Fall detection from a manual wheelchair: preliminary findings based on accelerometers using machine learning techniques

Automated fall detection devices for individuals who use wheelchairs to minimize the consequences of falls are lacking. This study aimed to develop and train a fall detection algorithm to differentiate falls from wheelchair mobility activities using machine learning techniques. Thirty, healthy, ambu...

Full description

Saved in:
Bibliographic Details
Published inAssistive technology Vol. 35; no. 6; pp. 523 - 531
Main Authors Abou, Libak, Fliflet, Alexander, Presti, Peter, Sosnoff, Jacob J., Mahajan, Harshal P., Frechette, Mikaela L., Rice, Laura A.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.11.2023
Subjects
Online AccessGet full text
ISSN1040-0435
1949-3614
1949-3614
DOI10.1080/10400435.2023.2177775

Cover

Abstract Automated fall detection devices for individuals who use wheelchairs to minimize the consequences of falls are lacking. This study aimed to develop and train a fall detection algorithm to differentiate falls from wheelchair mobility activities using machine learning techniques. Thirty, healthy, ambulatory, young adults simulated falls from a wheelchair and performed other wheelchair-related mobility activities in a laboratory. Neural Network classifiers were used to train the algorithm developed based on data retrieved from accelerometers mounted at the participant's wrist, chest, and head. Results indicate excellent accuracy to differentiate between falls and wheelchair mobility activities. The sensors mounted at the wrist, chest, and head presented with an accuracy of 100%, 96.9%, and 94.8%, respectively, using data from 258 falls and 220 wheelchair mobility activities. This pilot study indicates that a fall detection algorithm developed in a laboratory setting based on fall accelerometer patterns can accurately differentiate wheelchair-related falls and wheelchair mobility activities. This algorithm should be integrated into a wrist-worn devices and tested among individuals who use a wheelchair in the community.
AbstractList Automated fall detection device for individuals who use wheelchairs to minimize consequences of falls is lacking. This study aimed to develop and train a fall detection algorithm to differentiate falls from wheelchair mobility activities using machine learning techniques. Thirty, healthy, ambulatory, young adults simulated falls from a wheelchair and performed other wheelchair-related mobility activities in a laboratory. Neural Network classifiers were used to train the algorithm developed based on data retrieved from accelerometers mounted at the participant's wrist, chest, and head. Results indicate excellent accuracy to differentiate between falls and wheelchair mobility activities. The sensors mounted at the wrist, chest, and head presented with an accuracy of 100%, 96.9%, and 94.8%, respectively using data from 258 falls and 220 wheelchair mobility activities. This pilot study indicates that a fall detection algorithm developed in a laboratory setting based on fall accelerometer patterns can accurately differentiate wheelchair-related falls and wheelchair mobility activities. This algorithm should be integrated into a wrist-worn devices and tested among individuals who use a wheelchair in the community.
Automated fall detection devices for individuals who use wheelchairs to minimize the consequences of falls are lacking. This study aimed to develop and train a fall detection algorithm to differentiate falls from wheelchair mobility activities using machine learning techniques. Thirty, healthy, ambulatory, young adults simulated falls from a wheelchair and performed other wheelchair-related mobility activities in a laboratory. Neural Network classifiers were used to train the algorithm developed based on data retrieved from accelerometers mounted at the participant's wrist, chest, and head. Results indicate excellent accuracy to differentiate between falls and wheelchair mobility activities. The sensors mounted at the wrist, chest, and head presented with an accuracy of 100%, 96.9%, and 94.8%, respectively, using data from 258 falls and 220 wheelchair mobility activities. This pilot study indicates that a fall detection algorithm developed in a laboratory setting based on fall accelerometer patterns can accurately differentiate wheelchair-related falls and wheelchair mobility activities. This algorithm should be integrated into a wrist-worn devices and tested among individuals who use a wheelchair in the community.
Automated fall detection devices for individuals who use wheelchairs to minimize the consequences of falls are lacking. This study aimed to develop and train a fall detection algorithm to differentiate falls from wheelchair mobility activities using machine learning techniques. Thirty, healthy, ambulatory, young adults simulated falls from a wheelchair and performed other wheelchair-related mobility activities in a laboratory. Neural Network classifiers were used to train the algorithm developed based on data retrieved from accelerometers mounted at the participant's wrist, chest, and head. Results indicate excellent accuracy to differentiate between falls and wheelchair mobility activities. The sensors mounted at the wrist, chest, and head presented with an accuracy of 100%, 96.9%, and 94.8%, respectively, using data from 258 falls and 220 wheelchair mobility activities. This pilot study indicates that a fall detection algorithm developed in a laboratory setting based on fall accelerometer patterns can accurately differentiate wheelchair-related falls and wheelchair mobility activities. This algorithm should be integrated into a wrist-worn devices and tested among individuals who use a wheelchair in the community.Automated fall detection devices for individuals who use wheelchairs to minimize the consequences of falls are lacking. This study aimed to develop and train a fall detection algorithm to differentiate falls from wheelchair mobility activities using machine learning techniques. Thirty, healthy, ambulatory, young adults simulated falls from a wheelchair and performed other wheelchair-related mobility activities in a laboratory. Neural Network classifiers were used to train the algorithm developed based on data retrieved from accelerometers mounted at the participant's wrist, chest, and head. Results indicate excellent accuracy to differentiate between falls and wheelchair mobility activities. The sensors mounted at the wrist, chest, and head presented with an accuracy of 100%, 96.9%, and 94.8%, respectively, using data from 258 falls and 220 wheelchair mobility activities. This pilot study indicates that a fall detection algorithm developed in a laboratory setting based on fall accelerometer patterns can accurately differentiate wheelchair-related falls and wheelchair mobility activities. This algorithm should be integrated into a wrist-worn devices and tested among individuals who use a wheelchair in the community.
Author Frechette, Mikaela L.
Sosnoff, Jacob J.
Presti, Peter
Abou, Libak
Mahajan, Harshal P.
Rice, Laura A.
Fliflet, Alexander
Author_xml – sequence: 1
  givenname: Libak
  orcidid: 0000-0001-6404-7623
  surname: Abou
  fullname: Abou, Libak
  organization: University of Michigan
– sequence: 2
  givenname: Alexander
  surname: Fliflet
  fullname: Fliflet, Alexander
  organization: University of Illinois at Urbana-Champaign
– sequence: 3
  givenname: Peter
  surname: Presti
  fullname: Presti, Peter
  organization: Georgia Institute of Technology
– sequence: 4
  givenname: Jacob J.
  surname: Sosnoff
  fullname: Sosnoff, Jacob J.
  organization: University of Kansas Medical Center
– sequence: 5
  givenname: Harshal P.
  orcidid: 0000-0003-1779-8242
  surname: Mahajan
  fullname: Mahajan, Harshal P.
  organization: University of Illinois at Urbana-Champaign
– sequence: 6
  givenname: Mikaela L.
  surname: Frechette
  fullname: Frechette, Mikaela L.
  organization: University of Illinois at Urbana-Champaign
– sequence: 7
  givenname: Laura A.
  orcidid: 0000-0003-3902-1151
  surname: Rice
  fullname: Rice, Laura A.
  email: ricela@illinois.edu
  organization: University of Illinois at Urbana-Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36749900$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URP_ARwD5yCXbsZ3ECVyoKgqVKnGBszVrT1gjx1nsRKt-exzt7oUD-GJr_Htv7HnX7CJOkRh7K2AjoINbATVArZqNBKk2UuiymhfsSvR1X6lW1BflXJhqhS7Zdc6_AFQH0L1il6rVdd8DXLHDA4bAHc1kZz9FPqRp5MhHjAsGftgRBbtDnz7wfaLgRx8xPfPBR-fjz8y3mMnxokNrKVARF6eU-ZLLdXGxOx-JB8IU10Lpsov-90L5NXs5YMj05rTfsB8Pn7_ff62evn15vL97qqxq27lSTjonEVGBI3BWd03fgBhk13Sytb0grLuhka7W2m47Z1uBWvdagqCeGqVu2Puj7z5Na9_ZjD6XpwaMNC3ZSK3rum86EAV9d0KX7UjO7JMfy2fNeVgF-HgEbJpyTjQY62dcxzYn9MEIMGs05hyNWaMxp2iKuvlLfW7wP92no87HYUojHqYUnJnxOUxpSBitz0b92-IPg82mMg
CitedBy_id crossref_primary_10_1051_e3sconf_202450701025
crossref_primary_10_1097_PHM_0000000000002454
crossref_primary_10_1007_s10209_025_01193_8
Cites_doi 10.1017/CBO9780511722233
10.3390/s16060800
10.1016/j.apmr.2016.04.024
10.1145/3123021.3123042
10.1016/j.ijmedinf.2017.12.015
10.1109/ACCESS.2019.2922708
10.1016/j.cobme.2019.01.001
10.1136/bmj.a2227
10.1109/embc.2017.8036778
10.1177/0269215518768385
10.1177/1352458507079260
10.1097/00002060-199409000-00004
10.1016/j.jsams.2015.04.007
10.1109/JBHI.2017.2782079
10.1016/j.apmr.2020.06.025
10.1080/J148v23n04_03
10.1159/000362720
10.1109/SOFTCOM.2016.7772142
10.1109/MSP.2015.2499314
10.1109/TSMC.2016.2562509
10.1016/j.dhjo.2021.101207
10.3390/s120202255
10.1109/MeMeA.2014.6860110
10.1080/10400435.2021.1923087
10.1097/PHM.0000000000001161
ContentType Journal Article
Copyright 2023 RESNA 2023
Copyright_xml – notice: 2023 RESNA 2023
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/10400435.2023.2177775
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1949-3614
EndPage 531
ExternalDocumentID 36749900
10_1080_10400435_2023_2177775
2177775
Genre Research Article
Journal Article
GroupedDBID ---
.7F
.QJ
04C
0BK
0R~
23N
2DF
30N
36B
4.4
53G
5GY
6PF
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWTL
ABCCY
ABFIM
ABHAV
ABIVO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACHQT
ACTIO
ADBBV
ADCVX
ADGTB
ADMLS
ADOJX
AEISY
AEOZL
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
BMSDO
CCCUG
CE4
DGEBU
DKSSO
EBD
EBS
ECF
ECT
EIHBH
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
WQ9
ZGOLN
~S~
AAYXX
CITATION
ADYSH
NPM
YCJ
7X8
ID FETCH-LOGICAL-c366t-3d2dd2aaa30de0dc7859501f285826c91ea48f52d477cb8dc61a7797201e9e533
ISSN 1040-0435
1949-3614
IngestDate Thu Sep 04 17:20:55 EDT 2025
Wed Feb 19 02:24:53 EST 2025
Thu Apr 24 22:51:12 EDT 2025
Wed Oct 01 02:01:37 EDT 2025
Mon Oct 20 23:45:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords accidental falls
wheelchair
wearable sensor
Fall detection
activity recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-3d2dd2aaa30de0dc7859501f285826c91ea48f52d477cb8dc61a7797201e9e533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6404-7623
0000-0003-3902-1151
0000-0003-1779-8242
PMID 36749900
PQID 2774495801
PQPubID 23479
PageCount 9
ParticipantIDs crossref_citationtrail_10_1080_10400435_2023_2177775
pubmed_primary_36749900
crossref_primary_10_1080_10400435_2023_2177775
proquest_miscellaneous_2774495801
informaworld_taylorfrancis_310_1080_10400435_2023_2177775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-02
PublicationDateYYYYMMDD 2023-11-02
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Assistive technology
PublicationTitleAlternate Assist Technol
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Sutton D. (e_1_3_3_20_1) 2019
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_12_1
e_1_3_3_11_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_13_1
  doi: 10.1017/CBO9780511722233
– ident: e_1_3_3_7_1
  doi: 10.3390/s16060800
– ident: e_1_3_3_9_1
  doi: 10.1016/j.apmr.2016.04.024
– ident: e_1_3_3_27_1
  doi: 10.1145/3123021.3123042
– ident: e_1_3_3_12_1
  doi: 10.1016/j.ijmedinf.2017.12.015
– ident: e_1_3_3_16_1
  doi: 10.1109/ACCESS.2019.2922708
– ident: e_1_3_3_25_1
  doi: 10.1016/j.cobme.2019.01.001
– ident: e_1_3_3_6_1
  doi: 10.1136/bmj.a2227
– ident: e_1_3_3_8_1
  doi: 10.1109/embc.2017.8036778
– ident: e_1_3_3_19_1
  doi: 10.1177/0269215518768385
– ident: e_1_3_3_15_1
  doi: 10.1177/1352458507079260
– ident: e_1_3_3_11_1
  doi: 10.1097/00002060-199409000-00004
– ident: e_1_3_3_14_1
  doi: 10.1016/j.jsams.2015.04.007
– ident: e_1_3_3_26_1
  doi: 10.1109/JBHI.2017.2782079
– ident: e_1_3_3_2_1
  doi: 10.1016/j.apmr.2020.06.025
– ident: e_1_3_3_22_1
  doi: 10.1080/J148v23n04_03
– ident: e_1_3_3_10_1
  doi: 10.1159/000362720
– ident: e_1_3_3_23_1
  doi: 10.1109/SOFTCOM.2016.7772142
– ident: e_1_3_3_5_1
  doi: 10.1109/MSP.2015.2499314
– ident: e_1_3_3_24_1
  doi: 10.1109/TSMC.2016.2562509
– ident: e_1_3_3_17_1
  doi: 10.1016/j.dhjo.2021.101207
– ident: e_1_3_3_21_1
  doi: 10.3390/s120202255
– volume-title: CADTH rapid response reports fall prevention guidelines for patients in wheelchairs or patients with delirium: a review of evidence-based guidelines
  year: 2019
  ident: e_1_3_3_20_1
– ident: e_1_3_3_4_1
  doi: 10.1109/MeMeA.2014.6860110
– ident: e_1_3_3_3_1
  doi: 10.1080/10400435.2021.1923087
– ident: e_1_3_3_18_1
  doi: 10.1097/PHM.0000000000001161
SSID ssj0038008
Score 2.3349743
Snippet Automated fall detection devices for individuals who use wheelchairs to minimize the consequences of falls are lacking. This study aimed to develop and train a...
Automated fall detection device for individuals who use wheelchairs to minimize consequences of falls is lacking. This study aimed to develop and train a fall...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 523
SubjectTerms accidental falls
activity recognition
fall detection
wearable sensor
wheelchair
Title Fall detection from a manual wheelchair: preliminary findings based on accelerometers using machine learning techniques
URI https://www.tandfonline.com/doi/abs/10.1080/10400435.2023.2177775
https://www.ncbi.nlm.nih.gov/pubmed/36749900
https://www.proquest.com/docview/2774495801
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1949-3614
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0038008
  issn: 1040-0435
  databaseCode: ADMLS
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1949-3614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038008
  issn: 1040-0435
  databaseCode: AHDZW
  dateStart: 19970601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1949-3614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038008
  issn: 1040-0435
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6FcuHCUraURYMEXCIb2-PxxNwQoqoiUSFIpd6sWZ7biJBUidMK_hZ_kDcztuOQQik5WJHjGU3yvrx9IeRlDkIJKVSgYpUGyPB4kCsRB1ppnQLnkEpbKPzxMDs4SkfH_LjX-9nJWlpVKtQ_Lq0r-R-q4j2kq62SvQZl203xBr5H-uIVKYzXf6Lxvo0rG6jAz_t2pSLSJqTampCLU4CpPpUTNwjybAFTN8Br8X3g4tR2WqcVYcaGC6TWKH5s5wLbbHOwcg6Eby7PEprBEieDtt_rsqvSIoEtnzgH__mGm94Glbzlr-TXNVQm5dTHQNrympZD21Ehk63E4S_z5Wzu-0eOkIWrwSjsuisS5ur2Oh7MOHL5pL5HSQj-Xp7mAct8NWnDlusnJls8lvsC5Vpccy9EtiSBT52MHY9iPLRHCdH8whdfi74m3P-bRGzzFOO6gWqzTWG3KeptbpCbCYoSOy-ERYeN-Geogfv6y_p7NmVjw-jNpafZUIg22uX-2ehxys_4LrldWy30nYfgPdKD2S551e1QTce-PQV9TT9vNH_fJXc-1bygeeY-ubDIpS1yqUUuldQjl66R-5Z2cEsb3FKHW4rrNnFLHW5pjVva4JaucfuAHO1_GL8_COoRIIFmWVYFzCTGJFJKFhmIjBa2HV8Ul8mQo12s8xhkOix5YlIhtBoancVSiFygWgs5oCnzkOzM5jN4TCgkMhPGiNJ6CAwMJcRlhtJIZyVXEeN9kjZ0KHT9E9kxLdPiryjok7BdduYbxFy1IO8SuaicZ670Y3QKdsXaFw0iChQDNrYnZzBfLYsEzbg056hv9skjD5X2OCwTKSqd0d51j_qE3Fr_hZ-SnWqxgmeog1fqucP8L3UV1h0
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOBCoUBZnkYCbomSOI433BBitUC7Qmgr9Wb5MdkiQlrtZlXBr2fGSVa7SFUPzSWHZJI4M7a_sWe-YextCcoqo2xkU5tHOODJqLQqjZx1LgcpITeUKHw8K6Yn-ddTebqVC0NhleRDVx1RRBirqXPTYvQQEodnsjwhY6r9HSOoxkPeZnckgn2qYiCS2TAaCwREXTpcCGMUcsjiueoxO_PTDnvp1Rg0zEWTfeaGVnQhKL_idWtj9_c_gsebNfMBu99DVf6xs62H7BY0B-zdNi0xn3ecBPw9_7HD-H3A9r_3BjDc84hdTkxdcw9tiP5qOGW2cMN_G2JF5ZdnALU7Mz-XH_jFEupQbWz5h4dN9Wax4jTfeo5yxjmcK4lmgZhBOUXuL_ApFBQKvK-CseAbctrVY3Yy-Tz_NI36ug-RE0XRRsJn3mfGGJF4SLxTxMGWpFU2lugMuTIFk48rmflcKWfH3hWpUapUiGWgBMSvT9hec97AU8YhM4XyXlXkFnoYG0irAocgV1TSJkKOWD5oW7v-F1FtjlqnPXfqoARNStC9EkYs3ohddKwg1wmU26ak27AcU3W1U7S4RvbNYHca-z5t6JgGztcrnSF2RwcXQcaIHXYGufkcUSh0ZpPk2Q3e_Jrdnc6Pj_TRl9m35-weXQppmNkLttcu1_AS8VhrX4UO9w-pKCgs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIhLC-W1UMBIwC1RXo433CpgVV6rCrUSN8uPyRaRpqvdrCr66zvjxKsuUtVDc8khGSfOjO1v4plvGHtXgTRSSxOZ1BQRTngiqoxMI2usLUAIKDQlCv-clgfHxbffIkQTLoewSvKh654ows_VNLjnrg4RcXgmw8tFTKW_Y8TUeIi77F5Ju2KUxZFMw2ScIx7qs-F8FGMuQhLPdc1sLE8b5KXXQ1C_FE12mAmd6CNQ_sarzsT24j9-x1v18iHbHoAq3-8t6xG7A-0ue3-VlJgf9YwE_AP_tcH3vct2Dgf1h3ses_OJbhruoPOxXy2nvBau-akmTlR-fgLQ2BP9Z_GRzxfQ-Fpji3_cb6m3syWn1dZxlNPW4kpJJAvEC8opbn-GrVBIKPChBsaMr6lpl0_Y8eTL0aeDaKj6ENm8LLsod5lzmdY6TxwkzkpiYEvSOhsLdIVslYIuxrXIXCGlNWNny1RLWUlEMlABotenbKs9a-E545DpUjona3IKHYw1pHWJE5Ata2HQWEasCMpWdvhEVJmjUenAnBqUoEgJalDCiMVrsXnPCXKTQHXVklTnf8bUfeUUld8g-zaYncKRT9s5uoWz1VJliNzRvUWIMWLPentcv05eSnRlk-TFLZ78ht0__DxRP75Ov79kD-iKz8HM9thWt1jBKwRjnXnth9sl3N4m0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+detection+from+a+manual+wheelchair%3A+preliminary+findings+based+on+accelerometers+using+machine+learning+techniques&rft.jtitle=Assistive+technology&rft.au=Abou%2C+Libak&rft.au=Fliflet%2C+Alexander&rft.au=Presti%2C+Peter&rft.au=Sosnoff%2C+Jacob+J.&rft.date=2023-11-02&rft.issn=1040-0435&rft.eissn=1949-3614&rft.volume=35&rft.issue=6&rft.spage=523&rft.epage=531&rft_id=info:doi/10.1080%2F10400435.2023.2177775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10400435_2023_2177775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0435&client=summon