An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample
[Display omitted] This paper’s Graphical abstract When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too many inputs are difficult to determine the numbers of hidden layer neurons, it influences the design structure of the network, the redundanc...
Saved in:
| Published in | Applied soft computing Vol. 48; pp. 373 - 384 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2016.07.037 |
Cover
| Abstract | [Display omitted]
This paper’s Graphical abstract
When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too many inputs are difficult to determine the numbers of hidden layer neurons, it influences the design structure of the network, the redundancies or correlative data will influence the training of the network, and relatively few number of samples make network train non-completed or over-fitted, thereby affecting the operating efficiency and recognition accuracy of neural network.
For the problem of small sample classification, two aspects of RBF neural network are optimized. Firstly, the original data reduces their feature dimension by PLS algorithm, then the low dimensional data is used as network input, it regard as external optimization. And then, using genetic algorithm to optimize RBF, the optimization way adopts hybrid coding and simultaneous evolving for hidden layer neurons and connection weights, this step regard as internal optimization. By these two consecutive optimizations, an optimized RBF neural network algorithm based on PLS and GA (PLS-GA-RBF algorithm) for small sample is established, which facilitates the hidden layer of network design, and improves the network training speed and generalization ability, thereby improving the operating efficiency and recognition accuracy of the network.
The new algorithm is ingenious combination of the advantages of three algorithms, it realize the external optimization by PLS and internal optimization by GA. PLS-GA-RBF algorithm can fit more complex nonlinear recognition problems, and is more suitable for the small sample classification, which with high feature dimension and fewer numbers.
In order to verify the reliability of the PLS-GA-RBF algorithm, multiple instances is used to validate and analysis. In this paper, four different experiments are arranged; among them are three small sample test and one large sample test. The purpose of the arrangement large sample test is to compare of validation. The result is satisfactory, which means the new algorithm has unique superiority in dealing with the small sample.
•The nature of small sample is well-analyzed.•PLS is employed to reduce feature dimension of small sample, which obtained the relatively ideal low-dimensional data as the inputs of neural network.•Unlike previous studies, the optimized GA-RBF algorithm is adopts the way of hybrid coding and simultaneous evolving for hidden layer neurons and connection weights.•By two consecutive optimization, combining the advantages of three algorithms of PLS, GA, and RBF, a reliable small sample classification algorithm (PLS-GA-RBF) is established.•Four different groups of experiments are arranged to valuate the classification ability of PLS-GA-RBF algorithm.
Radial basis function (RBF) neural network can use linear learning algorithm to complete the work formerly handled by nonlinear learning algorithm, and maintain the high precision of the nonlinear algorithm. However, the results of RBF would be slightly unsatisfactory when dealing with small sample which has higher feature dimension and fewer numbers. Higher feature dimension will influence the design of neural network, and fewer numbers of samples will cause network training incomplete or over-fitted, both of which restrict the recognition precision of the neural network. RBF neural network has some drawbacks, for example, it is hard to determine the numbers, center and width of the hidden layer’s neurons, which constrain the success of training. To solve the above problems, partial least squares (PLS) and genetic algorithm(GA)are introduced into RBF neural network, and better recognition precision will be obtained, because PLS is good at dealing with the small sample data, it can reduce feature dimension and make low-dimensional data more interpretative. In addition, GA can optimize the network architecture, the weights between hidden layer and output layer of the RBF neural network can ease non-complete network training, the way of hybrid coding and simultaneous evolving is adopted, and then an accurate algorithm is established. By these two consecutive optimizations, the RBF neural network classification algorithm based on PLS and GA (PLS-GA-RBF) is proposed, in order to solve some recognition problems caused by small sample. Four experiments and comparisons with other four algorithms are carried out to verify the superiority of the proposed algorithm, and the results indicate a good picture of the PLS-GA-RBF algorithm, the operating efficiency and recognition accuracy are improved substantially. The new small sample classification algorithm is worthy of further promotion. |
|---|---|
| AbstractList | [Display omitted]
This paper’s Graphical abstract
When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too many inputs are difficult to determine the numbers of hidden layer neurons, it influences the design structure of the network, the redundancies or correlative data will influence the training of the network, and relatively few number of samples make network train non-completed or over-fitted, thereby affecting the operating efficiency and recognition accuracy of neural network.
For the problem of small sample classification, two aspects of RBF neural network are optimized. Firstly, the original data reduces their feature dimension by PLS algorithm, then the low dimensional data is used as network input, it regard as external optimization. And then, using genetic algorithm to optimize RBF, the optimization way adopts hybrid coding and simultaneous evolving for hidden layer neurons and connection weights, this step regard as internal optimization. By these two consecutive optimizations, an optimized RBF neural network algorithm based on PLS and GA (PLS-GA-RBF algorithm) for small sample is established, which facilitates the hidden layer of network design, and improves the network training speed and generalization ability, thereby improving the operating efficiency and recognition accuracy of the network.
The new algorithm is ingenious combination of the advantages of three algorithms, it realize the external optimization by PLS and internal optimization by GA. PLS-GA-RBF algorithm can fit more complex nonlinear recognition problems, and is more suitable for the small sample classification, which with high feature dimension and fewer numbers.
In order to verify the reliability of the PLS-GA-RBF algorithm, multiple instances is used to validate and analysis. In this paper, four different experiments are arranged; among them are three small sample test and one large sample test. The purpose of the arrangement large sample test is to compare of validation. The result is satisfactory, which means the new algorithm has unique superiority in dealing with the small sample.
•The nature of small sample is well-analyzed.•PLS is employed to reduce feature dimension of small sample, which obtained the relatively ideal low-dimensional data as the inputs of neural network.•Unlike previous studies, the optimized GA-RBF algorithm is adopts the way of hybrid coding and simultaneous evolving for hidden layer neurons and connection weights.•By two consecutive optimization, combining the advantages of three algorithms of PLS, GA, and RBF, a reliable small sample classification algorithm (PLS-GA-RBF) is established.•Four different groups of experiments are arranged to valuate the classification ability of PLS-GA-RBF algorithm.
Radial basis function (RBF) neural network can use linear learning algorithm to complete the work formerly handled by nonlinear learning algorithm, and maintain the high precision of the nonlinear algorithm. However, the results of RBF would be slightly unsatisfactory when dealing with small sample which has higher feature dimension and fewer numbers. Higher feature dimension will influence the design of neural network, and fewer numbers of samples will cause network training incomplete or over-fitted, both of which restrict the recognition precision of the neural network. RBF neural network has some drawbacks, for example, it is hard to determine the numbers, center and width of the hidden layer’s neurons, which constrain the success of training. To solve the above problems, partial least squares (PLS) and genetic algorithm(GA)are introduced into RBF neural network, and better recognition precision will be obtained, because PLS is good at dealing with the small sample data, it can reduce feature dimension and make low-dimensional data more interpretative. In addition, GA can optimize the network architecture, the weights between hidden layer and output layer of the RBF neural network can ease non-complete network training, the way of hybrid coding and simultaneous evolving is adopted, and then an accurate algorithm is established. By these two consecutive optimizations, the RBF neural network classification algorithm based on PLS and GA (PLS-GA-RBF) is proposed, in order to solve some recognition problems caused by small sample. Four experiments and comparisons with other four algorithms are carried out to verify the superiority of the proposed algorithm, and the results indicate a good picture of the PLS-GA-RBF algorithm, the operating efficiency and recognition accuracy are improved substantially. The new small sample classification algorithm is worthy of further promotion. |
| Author | Jia, Weikuan Zhao, Dean Ding, Ling |
| Author_xml | – sequence: 1 givenname: Weikuan orcidid: 0000-0001-6242-3269 surname: Jia fullname: Jia, Weikuan email: jwk_1982@163.com organization: School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China – sequence: 2 givenname: Dean surname: Zhao fullname: Zhao, Dean organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Ling surname: Ding fullname: Ding, Ling organization: School of Computing and Technology, Asia Pacific University of Technology & Innovation, Kuala Lumpur 57000, Malaysia |
| BookMark | eNp9kMtKBDEQRYMo-PwBV_mBbjvpRzrgRsUXDAii61CTrowZ050xiYru_HMz6kJcuKq7uKeoOrtkc_ITEnLIqpJVrDtalhC9LnnOZSXKqhYbZIf1ghey69lmzm3XF41sum2yG-OyykXJ-x3ycTJRv0p2tO840NvTCzrhcwCXR3r14ZGCW_hg08NI5xBzxU90BSHZXHEIMdH49AwBI4VpoAvMmNW_IOMD1Q5itMZqSDbj3tA4gnM0wrhyuE-2DLiIBz9zj9xfnN-dXRWzm8vrs5NZoeuuS0XTCj4wHEQjTD2AFF3bMqwNCNOjAcaR9XNWybnh0ErkEtqGczCdBom9kPUe6b_36uBjDGiUtunrohTAOsUqtVaplmqtUq1VqkqorDKj_A-6CnaE8PY_dPwNYX7qxWJQUVucNA42oE5q8PY__BP9rZLu |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_138760 crossref_primary_10_3390_e24111569 crossref_primary_10_1016_j_foodchem_2023_135996 crossref_primary_10_1088_1757_899X_452_4_042133 crossref_primary_10_1007_s11431_023_2489_1 crossref_primary_10_1016_j_asoc_2017_08_017 crossref_primary_10_1016_j_tourman_2021_104436 crossref_primary_10_3390_app13095299 crossref_primary_10_1016_j_saa_2017_04_001 crossref_primary_10_3390_sym12020205 crossref_primary_10_1088_1757_899X_311_1_012002 crossref_primary_10_1109_JSEN_2017_2772798 crossref_primary_10_3390_rs15122953 crossref_primary_10_1007_s40747_021_00637_x crossref_primary_10_1007_s10489_021_02883_5 crossref_primary_10_1002_asmb_2787 crossref_primary_10_1177_0142331220923767 crossref_primary_10_1109_ACCESS_2022_3184318 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1016_j_amc_2023_128009 crossref_primary_10_1080_0954898X_2020_1849842 crossref_primary_10_3390_math10162886 crossref_primary_10_1007_s12652_020_02784_4 crossref_primary_10_1007_s40815_019_00758_z crossref_primary_10_1080_10408398_2022_2128036 crossref_primary_10_1299_jamdsm_2023jamdsm0033 crossref_primary_10_1016_j_ijleo_2022_169917 crossref_primary_10_3390_e21080763 crossref_primary_10_1007_s00521_017_3076_7 crossref_primary_10_1088_1361_6498_aac392 crossref_primary_10_1016_j_jmsy_2020_04_016 crossref_primary_10_1155_2020_8873353 crossref_primary_10_1177_0954407019846378 crossref_primary_10_1177_1729881419855824 crossref_primary_10_1109_ACCESS_2021_3050548 crossref_primary_10_1007_s10333_022_00920_8 crossref_primary_10_1016_j_saa_2017_11_056 crossref_primary_10_1007_s10068_019_00683_9 crossref_primary_10_3390_jmse8030210 crossref_primary_10_1252_jcej_17we159 crossref_primary_10_1002_spy2_181 crossref_primary_10_35940_ijeat_D3485_0411422 crossref_primary_10_1109_TIE_2018_2835402 crossref_primary_10_1002_spy2_138 crossref_primary_10_1088_1742_6596_1430_1_012035 crossref_primary_10_1109_TEVC_2019_2895298 crossref_primary_10_1016_j_asoc_2019_105620 crossref_primary_10_1016_j_asoc_2019_105541 crossref_primary_10_3103_S0146411620020029 crossref_primary_10_1109_TIM_2020_3009337 |
| Cites_doi | 10.1007/s00521-013-1534-4 10.1007/s00521-011-0560-3 10.1162/neco.1989.1.2.281 10.1007/s10462-011-9225-y 10.1016/j.jprocont.2011.09.002 10.1016/j.neucom.2014.11.022 10.1109/5.784219 10.1016/S0955-7997(00)00037-0 10.1016/j.asoc.2013.02.003 10.1007/978-3-319-11541-2_4 10.1016/j.neucom.2014.09.072 10.1080/00207543.2011.574499 10.1016/j.asoc.2009.12.009 10.1366/000370208783412717 10.1088/0957-0233/18/7/038 10.1007/s00521-010-0416-2 10.1016/j.asoc.2014.03.039 10.1007/s10462-011-9270-6 10.1016/j.neucom.2013.09.001 10.1109/TNN.2002.806949 10.1109/TNN.2008.2002078 10.1587/elex.7.1014 10.1016/j.knosys.2012.09.004 10.1016/j.asoc.2013.02.004 10.1007/BF02478259 10.1111/j.1751-5823.2012.00182.x |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2016.07.037 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 384 |
| ExternalDocumentID | 10_1016_j_asoc_2016_07_037 S1568494616303726 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c366t-4572d1ed747f3da976551e3fa7f8efa12e18b109bf2a59e29a5422af6ca9e8793 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 01 02:32:07 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | RBF neural network PLS-GA-RBF algorithm Genetic algorithm Partial least squares Small sample classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-4572d1ed747f3da976551e3fa7f8efa12e18b109bf2a59e29a5422af6ca9e8793 |
| ORCID | 0000-0001-6242-3269 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2016_07_037 crossref_primary_10_1016_j_asoc_2016_07_037 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_07_037 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2016 2016-11-00 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Powell (bib0020) 1985 Ramachandran, Balakrishnan (bib0030) 2000; 24 Byungwhan, Ji (bib0075) 2008; 62 Ji, Ye (bib0165) 2008; 19 Ding, Jia, Jin (bib0070) 2011; 20 Khedher, Ramírez, Górriz (bib0110) 2015; 151 Chou, Chen (bib0150) 2012; 50 Ding, Li, Su (bib0125) 2013; 39 Kuriscak, Marsalek, Stroffek (bib0010) 2015; 152 Machavaram, Shankar (bib0050) 2013; 13 Moody, Dkaren (bib0025) 1989 Waveform Database Generator (Version 2). D. Aha, Waveform database generator (version 2) data set Etemad, Arya (bib0040) 2014; 129 Mccllochw, Pitts (bib0005) 1943; 10 Sahambi, Khorasani (bib0080) 2003; 14 Song, Gao, Yang (bib0060) 2005; 28 Wang (bib0085) 2000 Koza (bib0115) 1992 Hu, Zhao, Liang (bib0100) 2012; 22 Venkadesh, Hoogenboom, Potter (bib0140) 2013; 13 Ma, Zhu (bib0065) 2013; 81 Loghmanian, Jamaluddin, Ahmad (bib0145) 2012; 21 El-Emam, Al-Rabeh (bib0155) 2011; 11 T. Dietterich, Musk (version 1) data set, 18–19. musk "clean1" database. Ding, Jia, Xu (bib0095) 2010; 38 Liu, Xiao, Mei (bib0035) 2012 Zhang (bib0180) 2003 V. Sigillito, Ionosphere data set . Jain, Seera, Lim (bib0015) 2014; 25 Fukunaga (bib0160) 1990 Gan, Duanmub, Wang (bib0090) 2013; 40 Maarouf, Sosa, Galván (bib0135) 2015; 36 Li, Meng, Gao (bib0105) 2007; 18 Piotrowski (bib0120) 2014; 21 Yao (bib0130) 1999; 87 Ding, Zhu, Jia (bib0055) 2012; 37 Ebrahimpour, Esmkhani, Faridi (bib0045) 2010; 7 Ding (10.1016/j.asoc.2016.07.037_bib0095) 2010; 38 Liu (10.1016/j.asoc.2016.07.037_bib0035) 2012 Gan (10.1016/j.asoc.2016.07.037_bib0090) 2013; 40 Koza (10.1016/j.asoc.2016.07.037_bib0115) 1992 El-Emam (10.1016/j.asoc.2016.07.037_bib0155) 2011; 11 Machavaram (10.1016/j.asoc.2016.07.037_bib0050) 2013; 13 Kuriscak (10.1016/j.asoc.2016.07.037_bib0010) 2015; 152 Maarouf (10.1016/j.asoc.2016.07.037_bib0135) 2015; 36 10.1016/j.asoc.2016.07.037_bib0170 Mccllochw (10.1016/j.asoc.2016.07.037_bib0005) 1943; 10 Hu (10.1016/j.asoc.2016.07.037_bib0100) 2012; 22 Jain (10.1016/j.asoc.2016.07.037_bib0015) 2014; 25 Sahambi (10.1016/j.asoc.2016.07.037_bib0080) 2003; 14 Yao (10.1016/j.asoc.2016.07.037_bib0130) 1999; 87 Byungwhan (10.1016/j.asoc.2016.07.037_bib0075) 2008; 62 Li (10.1016/j.asoc.2016.07.037_bib0105) 2007; 18 Venkadesh (10.1016/j.asoc.2016.07.037_bib0140) 2013; 13 10.1016/j.asoc.2016.07.037_bib0175 Ramachandran (10.1016/j.asoc.2016.07.037_bib0030) 2000; 24 Etemad (10.1016/j.asoc.2016.07.037_bib0040) 2014; 129 Chou (10.1016/j.asoc.2016.07.037_bib0150) 2012; 50 Moody (10.1016/j.asoc.2016.07.037_bib0025) 1989 Ding (10.1016/j.asoc.2016.07.037_bib0070) 2011; 20 Ding (10.1016/j.asoc.2016.07.037_bib0125) 2013; 39 Wang (10.1016/j.asoc.2016.07.037_bib0085) 2000 Loghmanian (10.1016/j.asoc.2016.07.037_bib0145) 2012; 21 Ji (10.1016/j.asoc.2016.07.037_bib0165) 2008; 19 Ebrahimpour (10.1016/j.asoc.2016.07.037_bib0045) 2010; 7 Ding (10.1016/j.asoc.2016.07.037_bib0055) 2012; 37 Song (10.1016/j.asoc.2016.07.037_bib0060) 2005; 28 Piotrowski (10.1016/j.asoc.2016.07.037_bib0120) 2014; 21 Powell (10.1016/j.asoc.2016.07.037_bib0020) 1985 Fukunaga (10.1016/j.asoc.2016.07.037_bib0160) 1990 Khedher (10.1016/j.asoc.2016.07.037_bib0110) 2015; 151 Ma (10.1016/j.asoc.2016.07.037_bib0065) 2013; 81 10.1016/j.asoc.2016.07.037_bib0185 Zhang (10.1016/j.asoc.2016.07.037_bib0180) 2003 |
| References_xml | – volume: 22 start-page: 207 year: 2012 end-page: 217 ident: bib0100 article-title: Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model publication-title: J. Process Control – year: 1990 ident: bib0160 article-title: Introduction to Statistical Pattern Recognition – volume: 7 start-page: 1014 year: 2010 end-page: 1019 ident: bib0045 article-title: Farsi handwritten digit recognition based on mixture of RBF experts publication-title: IEICE Electron. Express – volume: 28 start-page: 1915 year: 2005 end-page: 1922 ident: bib0060 article-title: Dimensionality reduction in statistical pattern recognition and low loss dimensionality reduction publication-title: Chinese Journal of Computers – volume: 38 start-page: 71 year: 2010 end-page: 75 ident: bib0095 article-title: Elman neural network algorithm based on PLS publication-title: Acta Electronica Sin. – year: 1992 ident: bib0115 article-title: Genetic Programming on the Programming of Computers by Means of Natural Selection – volume: 87 start-page: 1423 year: 1999 end-page: 1447 ident: bib0130 article-title: Evolving artificial neural networks publication-title: Proc. IEEE – volume: 152 start-page: 27 year: 2015 end-page: 35 ident: bib0010 article-title: Biological context of Hebb learning in artificial neural networks, a review publication-title: Neurocomputing – start-page: 18 year: 2003 end-page: 19 ident: bib0180 article-title: The Application of Artificial Neural Network in the Forecasting of Wheat Midge – volume: 129 start-page: 585 year: 2014 end-page: 595 ident: bib0040 article-title: Classification and translation of style and affect in human motion using RBF neural networks publication-title: Neurocomputing – year: 2000 ident: bib0085 article-title: Partial Least Squares Regression Method and Application – volume: 50 start-page: 1905 year: 2012 end-page: 1916 ident: bib0150 article-title: Combining neural networks and genetic algorithms for optimizing the parameter design of the inter-metal dielectric process publication-title: Int. J. Prod. Res. – volume: 18 start-page: 2074 year: 2007 end-page: 2082 ident: bib0105 article-title: Combined use of partial least-squares regression and neural network for residual life estimation of large generator stator insulation publication-title: Meas. Sci. Technol. – volume: 11 start-page: 3283 year: 2011 end-page: 3296 ident: bib0155 article-title: An intelligent computing technique for fluid flow problems using hybrid adaptive neural network and genetic algorithm publication-title: Appl. Soft Comput. – volume: 25 start-page: 491 year: 2014 end-page: 509 ident: bib0015 article-title: A review of online learning in supervised neural networks publication-title: Neural Comput. Appl. – volume: 21 start-page: 1281 year: 2012 end-page: 1295 ident: bib0145 article-title: Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm publication-title: Neural Comput. Appl. – volume: 13 start-page: 3366 year: 2013 end-page: 3379 ident: bib0050 article-title: Joint damage identification using Improved Radial Basis Function (IRBF) networks in frequency and time domain publication-title: Appl. Soft Comput. – volume: 62 start-page: 73 year: 2008 end-page: 77 ident: bib0075 article-title: Optimization of principal-component-analysis-applied in situ spectroscopy data using neural networks and genetic algorithms publication-title: Appl. Spectrosc. – volume: 21 start-page: 382 year: 2014 end-page: 406 ident: bib0120 article-title: Differential evolution algorithms applied to neural network training suffer from stagnation publication-title: Appl. Soft Comput. – volume: 20 start-page: 297 year: 2011 end-page: 302 ident: bib0070 article-title: The research of neural network algorithm based on factor analysis and cluster analysis publication-title: Neural Comput. Appl. – volume: 40 start-page: 1 year: 2013 end-page: 6 ident: bib0090 article-title: Anomaly intrusion detection based on PLS feature extraction and core vector machine publication-title: Knowledge-based Syst. – volume: 39 start-page: 251 year: 2013 end-page: 260 ident: bib0125 article-title: Evolutionary artificial neural networks: a review publication-title: Artif. Intell. Rev. – volume: 14 start-page: 138 year: 2003 end-page: 149 ident: bib0080 article-title: A neural-network appearance-based 3-D object recognition using independent component analysis publication-title: IEEE Trans. Neural Netw. – reference: V. Sigillito, Ionosphere data set – volume: 37 start-page: 169 year: 2012 end-page: 180 ident: bib0055 article-title: A survey on feature extraction for pattern recognition publication-title: Artif. Intell. Rev. – start-page: 143 year: 1985 end-page: 167 ident: bib0020 article-title: Radial basis function for multivariable interpolation: a review publication-title: IMA Conference on Algorithms for the Approximation of Functions and Data – start-page: 281 year: 1989 end-page: 294 ident: bib0025 article-title: Fast learning in networks locally-tuned processing units publication-title: Neural Comput. – volume: 13 start-page: 2253 year: 2013 end-page: 2260 ident: bib0140 article-title: A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks publication-title: Appl. Soft Comput. – reference: T. Dietterich, Musk (version 1) data set, 18–19. – reference: Waveform Database Generator (Version 2). – reference: . – volume: 151 start-page: 139 year: 2015 end-page: 150 ident: bib0110 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images publication-title: Neurocomputing – volume: 19 start-page: 1768 year: 2008 end-page: 1782 ident: bib0165 article-title: Generalized linear discriminant analysis: a unified framework and efficient model selection publication-title: IEEE Trans. Neural Netw. – volume: 10 start-page: 115 year: 1943 end-page: 133 ident: bib0005 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 24 start-page: 575 year: 2000 end-page: 582 ident: bib0030 article-title: Radial basis functions as approximate particular solutions: review of recent progress publication-title: Eng. Anal. Boundary Elem. – reference: D. Aha, Waveform database generator (version 2) data set, – start-page: 1112 year: 2012 end-page: 1117 ident: bib0035 article-title: A Review of learning algorithm for radius basis function neural network – volume: 36 start-page: 59 year: 2015 end-page: 76 ident: bib0135 article-title: The role of artificial neural networks in evolutionary optimisation: a review publication-title: Comput. Methods Appl. Sci. – reference: musk "clean1" database. – volume: 81 start-page: 134 year: 2013 end-page: 150 ident: bib0065 article-title: A review on dimension reduction publication-title: Int. Stat. Rev. – volume: 25 start-page: 491 issue: 3–4 year: 2014 ident: 10.1016/j.asoc.2016.07.037_bib0015 article-title: A review of online learning in supervised neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1534-4 – volume: 21 start-page: 1281 issue: 6 year: 2012 ident: 10.1016/j.asoc.2016.07.037_bib0145 article-title: Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-011-0560-3 – year: 2000 ident: 10.1016/j.asoc.2016.07.037_bib0085 – start-page: 281 issue: l year: 1989 ident: 10.1016/j.asoc.2016.07.037_bib0025 article-title: Fast learning in networks locally-tuned processing units publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.281 – volume: 37 start-page: 169 issue: 3 year: 2012 ident: 10.1016/j.asoc.2016.07.037_bib0055 article-title: A survey on feature extraction for pattern recognition publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9225-y – volume: 22 start-page: 207 issue: 1 year: 2012 ident: 10.1016/j.asoc.2016.07.037_bib0100 article-title: Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.09.002 – volume: 152 start-page: 27 year: 2015 ident: 10.1016/j.asoc.2016.07.037_bib0010 article-title: Biological context of Hebb learning in artificial neural networks, a review publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.022 – volume: 87 start-page: 1423 issue: 9 year: 1999 ident: 10.1016/j.asoc.2016.07.037_bib0130 article-title: Evolving artificial neural networks publication-title: Proc. IEEE doi: 10.1109/5.784219 – volume: 28 start-page: 1915 issue: 11 year: 2005 ident: 10.1016/j.asoc.2016.07.037_bib0060 article-title: Dimensionality reduction in statistical pattern recognition and low loss dimensionality reduction publication-title: Chinese Journal of Computers – ident: 10.1016/j.asoc.2016.07.037_bib0170 – volume: 24 start-page: 575 issue: 7 year: 2000 ident: 10.1016/j.asoc.2016.07.037_bib0030 article-title: Radial basis functions as approximate particular solutions: review of recent progress publication-title: Eng. Anal. Boundary Elem. doi: 10.1016/S0955-7997(00)00037-0 – volume: 13 start-page: 2253 issue: 5 year: 2013 ident: 10.1016/j.asoc.2016.07.037_bib0140 article-title: A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.02.003 – volume: 36 start-page: 59 year: 2015 ident: 10.1016/j.asoc.2016.07.037_bib0135 article-title: The role of artificial neural networks in evolutionary optimisation: a review publication-title: Comput. Methods Appl. Sci. doi: 10.1007/978-3-319-11541-2_4 – year: 1990 ident: 10.1016/j.asoc.2016.07.037_bib0160 – volume: 151 start-page: 139 year: 2015 ident: 10.1016/j.asoc.2016.07.037_bib0110 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.072 – start-page: 1112 year: 2012 ident: 10.1016/j.asoc.2016.07.037_bib0035 article-title: A Review of learning algorithm for radius basis function neural network – volume: 50 start-page: 1905 issue: 7 year: 2012 ident: 10.1016/j.asoc.2016.07.037_bib0150 article-title: Combining neural networks and genetic algorithms for optimizing the parameter design of the inter-metal dielectric process publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.574499 – volume: 11 start-page: 3283 issue: 4 year: 2011 ident: 10.1016/j.asoc.2016.07.037_bib0155 article-title: An intelligent computing technique for fluid flow problems using hybrid adaptive neural network and genetic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.009 – start-page: 18 year: 2003 ident: 10.1016/j.asoc.2016.07.037_bib0180 – volume: 38 start-page: 71 issue: 2A year: 2010 ident: 10.1016/j.asoc.2016.07.037_bib0095 article-title: Elman neural network algorithm based on PLS publication-title: Acta Electronica Sin. – year: 1992 ident: 10.1016/j.asoc.2016.07.037_bib0115 – volume: 62 start-page: 73 issue: 1 year: 2008 ident: 10.1016/j.asoc.2016.07.037_bib0075 article-title: Optimization of principal-component-analysis-applied in situ spectroscopy data using neural networks and genetic algorithms publication-title: Appl. Spectrosc. doi: 10.1366/000370208783412717 – ident: 10.1016/j.asoc.2016.07.037_bib0175 – volume: 18 start-page: 2074 issue: 7 year: 2007 ident: 10.1016/j.asoc.2016.07.037_bib0105 article-title: Combined use of partial least-squares regression and neural network for residual life estimation of large generator stator insulation publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/18/7/038 – volume: 20 start-page: 297 issue: 2 year: 2011 ident: 10.1016/j.asoc.2016.07.037_bib0070 article-title: The research of neural network algorithm based on factor analysis and cluster analysis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0416-2 – start-page: 143 year: 1985 ident: 10.1016/j.asoc.2016.07.037_bib0020 article-title: Radial basis function for multivariable interpolation: a review – volume: 21 start-page: 382 year: 2014 ident: 10.1016/j.asoc.2016.07.037_bib0120 article-title: Differential evolution algorithms applied to neural network training suffer from stagnation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.039 – volume: 39 start-page: 251 issue: 3 year: 2013 ident: 10.1016/j.asoc.2016.07.037_bib0125 article-title: Evolutionary artificial neural networks: a review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9270-6 – volume: 129 start-page: 585 issue: SI year: 2014 ident: 10.1016/j.asoc.2016.07.037_bib0040 article-title: Classification and translation of style and affect in human motion using RBF neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.001 – volume: 14 start-page: 138 issue: 1 year: 2003 ident: 10.1016/j.asoc.2016.07.037_bib0080 article-title: A neural-network appearance-based 3-D object recognition using independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.806949 – volume: 19 start-page: 1768 issue: 10 year: 2008 ident: 10.1016/j.asoc.2016.07.037_bib0165 article-title: Generalized linear discriminant analysis: a unified framework and efficient model selection publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2002078 – volume: 7 start-page: 1014 issue: 14 year: 2010 ident: 10.1016/j.asoc.2016.07.037_bib0045 article-title: Farsi handwritten digit recognition based on mixture of RBF experts publication-title: IEICE Electron. Express doi: 10.1587/elex.7.1014 – ident: 10.1016/j.asoc.2016.07.037_bib0185 – volume: 40 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2016.07.037_bib0090 article-title: Anomaly intrusion detection based on PLS feature extraction and core vector machine publication-title: Knowledge-based Syst. doi: 10.1016/j.knosys.2012.09.004 – volume: 13 start-page: 3366 issue: 7 year: 2013 ident: 10.1016/j.asoc.2016.07.037_bib0050 article-title: Joint damage identification using Improved Radial Basis Function (IRBF) networks in frequency and time domain publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.02.004 – volume: 10 start-page: 115 issue: 5 year: 1943 ident: 10.1016/j.asoc.2016.07.037_bib0005 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 81 start-page: 134 issue: 1 year: 2013 ident: 10.1016/j.asoc.2016.07.037_bib0065 article-title: A review on dimension reduction publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2012.00182.x |
| SSID | ssj0016928 |
| Score | 2.4140582 |
| Snippet | [Display omitted]
This paper’s Graphical abstract
When using the RBF neural network to deal with small samples with high feature dimension and few numbers, too... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 373 |
| SubjectTerms | Genetic algorithm Partial least squares PLS-GA-RBF algorithm RBF neural network Small sample classification |
| Title | An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample |
| URI | https://dx.doi.org/10.1016/j.asoc.2016.07.037 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZQuezCgA2t_NI7cJuy1o7jxMdSUZWNoYlRqbfIie2tKE0KLRcOSPznvNckCKSJw06Ro_ekxM_2-yx9732MnTibG6VdFvAsFoHU1gUZ0f645CL3eKFQCRUn_7xU44n8Po2mG2zY1sIQrbI5--szfX1aN296zWz2FrNZ7zfePBKppUJE0Q9jQW23pYxJxeDb4wvNgyu91lcl44Csm8KZmuNlcAaI3lU38CQt9H8lp1cJZ7TNthqkCIP6Y3bYhit32cdWhQGaTfmJPQ1KqHDjz2cPzsLV6QioRyV6ljXDG0zxp7qbrf7OgVKWhaqEBf0imhSk3APL23uqQgJTWsD1RGWNr5wQ1UJOGJtIRes4QuVhOTdFAUtDzYU_s8no7Ho4DhphhSAPlVoFMoqF5c7iVcKH1iAiQdzkQm9inzhvuHA8yXhfZ16YSDuhTSSFMF7lRrsEd_Qe65RV6b4wkM57H2pjpVaI_aTOYxwbzHuxklbJLuPtjKZ503WcxC-KtKWX3aQUhZSikPbjFKPQZV9ffBZ1z413raM2UOmblZNiUnjHb_8__Q7YBxrV9YiHrLO6u3dHCExW2fF65R2zzcHw6uIXPc9_jC-fAWy15o4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoLr7biUWAO3Kp0147jxEdAXW3L49CCxM1yYhsWZZOFXS4ckPjnzGwSRCXEocc4M1IyY3u-kb6ZYWzfu8Iq7fOI56mIpHY-yon2xyUXRcCEQmVUnHx6poYX8vdlcrnAjrpaGKJVtnd_c6fPb-t2pddaszcZjXp_MfPIpJYKEUU_ToX6wJZkIlLKwH48vvA8uNLzAaskHZF4WznTkLwsmoD4XU0HTxqG_lZ0ehVxBqtsuYWKcNB8zRpb8NU6W-nGMEB7Kj-zp4MKajz549GDd_DncADUpBI1q4biDba8qu9Gs-sxUMxyUFcwoX9EkZJG98D09p7KkMBWDnBDUV3jKyWEtVAQyCZW0dyRUAeYjm1ZwtRSd-Ev7GLw8_xoGLWTFaIiVmoWySQVjnuHuUSInUVIgsDJx8GmIfPBcuF5lvO-zoOwifZC20QKYYMqrPYZHumvbLGqK7_BQPoQQqytk1oh-JO6SPHZYuBLlXRKbjLeWdQUbdtxmn5Rmo5fdmPIC4a8YPqpQS9ssu8vOpOm6ca70knnKPPP1jEYFd7R2_pPvT32cXh-emJOfp0db7NP9KYpTvzGFmd3934HUcos353vwmeeWOaO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+RBF+neural+network+algorithm+based+on+partial+least+squares+and+genetic+algorithm+for+classification+of+small+sample&rft.jtitle=Applied+soft+computing&rft.au=Jia%2C+Weikuan&rft.au=Zhao%2C+Dean&rft.au=Ding%2C+Ling&rft.date=2016-11-01&rft.issn=1568-4946&rft.volume=48&rft.spage=373&rft.epage=384&rft_id=info:doi/10.1016%2Fj.asoc.2016.07.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_07_037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |