EM algorithm in Gaussian copula with missing data

Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is challenged by both the presence of missing data and the need for adjusting for confounding factors. In this paper, we consider a unified frame...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 101; pp. 1 - 11
Main Authors Ding, Wei, Song, Peter X.-K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2016
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
DOI10.1016/j.csda.2016.01.008

Cover

Abstract Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is challenged by both the presence of missing data and the need for adjusting for confounding factors. In this paper, we consider a unified framework of Gaussian copula regression that enables us to estimate either Pearson correlation or rank-based correlation (e.g. Kendall’s tau or Spearman’s rho), depending on the types of marginal distributions. To adjust for confounding covariates, we utilize marginal regression models with univariate location-scale family distributions. We establish the EM algorithm for estimation of both correlation and regression parameters with missing values. For implementation, we propose an effective peeling procedure to carry out iterations required by the EM algorithm. We compare the performance of the EM algorithm method to the traditional multiple imputation approach through simulation studies. For structured types of correlations, such as exchangeable or first-order auto-regressive (AR-1) correlation, the EM algorithm outperforms the multiple imputation approach in terms of both estimation bias and efficiency.
AbstractList Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is challenged by both the presence of missing data and the need for adjusting for confounding factors. In this paper, we consider a unified framework of Gaussian copula regression that enables us to estimate either Pearson correlation or rank-based correlation (e.g. Kendall’s tau or Spearman’s rho), depending on the types of marginal distributions. To adjust for confounding covariates, we utilize marginal regression models with univariate location-scale family distributions. We establish the EM algorithm for estimation of both correlation and regression parameters with missing values. For implementation, we propose an effective peeling procedure to carry out iterations required by the EM algorithm. We compare the performance of the EM algorithm method to the traditional multiple imputation approach through simulation studies. For structured types of correlations, such as exchangeable or first-order auto-regressive (AR-1) correlation, the EM algorithm outperforms the multiple imputation approach in terms of both estimation bias and efficiency.
Author Song, Peter X.-K.
Ding, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-3217-6620
  surname: Ding
  fullname: Ding, Wei
  email: dingwei.vivian@gmail.com, dingwei@umich.edu
  organization: Barclays Investment Bank, 745 7th Ave, New York, NY 10019, United States
– sequence: 2
  givenname: Peter X.-K.
  surname: Song
  fullname: Song, Peter X.-K.
  email: pxsong@umich.edu
  organization: University of Michigan, MI, 48109, United States
BookMark eNqFkE1PwzAMQCM0JLbBH-DUI5eWfLVNJS5oGgNpiAucI89NR6YuHUkG4t-TaZw4jJMt28-y34SM3OAMIdeMFoyy6nZTYGih4CkvKCsoVWdkzFTN81qUfETGqVHnjazFBZmEsKGUclmrMWHz5wz69eBtfN9m1mUL2IdgwWU47PY9ZF-pkW1tqrl11kKES3LeQR_M1W-ckreH-evsMV--LJ5m98scRVXFXLRYl8IASmGqsgHGmlqWDUdkqsKukqtmRYED66BB2gmFslFGdUrwVgmDYkpujnt3fvjYmxB1ugJN34Mzwz5ozkvBOZO8-XeUKV7KumTp_Snhx1H0QwjedHrn7Rb8t2ZUH1TqjT6o1AeVmjKdVCZI_YHQRoh2cNGD7U-jd0fUJFWf1ngd0BqHprXeYNTtYE_hPxlFj5E
CitedBy_id crossref_primary_10_1177_26320770241248415
crossref_primary_10_1080_02701367_2022_2057904
crossref_primary_10_1109_TCYB_2019_2923434
crossref_primary_10_1016_j_csda_2017_04_010
crossref_primary_10_1002_smi_3364
crossref_primary_10_3390_e24121849
crossref_primary_10_1016_j_neucom_2017_01_017
crossref_primary_10_1214_18_STS645
crossref_primary_10_1016_j_eatbeh_2021_101559
crossref_primary_10_1016_j_jmva_2023_105278
crossref_primary_10_1109_ACCESS_2019_2918952
crossref_primary_10_1177_08445621241253876
crossref_primary_10_1109_TSC_2019_2961092
crossref_primary_10_1080_10485252_2019_1702660
crossref_primary_10_1177_00332941241255037
crossref_primary_10_1016_j_csda_2016_06_005
crossref_primary_10_1007_s12144_021_02231_3
crossref_primary_10_23736_S2724_6612_21_02254_5
crossref_primary_10_1097_FCH_0000000000000331
crossref_primary_10_1177_26320770231178516
crossref_primary_10_1016_j_jhydrol_2022_128603
crossref_primary_10_1016_j_jmva_2019_02_003
crossref_primary_10_1007_s12529_021_10025_x
crossref_primary_10_2139_ssrn_3029508
crossref_primary_10_1007_s10935_023_00723_5
crossref_primary_10_1088_1361_6501_adbe94
crossref_primary_10_1111_jep_14267
crossref_primary_10_1080_07399332_2024_2359555
crossref_primary_10_23736_S2724_6612_24_02528_4
crossref_primary_10_1002_hpja_911
crossref_primary_10_1016_j_imu_2021_100799
crossref_primary_10_1016_j_cherd_2017_05_023
crossref_primary_10_1016_j_jmva_2020_104654
crossref_primary_10_1177_10901981211029251
crossref_primary_10_1016_j_ejor_2022_06_032
crossref_primary_10_1016_j_advwatres_2017_10_002
crossref_primary_10_1007_s12144_022_03503_2
crossref_primary_10_1007_s12529_022_10106_5
crossref_primary_10_1111_insr_12263
crossref_primary_10_1016_j_jneb_2021_07_003
crossref_primary_10_1080_03630242_2024_2374783
crossref_primary_10_1177_02601060221078157
crossref_primary_10_2139_ssrn_3416573
crossref_primary_10_1007_s10461_018_2312_1
crossref_primary_10_1109_TITS_2020_2979924
Cites_doi 10.1214/14-AOS1244
10.1111/1467-9469.00191
10.1111/j.2517-6161.1977.tb01600.x
10.1214/12-EJS721
10.1007/s11121-007-0070-9
10.1016/j.jmva.2004.06.003
10.1086/375253
10.1002/sim.3719
10.1093/biomet/80.2.267
10.1016/j.jmva.2012.02.001
10.1016/j.jmva.2009.08.002
10.1080/07474938.2012.690692
10.1093/biomet/73.1.13
10.1111/j.1467-842X.2011.00622.x
10.1016/j.jmva.2006.05.006
10.1093/biomet/87.4.823
10.1111/j.2517-6161.1982.tb01203.x
10.1111/j.1751-5823.2010.00103.x
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.csda.2016.01.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 11
ExternalDocumentID 10_1016_j_csda_2016_01_008
S0167947316000177
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c366t-3dc753eac43e659a11974592cc186cf64b9b0a2a1fa9c0f38c498e8f832d83ec3
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Sun Sep 28 12:03:01 EDT 2025
Thu Oct 02 09:54:56 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
Thu Oct 02 04:26:43 EDT 2025
Fri Feb 23 02:23:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Regression
Gaussian copula
EM algorithm
Misaligned missing data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-3dc753eac43e659a11974592cc186cf64b9b0a2a1fa9c0f38c498e8f832d83ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3217-6620
PQID 1825475147
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_2253221429
proquest_miscellaneous_1825475147
crossref_primary_10_1016_j_csda_2016_01_008
crossref_citationtrail_10_1016_j_csda_2016_01_008
elsevier_sciencedirect_doi_10_1016_j_csda_2016_01_008
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fan, Y., Zhu, D., 2009. Partial identification and confidence sets for functionals of the joint distribution of potential outcomes. Tech. Rep., Working paper.
Joe (br000075) 2005; 94
Nelder, Baker (br000120) 1972
Qu, Lindsay, Li (br000125) 2000; 87
Song (br000150) 2000; 27
McNeil, Frey, Embrechts (br000110) 2010
Song (br000155) 2007
Meng, Rubin (br000115) 1993; 80
Genest, Nešlehová, Ben Ghorbal (br000045) 2011; 53
Louis (br000095) 1982
Abramowitz, Stegun (br000005) 1972
Huang, Prokhorov (br000065) 2014; 33
Gipson, Selewski, Massengill, Wickman, Messer, Herreshoff, Bowers, Ferris, Mahan, Greenbaum (br000055) 2013; 11
Genest, Quesada Molina, Rodríguez Lallena (br000050) 1995; 320
Little, Rubin (br000090) 2002
Liang, Zeger (br000085) 1986; 73
Graham, Olchowski, Gilreath (br000060) 2007; 8
Masarotto, Varin (br000105) 2012; 6
Joe (br000070) 1997
Acar, Genest, NešLehová (br000010) 2012; 110
Joe, Li, Nikoloulopoulos (br000080) 2010; 101
Czado (br000025) 2010
Manski (br000100) 2003
Scaillet (br000135) 2007; 98
Andridge, Little (br000015) 2010; 78
Ané, Kharoubi (br000020) 2003; 76
Dempster, Laird, Rubin (br000030) 1977
Fries, Bruce, Cella (br000040) 2005; 23
Sklar (br000145) 1959
Song, Jiang, Park, Qu (br000160) 2009; 28
Segers, van den Akker, Werker (br000140) 2014; 42
Rubin (br000130) 2004
Masarotto (10.1016/j.csda.2016.01.008_br000105) 2012; 6
Manski (10.1016/j.csda.2016.01.008_br000100) 2003
Segers (10.1016/j.csda.2016.01.008_br000140) 2014; 42
Song (10.1016/j.csda.2016.01.008_br000155) 2007
Liang (10.1016/j.csda.2016.01.008_br000085) 1986; 73
10.1016/j.csda.2016.01.008_br000035
Acar (10.1016/j.csda.2016.01.008_br000010) 2012; 110
Little (10.1016/j.csda.2016.01.008_br000090) 2002
Qu (10.1016/j.csda.2016.01.008_br000125) 2000; 87
Rubin (10.1016/j.csda.2016.01.008_br000130) 2004
Song (10.1016/j.csda.2016.01.008_br000160) 2009; 28
Nelder (10.1016/j.csda.2016.01.008_br000120) 1972
Dempster (10.1016/j.csda.2016.01.008_br000030) 1977
Joe (10.1016/j.csda.2016.01.008_br000080) 2010; 101
Genest (10.1016/j.csda.2016.01.008_br000050) 1995; 320
Gipson (10.1016/j.csda.2016.01.008_br000055) 2013; 11
Scaillet (10.1016/j.csda.2016.01.008_br000135) 2007; 98
Genest (10.1016/j.csda.2016.01.008_br000045) 2011; 53
Sklar (10.1016/j.csda.2016.01.008_br000145) 1959
Andridge (10.1016/j.csda.2016.01.008_br000015) 2010; 78
Graham (10.1016/j.csda.2016.01.008_br000060) 2007; 8
McNeil (10.1016/j.csda.2016.01.008_br000110) 2010
Joe (10.1016/j.csda.2016.01.008_br000070) 1997
Meng (10.1016/j.csda.2016.01.008_br000115) 1993; 80
Fries (10.1016/j.csda.2016.01.008_br000040) 2005; 23
Ané (10.1016/j.csda.2016.01.008_br000020) 2003; 76
Czado (10.1016/j.csda.2016.01.008_br000025) 2010
Huang (10.1016/j.csda.2016.01.008_br000065) 2014; 33
Song (10.1016/j.csda.2016.01.008_br000150) 2000; 27
Joe (10.1016/j.csda.2016.01.008_br000075) 2005; 94
Louis (10.1016/j.csda.2016.01.008_br000095) 1982
Abramowitz (10.1016/j.csda.2016.01.008_br000005) 1972
References_xml – year: 1972
  ident: br000120
  article-title: Generalized linear models
  publication-title: Encyclopedia Stat. Sci.
– volume: 27
  start-page: 305
  year: 2000
  end-page: 320
  ident: br000150
  article-title: Multivariate dispersion models generated from Gaussian copula
  publication-title: Scand. J. Statist.
– volume: 6
  start-page: 1517
  year: 2012
  end-page: 1549
  ident: br000105
  article-title: Gaussian copula marginal regression
  publication-title: Electron. J. Stat.
– start-page: 1
  year: 1977
  end-page: 38
  ident: br000030
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– year: 2010
  ident: br000110
  article-title: Quantitative Risk Management: Concepts, Techniques, and Tools
– volume: 78
  start-page: 40
  year: 2010
  end-page: 64
  ident: br000015
  article-title: A review of hot deck imputation for survey non-response
  publication-title: Internat. Statist. Rev.
– year: 1997
  ident: br000070
  article-title: Multivariate Models and Multivariate Dependence Concepts, Vol. 73
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  ident: br000085
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– year: 1972
  ident: br000005
  article-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. 55
– volume: 53
  start-page: 157
  year: 2011
  end-page: 177
  ident: br000045
  article-title: Estimators based on Kendall’s tau in multivariate copula models
  publication-title: Aust. N. Z. J. Stat.
– year: 2004
  ident: br000130
  article-title: Multiple Imputation for Nonresponse in Surveys, Vol. 81
– volume: 94
  start-page: 401
  year: 2005
  end-page: 409
  ident: br000075
  article-title: Asymptotic efficiency of the two-stage estimation method for copula-based models
  publication-title: J. Multivariate Anal.
– volume: 11
  year: 2013
  ident: br000055
  article-title: Gaining the promis perspective from children with nephrotic syndrome: a midwest pediatric nephrology consortium study
  publication-title: Health Qual. Life Outcomes
– reference: Fan, Y., Zhu, D., 2009. Partial identification and confidence sets for functionals of the joint distribution of potential outcomes. Tech. Rep., Working paper.
– volume: 8
  start-page: 206
  year: 2007
  end-page: 213
  ident: br000060
  article-title: How many imputations are really needed? Some practical clarifications of multiple imputation theory
  publication-title: Prev. Sci.
– start-page: 93
  year: 2010
  end-page: 109
  ident: br000025
  article-title: Pair-copula constructions of multivariate copulas
  publication-title: Copula Theory and its Applications
– start-page: 8
  year: 1959
  ident: br000145
  article-title: Fonctions de Répartition à n Dimensions et Leurs Marges
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  ident: br000115
  article-title: Maximum likelihood estimation via the ECM algorithm: A general framework
  publication-title: Biometrika
– start-page: 226
  year: 1982
  end-page: 233
  ident: br000095
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 98
  start-page: 533
  year: 2007
  end-page: 543
  ident: br000135
  article-title: Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters
  publication-title: J. Multivariate Anal.
– start-page: 1
  year: 2002
  ident: br000090
  publication-title: Statistical Analysis with Missing Data
– volume: 87
  start-page: 823
  year: 2000
  end-page: 836
  ident: br000125
  article-title: Improving generalised estimating equations using quadratic inference functions
  publication-title: Biometrika
– year: 2003
  ident: br000100
  article-title: Partial Identification of Probability Distributions
– volume: 320
  start-page: 723
  year: 1995
  end-page: 726
  ident: br000050
  article-title: De l’impossibilité de construire des lois à marges multidimensionnelles données à partir de copules
  publication-title: C. R. Acad. Sci., Paris I
– volume: 33
  start-page: 751
  year: 2014
  end-page: 771
  ident: br000065
  article-title: A goodness-of-fit test for copulas
  publication-title: Econometric Rev.
– volume: 101
  start-page: 252
  year: 2010
  end-page: 270
  ident: br000080
  article-title: Tail dependence functions and vine copulas
  publication-title: J. Multivariate Anal.
– volume: 42
  start-page: 1911
  year: 2014
  end-page: 1940
  ident: br000140
  article-title: Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation
  publication-title: Ann. Statist.
– volume: 28
  start-page: 3683
  year: 2009
  end-page: 3696
  ident: br000160
  article-title: Quadratic inference functions in marginal models for longitudinal data
  publication-title: Stat. Med.
– volume: 23
  start-page: S53
  year: 2005
  ident: br000040
  article-title: The promise of promis: using item response theory to improve assessment of patient-reported outcomes
  publication-title: Clin. Exp. Rheumatol.
– year: 2007
  ident: br000155
  article-title: Correlated Data Analysis: Modeling, Analytics, and Applications
– volume: 110
  start-page: 74
  year: 2012
  end-page: 90
  ident: br000010
  article-title: Beyond simplified pair-copula constructions
  publication-title: J. Multivariate Anal.
– volume: 76
  start-page: 411
  year: 2003
  end-page: 438
  ident: br000020
  article-title: Dependence structure and risk measure*
  publication-title: J. Bus.
– volume: 42
  start-page: 1911
  year: 2014
  ident: 10.1016/j.csda.2016.01.008_br000140
  article-title: Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation
  publication-title: Ann. Statist.
  doi: 10.1214/14-AOS1244
– volume: 27
  start-page: 305
  issue: 2
  year: 2000
  ident: 10.1016/j.csda.2016.01.008_br000150
  article-title: Multivariate dispersion models generated from Gaussian copula
  publication-title: Scand. J. Statist.
  doi: 10.1111/1467-9469.00191
– year: 1972
  ident: 10.1016/j.csda.2016.01.008_br000005
– start-page: 1
  year: 1977
  ident: 10.1016/j.csda.2016.01.008_br000030
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 8
  year: 1959
  ident: 10.1016/j.csda.2016.01.008_br000145
– volume: 6
  start-page: 1517
  year: 2012
  ident: 10.1016/j.csda.2016.01.008_br000105
  article-title: Gaussian copula marginal regression
  publication-title: Electron. J. Stat.
  doi: 10.1214/12-EJS721
– volume: 8
  start-page: 206
  issue: 3
  year: 2007
  ident: 10.1016/j.csda.2016.01.008_br000060
  article-title: How many imputations are really needed? Some practical clarifications of multiple imputation theory
  publication-title: Prev. Sci.
  doi: 10.1007/s11121-007-0070-9
– year: 2010
  ident: 10.1016/j.csda.2016.01.008_br000110
– volume: 94
  start-page: 401
  year: 2005
  ident: 10.1016/j.csda.2016.01.008_br000075
  article-title: Asymptotic efficiency of the two-stage estimation method for copula-based models
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2004.06.003
– start-page: 93
  year: 2010
  ident: 10.1016/j.csda.2016.01.008_br000025
  article-title: Pair-copula constructions of multivariate copulas
– year: 2003
  ident: 10.1016/j.csda.2016.01.008_br000100
– year: 2007
  ident: 10.1016/j.csda.2016.01.008_br000155
– volume: 76
  start-page: 411
  issue: 3
  year: 2003
  ident: 10.1016/j.csda.2016.01.008_br000020
  article-title: Dependence structure and risk measure*
  publication-title: J. Bus.
  doi: 10.1086/375253
– volume: 28
  start-page: 3683
  issue: 29
  year: 2009
  ident: 10.1016/j.csda.2016.01.008_br000160
  article-title: Quadratic inference functions in marginal models for longitudinal data
  publication-title: Stat. Med.
  doi: 10.1002/sim.3719
– ident: 10.1016/j.csda.2016.01.008_br000035
– volume: 80
  start-page: 267
  issue: 2
  year: 1993
  ident: 10.1016/j.csda.2016.01.008_br000115
  article-title: Maximum likelihood estimation via the ECM algorithm: A general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 110
  start-page: 74
  year: 2012
  ident: 10.1016/j.csda.2016.01.008_br000010
  article-title: Beyond simplified pair-copula constructions
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2012.02.001
– volume: 320
  start-page: 723
  issue: 6
  year: 1995
  ident: 10.1016/j.csda.2016.01.008_br000050
  article-title: De l’impossibilité de construire des lois à marges multidimensionnelles données à partir de copules
  publication-title: C. R. Acad. Sci., Paris I
– volume: 101
  start-page: 252
  issue: 1
  year: 2010
  ident: 10.1016/j.csda.2016.01.008_br000080
  article-title: Tail dependence functions and vine copulas
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2009.08.002
– volume: 11
  issue: 3
  year: 2013
  ident: 10.1016/j.csda.2016.01.008_br000055
  article-title: Gaining the promis perspective from children with nephrotic syndrome: a midwest pediatric nephrology consortium study
  publication-title: Health Qual. Life Outcomes
– volume: 23
  start-page: S53
  issue: 5
  year: 2005
  ident: 10.1016/j.csda.2016.01.008_br000040
  article-title: The promise of promis: using item response theory to improve assessment of patient-reported outcomes
  publication-title: Clin. Exp. Rheumatol.
– volume: 33
  start-page: 751
  year: 2014
  ident: 10.1016/j.csda.2016.01.008_br000065
  article-title: A goodness-of-fit test for copulas
  publication-title: Econometric Rev.
  doi: 10.1080/07474938.2012.690692
– volume: 73
  start-page: 13
  issue: 1
  year: 1986
  ident: 10.1016/j.csda.2016.01.008_br000085
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 53
  start-page: 157
  issue: 2
  year: 2011
  ident: 10.1016/j.csda.2016.01.008_br000045
  article-title: Estimators based on Kendall’s tau in multivariate copula models
  publication-title: Aust. N. Z. J. Stat.
  doi: 10.1111/j.1467-842X.2011.00622.x
– start-page: 1
  year: 2002
  ident: 10.1016/j.csda.2016.01.008_br000090
– volume: 98
  start-page: 533
  year: 2007
  ident: 10.1016/j.csda.2016.01.008_br000135
  article-title: Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2006.05.006
– volume: 87
  start-page: 823
  issue: 4
  year: 2000
  ident: 10.1016/j.csda.2016.01.008_br000125
  article-title: Improving generalised estimating equations using quadratic inference functions
  publication-title: Biometrika
  doi: 10.1093/biomet/87.4.823
– start-page: 226
  year: 1982
  ident: 10.1016/j.csda.2016.01.008_br000095
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 78
  start-page: 40
  issue: 1
  year: 2010
  ident: 10.1016/j.csda.2016.01.008_br000015
  article-title: A review of hot deck imputation for survey non-response
  publication-title: Internat. Statist. Rev.
  doi: 10.1111/j.1751-5823.2010.00103.x
– year: 1997
  ident: 10.1016/j.csda.2016.01.008_br000070
– year: 2004
  ident: 10.1016/j.csda.2016.01.008_br000130
– year: 1972
  ident: 10.1016/j.csda.2016.01.008_br000120
  article-title: Generalized linear models
  publication-title: Encyclopedia Stat. Sci.
SSID ssj0002478
Score 2.3937926
Snippet Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adjustment
Algorithms
Correlation
EM algorithm
Gaussian
Gaussian copula
Mathematical models
Misaligned missing data
Missing data
Regression
regression analysis
Statistics
Title EM algorithm in Gaussian copula with missing data
URI https://dx.doi.org/10.1016/j.csda.2016.01.008
https://www.proquest.com/docview/1825475147
https://www.proquest.com/docview/2253221429
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AKRWK
  dateStart: 19830301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYqyyUjcUGgcL3GOVdVSqMqBRXCzHMeGIkgRaa98O54sIBBw4BQlGivRc_xsj9_MIHREQiuccDqICYsDlvE0SAV3gU2skUJSTUuf7vhCDG_Y-R2_W0C9JhYGZJU191ecXrJ1_aRTo9l5mUw6VyCgTxhUXiqzvkBEOWMxVDE4efuUeUSsYmPI7w3WdeBMpfEyRQa5h4goU3dCicmfJ6dvNF3OPYNVtFIvGnG3-q41tGDzdbQ8_si4Wmwg0h9j_XQ_9Xv9h2c8yfGpnhcQIIlNWaILg8MV-04F3wAGXegmuhn0r3vDoC6HEBgqxCygmfF7C0-UjFrBEw0HgIwnkTFECuMES5M01JEmTicmdFQalkgrnR-zmaTW0C3Uyqe53UY4SrVwYSZNnEnGHZeZ9gbWj1VuqHOijUiDgzJ1rnAoWfGkGlHYowLsFGCnQqI8dm10_NHmpcqU8ac1b-BVX_pbeSr_s91h0xfKYwanGzq303mhCOx1Y7_-i3-38eTlCYz4OXjnn-_fRUtwV6nM9lBr9jq3-35ZMksPyv_uAC12z0bDC7iOLm9H7yme4hw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwFLSgHIADYhU7RuKGQuN4iXNEFaUs5UKRerMcx4aikiLaXvl2_LKAQNAD1-RZicbJ2M8ez0PohIRWOOF0EBMWByzjaZAK7gKbWCOFpJoWa7rdO9F5YNd93p9DrfosDMgqK-4vOb1g6-pKs0Kz-ToYNO9BQJ8wqLxUuL7E82iB8SiGDOzs_UvnEbGSjsHgG8KrkzOlyMuMMzAfIqLw7oQak7-PTj94uhh82qtopZo14vPyxdbQnM3X0XL303J1vIHIRRfr4ePIJ_tPL3iQ40s9HcMJSWyKGl0YVlyx71VYHMAgDN1ED-2LXqsTVPUQAkOFmAQ0Mz658EzJqBU80bADyHgSGUOkME6wNElDHWnidGJCR6VhibTS-Z82k9QauoUa-Si32whHqRYuzKSJM8m44zLTPsD6n5Ub6pzYQaTGQZnKLBxqVgxVrQp7VoCdAuxUSJTHbgedfrZ5La0yZkbzGl71rcOV5_KZ7Y7rvlAeM9je0LkdTceKQLIb-wlg_HeMZy_PYMQPwrv_fP4RWuz0urfq9uruZg8twZ1ScraPGpO3qT3wc5RJelh8gx9sVeIO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM+algorithm+in+Gaussian+copula+with+missing+data&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Ding%2C+Wei&rft.au=Song%2C+Peter+X.-K.&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=101&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.csda.2016.01.008&rft.externalDocID=S0167947316000177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon