partial Least Squares Regression Method and Application
– volume: 50
  start-page: 1905
  year: 2012
  end-page: 1916
  ident: bib0150
  article-title: Combining neural networks and genetic algorithms for optimizing the parameter design of the inter-metal dielectric process
  publication-title: Int. J. Prod. Res.
– volume: 18
  start-page: 2074
  year: 2007
  end-page: 2082
  ident: bib0105
  article-title: Combined use of partial least-squares regression and neural network for residual life estimation of large generator stator insulation
  publication-title: Meas. Sci. Technol.
– volume: 11
  start-page: 3283
  year: 2011
  end-page: 3296
  ident: bib0155
  article-title: An intelligent computing technique for fluid flow problems using hybrid adaptive neural network and genetic algorithm
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 491
  year: 2014
  end-page: 509
  ident: bib0015
  article-title: A review of online learning in supervised neural networks
  publication-title: Neural Comput. Appl.
– volume: 21
  start-page: 1281
  year: 2012
  end-page: 1295
  ident: bib0145
  article-title: Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm
  publication-title: Neural Comput. Appl.
– volume: 13
  start-page: 3366
  year: 2013
  end-page: 3379
  ident: bib0050
  article-title: Joint damage identification using Improved Radial Basis Function (IRBF) networks in frequency and time domain
  publication-title: Appl. Soft Comput.
– volume: 62
  start-page: 73
  year: 2008
  end-page: 77
  ident: bib0075
  article-title: Optimization of principal-component-analysis-applied in situ spectroscopy data using neural networks and genetic algorithms
  publication-title: Appl. Spectrosc.
– volume: 21
  start-page: 382
  year: 2014
  end-page: 406
  ident: bib0120
  article-title: Differential evolution algorithms applied to neural network training suffer from stagnation
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 297
  year: 2011
  end-page: 302
  ident: bib0070
  article-title: The research of neural network algorithm based on factor analysis and cluster analysis
  publication-title: Neural Comput. Appl.
– volume: 40
  start-page: 1
  year: 2013
  end-page: 6
  ident: bib0090
  article-title: Anomaly intrusion detection based on PLS feature extraction and core vector machine
  publication-title: Knowledge-based Syst.
– volume: 39
  start-page: 251
  year: 2013
  end-page: 260
  ident: bib0125
  article-title: Evolutionary artificial neural networks: a review
  publication-title: Artif. Intell. Rev.
– volume: 14
  start-page: 138
  year: 2003
  end-page: 149
  ident: bib0080
  article-title: A neural-network appearance-based 3-D object recognition using independent component analysis
  publication-title: IEEE Trans. Neural Netw.
– reference: V. Sigillito, Ionosphere data set
– volume: 37
  start-page: 169
  year: 2012
  end-page: 180
  ident: bib0055
  article-title: A survey on feature extraction for pattern recognition
  publication-title: Artif. Intell. Rev.
– start-page: 143
  year: 1985
  end-page: 167
  ident: bib0020
  article-title: Radial basis function for multivariable interpolation: a review
  publication-title: IMA Conference on Algorithms for the Approximation of Functions and Data
– start-page: 281
  year: 1989
  end-page: 294
  ident: bib0025
  article-title: Fast learning in networks locally-tuned processing units
  publication-title: Neural Comput.
– volume: 13
  start-page: 2253
  year: 2013
  end-page: 2260
  ident: bib0140
  article-title: A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks
  publication-title: Appl. Soft Comput.
– reference: T. Dietterich, Musk (version 1) data set, 18–19.
– reference: Waveform Database Generator (Version 2).
– reference: .
– volume: 151
  start-page: 139
  year: 2015
  end-page: 150
  ident: bib0110
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images
  publication-title: Neurocomputing
– volume: 19
  start-page: 1768
  year: 2008
  end-page: 1782
  ident: bib0165
  article-title: Generalized linear discriminant analysis: a unified framework and efficient model selection
  publication-title: IEEE Trans. Neural Netw.
– volume: 10
  start-page: 115
  year: 1943
  end-page: 133
  ident: bib0005
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 24
  start-page: 575
  year: 2000
  end-page: 582
  ident: bib0030
  article-title: Radial basis functions as approximate particular solutions: review of recent progress
  publication-title: Eng. Anal. Boundary Elem.
– reference: D. Aha, Waveform database generator (version 2) data set,
– start-page: 1112
  year: 2012
  end-page: 1117
  ident: bib0035
  article-title: A Review of learning algorithm for radius basis function neural network
– volume: 36
  start-page: 59
  year: 2015
  end-page: 76
  ident: bib0135
  article-title: The role of artificial neural networks in evolutionary optimisation: a review
  publication-title: Comput. Methods Appl. Sci.
– reference: musk "clean1" database.
– volume: 81
  start-page: 134
  year: 2013
  end-page: 150
  ident: bib0065
  article-title: A review on dimension reduction
  publication-title: Int. Stat. Rev.
– volume: 25
  start-page: 491
  issue: 3–4
  year: 2014
  ident: 10.1016/j.asoc.2016.07.037_bib0015
  article-title: A review of online learning in supervised neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1534-4
– volume: 21
  start-page: 1281
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2016.07.037_bib0145
  article-title: Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0560-3
– year: 2000
  ident: 10.1016/j.asoc.2016.07.037_bib0085
– start-page: 281
  issue: l
  year: 1989
  ident: 10.1016/j.asoc.2016.07.037_bib0025
  article-title: Fast learning in networks locally-tuned processing units
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.281
– volume: 37
  start-page: 169
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2016.07.037_bib0055
  article-title: A survey on feature extraction for pattern recognition
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9225-y
– volume: 22
  start-page: 207
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2016.07.037_bib0100
  article-title: Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.09.002
– volume: 152
  start-page: 27
  year: 2015
  ident: 10.1016/j.asoc.2016.07.037_bib0010
  article-title: Biological context of Hebb learning in artificial neural networks, a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.022
– volume: 87
  start-page: 1423
  issue: 9
  year: 1999
  ident: 10.1016/j.asoc.2016.07.037_bib0130
  article-title: Evolving artificial neural networks
  publication-title: Proc. IEEE
  doi: 10.1109/5.784219
– volume: 28
  start-page: 1915
  issue: 11
  year: 2005
  ident: 10.1016/j.asoc.2016.07.037_bib0060
  article-title: Dimensionality reduction in statistical pattern recognition and low loss dimensionality reduction
  publication-title: Chinese Journal of Computers
– ident: 10.1016/j.asoc.2016.07.037_bib0170
– volume: 24
  start-page: 575
  issue: 7
  year: 2000
  ident: 10.1016/j.asoc.2016.07.037_bib0030
  article-title: Radial basis functions as approximate particular solutions: review of recent progress
  publication-title: Eng. Anal. Boundary Elem.
  doi: 10.1016/S0955-7997(00)00037-0
– volume: 13
  start-page: 2253
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2016.07.037_bib0140
  article-title: A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.02.003
– volume: 36
  start-page: 59
  year: 2015
  ident: 10.1016/j.asoc.2016.07.037_bib0135
  article-title: The role of artificial neural networks in evolutionary optimisation: a review
  publication-title: Comput. Methods Appl. Sci.
  doi: 10.1007/978-3-319-11541-2_4
– year: 1990
  ident: 10.1016/j.asoc.2016.07.037_bib0160
– volume: 151
  start-page: 139
  year: 2015
  ident: 10.1016/j.asoc.2016.07.037_bib0110
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.072
– start-page: 1112
  year: 2012
  ident: 10.1016/j.asoc.2016.07.037_bib0035
  article-title: A Review of learning algorithm for radius basis function neural network
– volume: 50
  start-page: 1905
  issue: 7
  year: 2012
  ident: 10.1016/j.asoc.2016.07.037_bib0150
  article-title: Combining neural networks and genetic algorithms for optimizing the parameter design of the inter-metal dielectric process
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.574499
– volume: 11
  start-page: 3283
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2016.07.037_bib0155
  article-title: An intelligent computing technique for fluid flow problems using hybrid adaptive neural network and genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.009
– start-page: 18
  year: 2003
  ident: 10.1016/j.asoc.2016.07.037_bib0180
– volume: 38
  start-page: 71
  issue: 2A
  year: 2010
  ident: 10.1016/j.asoc.2016.07.037_bib0095
  article-title: Elman neural network algorithm based on PLS
  publication-title: Acta Electronica Sin.
– year: 1992
  ident: 10.1016/j.asoc.2016.07.037_bib0115
– volume: 62
  start-page: 73
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2016.07.037_bib0075
  article-title: Optimization of principal-component-analysis-applied in situ spectroscopy data using neural networks and genetic algorithms
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370208783412717
– ident: 10.1016/j.asoc.2016.07.037_bib0175
– volume: 18
  start-page: 2074
  issue: 7
  year: 2007
  ident: 10.1016/j.asoc.2016.07.037_bib0105
  article-title: Combined use of partial least-squares regression and neural network for residual life estimation of large generator stator insulation
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/18/7/038
– volume: 20
  start-page: 297
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2016.07.037_bib0070
  article-title: The research of neural network algorithm based on factor analysis and cluster analysis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0416-2
– start-page: 143
  year: 1985
  ident: 10.1016/j.asoc.2016.07.037_bib0020
  article-title: Radial basis function for multivariable interpolation: a review
– volume: 21
  start-page: 382
  year: 2014
  ident: 10.1016/j.asoc.2016.07.037_bib0120
  article-title: Differential evolution algorithms applied to neural network training suffer from stagnation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.039
– volume: 39
  start-page: 251
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2016.07.037_bib0125
  article-title: Evolutionary artificial neural networks: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9270-6
– volume: 129
  start-page: 585
  issue: SI
  year: 2014
  ident: 10.1016/j.asoc.2016.07.037_bib0040
  article-title: Classification and translation of style and affect in human motion using RBF neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.001
– volume: 14
  start-page: 138
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2016.07.037_bib0080
  article-title: A neural-network appearance-based 3-D object recognition using independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.806949
– volume: 19
  start-page: 1768
  issue: 10
  year: 2008
  ident: 10.1016/j.asoc.2016.07.037_bib0165
  article-title: Generalized linear discriminant analysis: a unified framework and efficient model selection
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2002078
– volume: 7
  start-page: 1014
  issue: 14
  year: 2010
  ident: 10.1016/j.asoc.2016.07.037_bib0045
  article-title: Farsi handwritten digit recognition based on mixture of RBF experts
  publication-title: IEICE Electron. Express
  doi: 10.1587/elex.7.1014
– ident: 10.1016/j.asoc.2016.07.037_bib0185
– volume: 40
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2016.07.037_bib0090
  article-title: Anomaly intrusion detection based on PLS feature extraction and core vector machine
  publication-title: Knowledge-based Syst.
  doi: 10.1016/j.knosys.2012.09.004
– volume: 13
  start-page: 3366
  issue: 7
  year: 2013
  ident: 10.1016/j.asoc.2016.07.037_bib0050
  article-title: Joint damage identification using Improved Radial Basis Function (IRBF) networks in frequency and time domain
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.02.004
– volume: 10
  start-page: 115
  issue: 5
  year: 1943
  ident: 10.1016/j.asoc.2016.07.037_bib0005
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 81
  start-page: 134
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2016.07.037_bib0065
  article-title: A review on dimension reduction
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2012.00182.x
SSID ssj0016928
Score 2.4140582
Snippet [Display omitted] This paper’s Graphical abstract When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 373
SubjectTerms Genetic algorithm
Partial least squares
PLS-GA-RBF algorithm
RBF neural network
Small sample classification
Title An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample
URI https://dx.doi.org/10.1016/j.asoc.2016.07.037
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZQuezCgA2t_NI7cJuy1o7jxMdSUZWNoYlRqbfIie2tKE0KLRcOSPznvNckCKSJw06Ro_ekxM_2-yx9732MnTibG6VdFvAsFoHU1gUZ0f645CL3eKFQCRUn_7xU44n8Po2mG2zY1sIQrbI5--szfX1aN296zWz2FrNZ7zfePBKppUJE0Q9jQW23pYxJxeDb4wvNgyu91lcl44Csm8KZmuNlcAaI3lU38CQt9H8lp1cJZ7TNthqkCIP6Y3bYhit32cdWhQGaTfmJPQ1KqHDjz2cPzsLV6QioRyV6ljXDG0zxp7qbrf7OgVKWhaqEBf0imhSk3APL23uqQgJTWsD1RGWNr5wQ1UJOGJtIRes4QuVhOTdFAUtDzYU_s8no7Ho4DhphhSAPlVoFMoqF5c7iVcKH1iAiQdzkQm9inzhvuHA8yXhfZ16YSDuhTSSFMF7lRrsEd_Qe65RV6b4wkM57H2pjpVaI_aTOYxwbzHuxklbJLuPtjKZ503WcxC-KtKWX3aQUhZSikPbjFKPQZV9ffBZ1z413raM2UOmblZNiUnjHb_8__Q7YBxrV9YiHrLO6u3dHCExW2fF65R2zzcHw6uIXPc9_jC-fAWy15o4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoLr7biUWAO3Kp0147jxEdAXW3L49CCxM1yYhsWZZOFXS4ckPjnzGwSRCXEocc4M1IyY3u-kb6ZYWzfu8Iq7fOI56mIpHY-yon2xyUXRcCEQmVUnHx6poYX8vdlcrnAjrpaGKJVtnd_c6fPb-t2pddaszcZjXp_MfPIpJYKEUU_ToX6wJZkIlLKwH48vvA8uNLzAaskHZF4WznTkLwsmoD4XU0HTxqG_lZ0ehVxBqtsuYWKcNB8zRpb8NU6W-nGMEB7Kj-zp4MKajz549GDd_DncADUpBI1q4biDba8qu9Gs-sxUMxyUFcwoX9EkZJG98D09p7KkMBWDnBDUV3jKyWEtVAQyCZW0dyRUAeYjm1ZwtRSd-Ev7GLw8_xoGLWTFaIiVmoWySQVjnuHuUSInUVIgsDJx8GmIfPBcuF5lvO-zoOwifZC20QKYYMqrPYZHumvbLGqK7_BQPoQQqytk1oh-JO6SPHZYuBLlXRKbjLeWdQUbdtxmn5Rmo5fdmPIC4a8YPqpQS9ssu8vOpOm6ca70knnKPPP1jEYFd7R2_pPvT32cXh-emJOfp0db7NP9KYpTvzGFmd3934HUcos353vwmeeWOaO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+RBF+neural+network+algorithm+based+on+partial+least+squares+and+genetic+algorithm+for+classification+of+small+sample&rft.jtitle=Applied+soft+computing&rft.au=Jia%2C+Weikuan&rft.au=Zhao%2C+Dean&rft.au=Ding%2C+Ling&rft.date=2016-11-01&rft.issn=1568-4946&rft.volume=48&rft.spage=373&rft.epage=384&rft_id=info:doi/10.1016%2Fj.asoc.2016.07.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_07_037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon