EM algorithm in Gaussian copula with missing data
Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is challenged by both the presence of missing data and the need for adjusting for confounding factors. In this paper, we consider a unified frame...
        Saved in:
      
    
          | Published in | Computational statistics & data analysis Vol. 101; pp. 1 - 11 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.09.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-9473 1872-7352  | 
| DOI | 10.1016/j.csda.2016.01.008 | 
Cover
| Abstract | Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is challenged by both the presence of missing data and the need for adjusting for confounding factors. In this paper, we consider a unified framework of Gaussian copula regression that enables us to estimate either Pearson correlation or rank-based correlation (e.g. Kendall’s tau or Spearman’s rho), depending on the types of marginal distributions. To adjust for confounding covariates, we utilize marginal regression models with univariate location-scale family distributions. We establish the EM algorithm for estimation of both correlation and regression parameters with missing values. For implementation, we propose an effective peeling procedure to carry out iterations required by the EM algorithm. We compare the performance of the EM algorithm method to the traditional multiple imputation approach through simulation studies. For structured types of correlations, such as exchangeable or first-order auto-regressive (AR-1) correlation, the EM algorithm outperforms the multiple imputation approach in terms of both estimation bias and efficiency. | 
    
|---|---|
| AbstractList | Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is challenged by both the presence of missing data and the need for adjusting for confounding factors. In this paper, we consider a unified framework of Gaussian copula regression that enables us to estimate either Pearson correlation or rank-based correlation (e.g. Kendall’s tau or Spearman’s rho), depending on the types of marginal distributions. To adjust for confounding covariates, we utilize marginal regression models with univariate location-scale family distributions. We establish the EM algorithm for estimation of both correlation and regression parameters with missing values. For implementation, we propose an effective peeling procedure to carry out iterations required by the EM algorithm. We compare the performance of the EM algorithm method to the traditional multiple imputation approach through simulation studies. For structured types of correlations, such as exchangeable or first-order auto-regressive (AR-1) correlation, the EM algorithm outperforms the multiple imputation approach in terms of both estimation bias and efficiency. | 
    
| Author | Song, Peter X.-K. Ding, Wei  | 
    
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-3217-6620 surname: Ding fullname: Ding, Wei email: dingwei.vivian@gmail.com, dingwei@umich.edu organization: Barclays Investment Bank, 745 7th Ave, New York, NY 10019, United States – sequence: 2 givenname: Peter X.-K. surname: Song fullname: Song, Peter X.-K. email: pxsong@umich.edu organization: University of Michigan, MI, 48109, United States  | 
    
| BookMark | eNqFkE1PwzAMQCM0JLbBH-DUI5eWfLVNJS5oGgNpiAucI89NR6YuHUkG4t-TaZw4jJMt28-y34SM3OAMIdeMFoyy6nZTYGih4CkvKCsoVWdkzFTN81qUfETGqVHnjazFBZmEsKGUclmrMWHz5wz69eBtfN9m1mUL2IdgwWU47PY9ZF-pkW1tqrl11kKES3LeQR_M1W-ckreH-evsMV--LJ5m98scRVXFXLRYl8IASmGqsgHGmlqWDUdkqsKukqtmRYED66BB2gmFslFGdUrwVgmDYkpujnt3fvjYmxB1ugJN34Mzwz5ozkvBOZO8-XeUKV7KumTp_Snhx1H0QwjedHrn7Rb8t2ZUH1TqjT6o1AeVmjKdVCZI_YHQRoh2cNGD7U-jd0fUJFWf1ngd0BqHprXeYNTtYE_hPxlFj5E | 
    
| CitedBy_id | crossref_primary_10_1177_26320770241248415 crossref_primary_10_1080_02701367_2022_2057904 crossref_primary_10_1109_TCYB_2019_2923434 crossref_primary_10_1016_j_csda_2017_04_010 crossref_primary_10_1002_smi_3364 crossref_primary_10_3390_e24121849 crossref_primary_10_1016_j_neucom_2017_01_017 crossref_primary_10_1214_18_STS645 crossref_primary_10_1016_j_eatbeh_2021_101559 crossref_primary_10_1016_j_jmva_2023_105278 crossref_primary_10_1109_ACCESS_2019_2918952 crossref_primary_10_1177_08445621241253876 crossref_primary_10_1109_TSC_2019_2961092 crossref_primary_10_1080_10485252_2019_1702660 crossref_primary_10_1177_00332941241255037 crossref_primary_10_1016_j_csda_2016_06_005 crossref_primary_10_1007_s12144_021_02231_3 crossref_primary_10_23736_S2724_6612_21_02254_5 crossref_primary_10_1097_FCH_0000000000000331 crossref_primary_10_1177_26320770231178516 crossref_primary_10_1016_j_jhydrol_2022_128603 crossref_primary_10_1016_j_jmva_2019_02_003 crossref_primary_10_1007_s12529_021_10025_x crossref_primary_10_2139_ssrn_3029508 crossref_primary_10_1007_s10935_023_00723_5 crossref_primary_10_1088_1361_6501_adbe94 crossref_primary_10_1111_jep_14267 crossref_primary_10_1080_07399332_2024_2359555 crossref_primary_10_23736_S2724_6612_24_02528_4 crossref_primary_10_1002_hpja_911 crossref_primary_10_1016_j_imu_2021_100799 crossref_primary_10_1016_j_cherd_2017_05_023 crossref_primary_10_1016_j_jmva_2020_104654 crossref_primary_10_1177_10901981211029251 crossref_primary_10_1016_j_ejor_2022_06_032 crossref_primary_10_1016_j_advwatres_2017_10_002 crossref_primary_10_1007_s12144_022_03503_2 crossref_primary_10_1007_s12529_022_10106_5 crossref_primary_10_1111_insr_12263 crossref_primary_10_1016_j_jneb_2021_07_003 crossref_primary_10_1080_03630242_2024_2374783 crossref_primary_10_1177_02601060221078157 crossref_primary_10_2139_ssrn_3416573 crossref_primary_10_1007_s10461_018_2312_1 crossref_primary_10_1109_TITS_2020_2979924  | 
    
| Cites_doi | 10.1214/14-AOS1244 10.1111/1467-9469.00191 10.1111/j.2517-6161.1977.tb01600.x 10.1214/12-EJS721 10.1007/s11121-007-0070-9 10.1016/j.jmva.2004.06.003 10.1086/375253 10.1002/sim.3719 10.1093/biomet/80.2.267 10.1016/j.jmva.2012.02.001 10.1016/j.jmva.2009.08.002 10.1080/07474938.2012.690692 10.1093/biomet/73.1.13 10.1111/j.1467-842X.2011.00622.x 10.1016/j.jmva.2006.05.006 10.1093/biomet/87.4.823 10.1111/j.2517-6161.1982.tb01203.x 10.1111/j.1751-5823.2010.00103.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2016 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7S9 L.6  | 
    
| DOI | 10.1016/j.csda.2016.01.008 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Statistics  | 
    
| EISSN | 1872-7352 | 
    
| EndPage | 11 | 
    
| ExternalDocumentID | 10_1016_j_csda_2016_01_008 S0167947316000177  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c366t-3dc753eac43e659a11974592cc186cf64b9b0a2a1fa9c0f38c498e8f832d83ec3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-9473 | 
    
| IngestDate | Sun Sep 28 12:03:01 EDT 2025 Thu Oct 02 09:54:56 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Thu Oct 02 04:26:43 EDT 2025 Fri Feb 23 02:23:52 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Regression Gaussian copula EM algorithm Misaligned missing data  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c366t-3dc753eac43e659a11974592cc186cf64b9b0a2a1fa9c0f38c498e8f832d83ec3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-3217-6620 | 
    
| PQID | 1825475147 | 
    
| PQPubID | 23500 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_2253221429 proquest_miscellaneous_1825475147 crossref_primary_10_1016_j_csda_2016_01_008 crossref_citationtrail_10_1016_j_csda_2016_01_008 elsevier_sciencedirect_doi_10_1016_j_csda_2016_01_008  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2016 2016-09-00 20160901  | 
    
| PublicationDateYYYYMMDD | 2016-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2016 text: September 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Computational statistics & data analysis | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Fan, Y., Zhu, D., 2009. Partial identification and confidence sets for functionals of the joint distribution of potential outcomes. Tech. Rep., Working paper. Joe (br000075) 2005; 94 Nelder, Baker (br000120) 1972 Qu, Lindsay, Li (br000125) 2000; 87 Song (br000150) 2000; 27 McNeil, Frey, Embrechts (br000110) 2010 Song (br000155) 2007 Meng, Rubin (br000115) 1993; 80 Genest, Nešlehová, Ben Ghorbal (br000045) 2011; 53 Louis (br000095) 1982 Abramowitz, Stegun (br000005) 1972 Huang, Prokhorov (br000065) 2014; 33 Gipson, Selewski, Massengill, Wickman, Messer, Herreshoff, Bowers, Ferris, Mahan, Greenbaum (br000055) 2013; 11 Genest, Quesada Molina, Rodríguez Lallena (br000050) 1995; 320 Little, Rubin (br000090) 2002 Liang, Zeger (br000085) 1986; 73 Graham, Olchowski, Gilreath (br000060) 2007; 8 Masarotto, Varin (br000105) 2012; 6 Joe (br000070) 1997 Acar, Genest, NešLehová (br000010) 2012; 110 Joe, Li, Nikoloulopoulos (br000080) 2010; 101 Czado (br000025) 2010 Manski (br000100) 2003 Scaillet (br000135) 2007; 98 Andridge, Little (br000015) 2010; 78 Ané, Kharoubi (br000020) 2003; 76 Dempster, Laird, Rubin (br000030) 1977 Fries, Bruce, Cella (br000040) 2005; 23 Sklar (br000145) 1959 Song, Jiang, Park, Qu (br000160) 2009; 28 Segers, van den Akker, Werker (br000140) 2014; 42 Rubin (br000130) 2004 Masarotto (10.1016/j.csda.2016.01.008_br000105) 2012; 6 Manski (10.1016/j.csda.2016.01.008_br000100) 2003 Segers (10.1016/j.csda.2016.01.008_br000140) 2014; 42 Song (10.1016/j.csda.2016.01.008_br000155) 2007 Liang (10.1016/j.csda.2016.01.008_br000085) 1986; 73 10.1016/j.csda.2016.01.008_br000035 Acar (10.1016/j.csda.2016.01.008_br000010) 2012; 110 Little (10.1016/j.csda.2016.01.008_br000090) 2002 Qu (10.1016/j.csda.2016.01.008_br000125) 2000; 87 Rubin (10.1016/j.csda.2016.01.008_br000130) 2004 Song (10.1016/j.csda.2016.01.008_br000160) 2009; 28 Nelder (10.1016/j.csda.2016.01.008_br000120) 1972 Dempster (10.1016/j.csda.2016.01.008_br000030) 1977 Joe (10.1016/j.csda.2016.01.008_br000080) 2010; 101 Genest (10.1016/j.csda.2016.01.008_br000050) 1995; 320 Gipson (10.1016/j.csda.2016.01.008_br000055) 2013; 11 Scaillet (10.1016/j.csda.2016.01.008_br000135) 2007; 98 Genest (10.1016/j.csda.2016.01.008_br000045) 2011; 53 Sklar (10.1016/j.csda.2016.01.008_br000145) 1959 Andridge (10.1016/j.csda.2016.01.008_br000015) 2010; 78 Graham (10.1016/j.csda.2016.01.008_br000060) 2007; 8 McNeil (10.1016/j.csda.2016.01.008_br000110) 2010 Joe (10.1016/j.csda.2016.01.008_br000070) 1997 Meng (10.1016/j.csda.2016.01.008_br000115) 1993; 80 Fries (10.1016/j.csda.2016.01.008_br000040) 2005; 23 Ané (10.1016/j.csda.2016.01.008_br000020) 2003; 76 Czado (10.1016/j.csda.2016.01.008_br000025) 2010 Huang (10.1016/j.csda.2016.01.008_br000065) 2014; 33 Song (10.1016/j.csda.2016.01.008_br000150) 2000; 27 Joe (10.1016/j.csda.2016.01.008_br000075) 2005; 94 Louis (10.1016/j.csda.2016.01.008_br000095) 1982 Abramowitz (10.1016/j.csda.2016.01.008_br000005) 1972  | 
    
| References_xml | – year: 1972 ident: br000120 article-title: Generalized linear models publication-title: Encyclopedia Stat. Sci. – volume: 27 start-page: 305 year: 2000 end-page: 320 ident: br000150 article-title: Multivariate dispersion models generated from Gaussian copula publication-title: Scand. J. Statist. – volume: 6 start-page: 1517 year: 2012 end-page: 1549 ident: br000105 article-title: Gaussian copula marginal regression publication-title: Electron. J. Stat. – start-page: 1 year: 1977 end-page: 38 ident: br000030 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – year: 2010 ident: br000110 article-title: Quantitative Risk Management: Concepts, Techniques, and Tools – volume: 78 start-page: 40 year: 2010 end-page: 64 ident: br000015 article-title: A review of hot deck imputation for survey non-response publication-title: Internat. Statist. Rev. – year: 1997 ident: br000070 article-title: Multivariate Models and Multivariate Dependence Concepts, Vol. 73 – volume: 73 start-page: 13 year: 1986 end-page: 22 ident: br000085 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – year: 1972 ident: br000005 article-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. 55 – volume: 53 start-page: 157 year: 2011 end-page: 177 ident: br000045 article-title: Estimators based on Kendall’s tau in multivariate copula models publication-title: Aust. N. Z. J. Stat. – year: 2004 ident: br000130 article-title: Multiple Imputation for Nonresponse in Surveys, Vol. 81 – volume: 94 start-page: 401 year: 2005 end-page: 409 ident: br000075 article-title: Asymptotic efficiency of the two-stage estimation method for copula-based models publication-title: J. Multivariate Anal. – volume: 11 year: 2013 ident: br000055 article-title: Gaining the promis perspective from children with nephrotic syndrome: a midwest pediatric nephrology consortium study publication-title: Health Qual. Life Outcomes – reference: Fan, Y., Zhu, D., 2009. Partial identification and confidence sets for functionals of the joint distribution of potential outcomes. Tech. Rep., Working paper. – volume: 8 start-page: 206 year: 2007 end-page: 213 ident: br000060 article-title: How many imputations are really needed? Some practical clarifications of multiple imputation theory publication-title: Prev. Sci. – start-page: 93 year: 2010 end-page: 109 ident: br000025 article-title: Pair-copula constructions of multivariate copulas publication-title: Copula Theory and its Applications – start-page: 8 year: 1959 ident: br000145 article-title: Fonctions de Répartition à n Dimensions et Leurs Marges – volume: 80 start-page: 267 year: 1993 end-page: 278 ident: br000115 article-title: Maximum likelihood estimation via the ECM algorithm: A general framework publication-title: Biometrika – start-page: 226 year: 1982 end-page: 233 ident: br000095 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 98 start-page: 533 year: 2007 end-page: 543 ident: br000135 article-title: Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters publication-title: J. Multivariate Anal. – start-page: 1 year: 2002 ident: br000090 publication-title: Statistical Analysis with Missing Data – volume: 87 start-page: 823 year: 2000 end-page: 836 ident: br000125 article-title: Improving generalised estimating equations using quadratic inference functions publication-title: Biometrika – year: 2003 ident: br000100 article-title: Partial Identification of Probability Distributions – volume: 320 start-page: 723 year: 1995 end-page: 726 ident: br000050 article-title: De l’impossibilité de construire des lois à marges multidimensionnelles données à partir de copules publication-title: C. R. Acad. Sci., Paris I – volume: 33 start-page: 751 year: 2014 end-page: 771 ident: br000065 article-title: A goodness-of-fit test for copulas publication-title: Econometric Rev. – volume: 101 start-page: 252 year: 2010 end-page: 270 ident: br000080 article-title: Tail dependence functions and vine copulas publication-title: J. Multivariate Anal. – volume: 42 start-page: 1911 year: 2014 end-page: 1940 ident: br000140 article-title: Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation publication-title: Ann. Statist. – volume: 28 start-page: 3683 year: 2009 end-page: 3696 ident: br000160 article-title: Quadratic inference functions in marginal models for longitudinal data publication-title: Stat. Med. – volume: 23 start-page: S53 year: 2005 ident: br000040 article-title: The promise of promis: using item response theory to improve assessment of patient-reported outcomes publication-title: Clin. Exp. Rheumatol. – year: 2007 ident: br000155 article-title: Correlated Data Analysis: Modeling, Analytics, and Applications – volume: 110 start-page: 74 year: 2012 end-page: 90 ident: br000010 article-title: Beyond simplified pair-copula constructions publication-title: J. Multivariate Anal. – volume: 76 start-page: 411 year: 2003 end-page: 438 ident: br000020 article-title: Dependence structure and risk measure* publication-title: J. Bus. – volume: 42 start-page: 1911 year: 2014 ident: 10.1016/j.csda.2016.01.008_br000140 article-title: Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation publication-title: Ann. Statist. doi: 10.1214/14-AOS1244 – volume: 27 start-page: 305 issue: 2 year: 2000 ident: 10.1016/j.csda.2016.01.008_br000150 article-title: Multivariate dispersion models generated from Gaussian copula publication-title: Scand. J. Statist. doi: 10.1111/1467-9469.00191 – year: 1972 ident: 10.1016/j.csda.2016.01.008_br000005 – start-page: 1 year: 1977 ident: 10.1016/j.csda.2016.01.008_br000030 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – start-page: 8 year: 1959 ident: 10.1016/j.csda.2016.01.008_br000145 – volume: 6 start-page: 1517 year: 2012 ident: 10.1016/j.csda.2016.01.008_br000105 article-title: Gaussian copula marginal regression publication-title: Electron. J. Stat. doi: 10.1214/12-EJS721 – volume: 8 start-page: 206 issue: 3 year: 2007 ident: 10.1016/j.csda.2016.01.008_br000060 article-title: How many imputations are really needed? Some practical clarifications of multiple imputation theory publication-title: Prev. Sci. doi: 10.1007/s11121-007-0070-9 – year: 2010 ident: 10.1016/j.csda.2016.01.008_br000110 – volume: 94 start-page: 401 year: 2005 ident: 10.1016/j.csda.2016.01.008_br000075 article-title: Asymptotic efficiency of the two-stage estimation method for copula-based models publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2004.06.003 – start-page: 93 year: 2010 ident: 10.1016/j.csda.2016.01.008_br000025 article-title: Pair-copula constructions of multivariate copulas – year: 2003 ident: 10.1016/j.csda.2016.01.008_br000100 – year: 2007 ident: 10.1016/j.csda.2016.01.008_br000155 – volume: 76 start-page: 411 issue: 3 year: 2003 ident: 10.1016/j.csda.2016.01.008_br000020 article-title: Dependence structure and risk measure* publication-title: J. Bus. doi: 10.1086/375253 – volume: 28 start-page: 3683 issue: 29 year: 2009 ident: 10.1016/j.csda.2016.01.008_br000160 article-title: Quadratic inference functions in marginal models for longitudinal data publication-title: Stat. Med. doi: 10.1002/sim.3719 – ident: 10.1016/j.csda.2016.01.008_br000035 – volume: 80 start-page: 267 issue: 2 year: 1993 ident: 10.1016/j.csda.2016.01.008_br000115 article-title: Maximum likelihood estimation via the ECM algorithm: A general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – volume: 110 start-page: 74 year: 2012 ident: 10.1016/j.csda.2016.01.008_br000010 article-title: Beyond simplified pair-copula constructions publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2012.02.001 – volume: 320 start-page: 723 issue: 6 year: 1995 ident: 10.1016/j.csda.2016.01.008_br000050 article-title: De l’impossibilité de construire des lois à marges multidimensionnelles données à partir de copules publication-title: C. R. Acad. Sci., Paris I – volume: 101 start-page: 252 issue: 1 year: 2010 ident: 10.1016/j.csda.2016.01.008_br000080 article-title: Tail dependence functions and vine copulas publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2009.08.002 – volume: 11 issue: 3 year: 2013 ident: 10.1016/j.csda.2016.01.008_br000055 article-title: Gaining the promis perspective from children with nephrotic syndrome: a midwest pediatric nephrology consortium study publication-title: Health Qual. Life Outcomes – volume: 23 start-page: S53 issue: 5 year: 2005 ident: 10.1016/j.csda.2016.01.008_br000040 article-title: The promise of promis: using item response theory to improve assessment of patient-reported outcomes publication-title: Clin. Exp. Rheumatol. – volume: 33 start-page: 751 year: 2014 ident: 10.1016/j.csda.2016.01.008_br000065 article-title: A goodness-of-fit test for copulas publication-title: Econometric Rev. doi: 10.1080/07474938.2012.690692 – volume: 73 start-page: 13 issue: 1 year: 1986 ident: 10.1016/j.csda.2016.01.008_br000085 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 53 start-page: 157 issue: 2 year: 2011 ident: 10.1016/j.csda.2016.01.008_br000045 article-title: Estimators based on Kendall’s tau in multivariate copula models publication-title: Aust. N. Z. J. Stat. doi: 10.1111/j.1467-842X.2011.00622.x – start-page: 1 year: 2002 ident: 10.1016/j.csda.2016.01.008_br000090 – volume: 98 start-page: 533 year: 2007 ident: 10.1016/j.csda.2016.01.008_br000135 article-title: Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2006.05.006 – volume: 87 start-page: 823 issue: 4 year: 2000 ident: 10.1016/j.csda.2016.01.008_br000125 article-title: Improving generalised estimating equations using quadratic inference functions publication-title: Biometrika doi: 10.1093/biomet/87.4.823 – start-page: 226 year: 1982 ident: 10.1016/j.csda.2016.01.008_br000095 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 78 start-page: 40 issue: 1 year: 2010 ident: 10.1016/j.csda.2016.01.008_br000015 article-title: A review of hot deck imputation for survey non-response publication-title: Internat. Statist. Rev. doi: 10.1111/j.1751-5823.2010.00103.x – year: 1997 ident: 10.1016/j.csda.2016.01.008_br000070 – year: 2004 ident: 10.1016/j.csda.2016.01.008_br000130 – year: 1972 ident: 10.1016/j.csda.2016.01.008_br000120 article-title: Generalized linear models publication-title: Encyclopedia Stat. Sci.  | 
    
| SSID | ssj0002478 | 
    
| Score | 2.3937926 | 
    
| Snippet | Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adjustment Algorithms Correlation EM algorithm Gaussian Gaussian copula Mathematical models Misaligned missing data Missing data Regression regression analysis Statistics  | 
    
| Title | EM algorithm in Gaussian copula with missing data | 
    
| URI | https://dx.doi.org/10.1016/j.csda.2016.01.008 https://www.proquest.com/docview/1825475147 https://www.proquest.com/docview/2253221429  | 
    
| Volume | 101 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYqyyUjcUGgcL3GOVdVSqMqBRXCzHMeGIkgRaa98O54sIBBw4BQlGivRc_xsj9_MIHREQiuccDqICYsDlvE0SAV3gU2skUJSTUuf7vhCDG_Y-R2_W0C9JhYGZJU191ecXrJ1_aRTo9l5mUw6VyCgTxhUXiqzvkBEOWMxVDE4efuUeUSsYmPI7w3WdeBMpfEyRQa5h4goU3dCicmfJ6dvNF3OPYNVtFIvGnG3-q41tGDzdbQ8_si4Wmwg0h9j_XQ_9Xv9h2c8yfGpnhcQIIlNWaILg8MV-04F3wAGXegmuhn0r3vDoC6HEBgqxCygmfF7C0-UjFrBEw0HgIwnkTFECuMES5M01JEmTicmdFQalkgrnR-zmaTW0C3Uyqe53UY4SrVwYSZNnEnGHZeZ9gbWj1VuqHOijUiDgzJ1rnAoWfGkGlHYowLsFGCnQqI8dm10_NHmpcqU8ac1b-BVX_pbeSr_s91h0xfKYwanGzq303mhCOx1Y7_-i3-38eTlCYz4OXjnn-_fRUtwV6nM9lBr9jq3-35ZMksPyv_uAC12z0bDC7iOLm9H7yme4hw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwFLSgHIADYhU7RuKGQuN4iXNEFaUs5UKRerMcx4aikiLaXvl2_LKAQNAD1-RZicbJ2M8ez0PohIRWOOF0EBMWByzjaZAK7gKbWCOFpJoWa7rdO9F5YNd93p9DrfosDMgqK-4vOb1g6-pKs0Kz-ToYNO9BQJ8wqLxUuL7E82iB8SiGDOzs_UvnEbGSjsHgG8KrkzOlyMuMMzAfIqLw7oQak7-PTj94uhh82qtopZo14vPyxdbQnM3X0XL303J1vIHIRRfr4ePIJ_tPL3iQ40s9HcMJSWyKGl0YVlyx71VYHMAgDN1ED-2LXqsTVPUQAkOFmAQ0Mz658EzJqBU80bADyHgSGUOkME6wNElDHWnidGJCR6VhibTS-Z82k9QauoUa-Si32whHqRYuzKSJM8m44zLTPsD6n5Ub6pzYQaTGQZnKLBxqVgxVrQp7VoCdAuxUSJTHbgedfrZ5La0yZkbzGl71rcOV5_KZ7Y7rvlAeM9je0LkdTceKQLIb-wlg_HeMZy_PYMQPwrv_fP4RWuz0urfq9uruZg8twZ1ScraPGpO3qT3wc5RJelh8gx9sVeIO | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM+algorithm+in+Gaussian+copula+with+missing+data&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Ding%2C+Wei&rft.au=Song%2C+Peter+X.-K.&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=101&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.csda.2016.01.008&rft.externalDocID=S0167947316000177 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |