Monitoring of Coral Reefs Using Artificial Intelligence: A Feasible and Cost-Effective Approach
Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly improved the speed of underwater data collection for monitoring benthic communities, image analysis remains a bottleneck in reporting observations....
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 3; p. 489 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs12030489 |
Cover
Abstract | Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly improved the speed of underwater data collection for monitoring benthic communities, image analysis remains a bottleneck in reporting observations. In recent years, a rapid evolution of artificial intelligence in image recognition has been evident in its broad applications in modern society, offering new opportunities for increasing the capabilities of coral reef monitoring. Here, we evaluated the performance of Deep Learning Convolutional Neural Networks for automated image analysis, using a global coral reef monitoring dataset. The study demonstrates the advantages of automated image analysis for coral reef monitoring in terms of error and repeatability of benthic abundance estimations, as well as cost and benefit. We found unbiased and high agreement between expert and automated observations (97%). Repeated surveys and comparisons against existing monitoring programs also show that automated estimation of benthic composition is equally robust in detecting change and ensuring the continuity of existing monitoring data. Using this automated approach, data analysis and reporting can be accelerated by at least 200x and at a fraction of the cost (1%). Combining commonly used underwater imagery in monitoring with automated image annotation can dramatically improve how we measure and monitor coral reefs worldwide, particularly in terms of allocating limited resources, rapid reporting and data integration within and across management areas. |
---|---|
AbstractList | Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly improved the speed of underwater data collection for monitoring benthic communities, image analysis remains a bottleneck in reporting observations. In recent years, a rapid evolution of artificial intelligence in image recognition has been evident in its broad applications in modern society, offering new opportunities for increasing the capabilities of coral reef monitoring. Here, we evaluated the performance of Deep Learning Convolutional Neural Networks for automated image analysis, using a global coral reef monitoring dataset. The study demonstrates the advantages of automated image analysis for coral reef monitoring in terms of error and repeatability of benthic abundance estimations, as well as cost and benefit. We found unbiased and high agreement between expert and automated observations (97%). Repeated surveys and comparisons against existing monitoring programs also show that automated estimation of benthic composition is equally robust in detecting change and ensuring the continuity of existing monitoring data. Using this automated approach, data analysis and reporting can be accelerated by at least 200x and at a fraction of the cost (1%). Combining commonly used underwater imagery in monitoring with automated image annotation can dramatically improve how we measure and monitor coral reefs worldwide, particularly in terms of allocating limited resources, rapid reporting and data integration within and across management areas. |
Author | Markey, Kathryn Kennedy, Emma V. Kim, Catherine J. S. Taylor, Abbie Gonzalez-Marrero, Yeray Rodriguez-Ramirez, Alberto Herrera-Reveles, Ana Vercelloni, Julie Wyatt, Mathew Beijbom, Oscar Bryant, Dominic E. P. Lopez-Marcano, Sebastian Reyes-Nivia, Catalina Ganase, Anjani Sampayo, Eugenia M. Stolberg, Kristin Hoegh-Guldberg, Ove González-Rivero, Manuel Neal, Benjamin P. Osborne, Kate |
Author_xml | – sequence: 1 givenname: Manuel surname: González-Rivero fullname: González-Rivero, Manuel – sequence: 2 givenname: Oscar surname: Beijbom fullname: Beijbom, Oscar – sequence: 3 givenname: Alberto surname: Rodriguez-Ramirez fullname: Rodriguez-Ramirez, Alberto – sequence: 4 givenname: Dominic E. P. surname: Bryant fullname: Bryant, Dominic E. P. – sequence: 5 givenname: Anjani surname: Ganase fullname: Ganase, Anjani – sequence: 6 givenname: Yeray surname: Gonzalez-Marrero fullname: Gonzalez-Marrero, Yeray – sequence: 7 givenname: Ana surname: Herrera-Reveles fullname: Herrera-Reveles, Ana – sequence: 8 givenname: Emma V. surname: Kennedy fullname: Kennedy, Emma V. – sequence: 9 givenname: Catherine J. S. surname: Kim fullname: Kim, Catherine J. S. – sequence: 10 givenname: Sebastian orcidid: 0000-0002-0814-2906 surname: Lopez-Marcano fullname: Lopez-Marcano, Sebastian – sequence: 11 givenname: Kathryn surname: Markey fullname: Markey, Kathryn – sequence: 12 givenname: Benjamin P. surname: Neal fullname: Neal, Benjamin P. – sequence: 13 givenname: Kate surname: Osborne fullname: Osborne, Kate – sequence: 14 givenname: Catalina surname: Reyes-Nivia fullname: Reyes-Nivia, Catalina – sequence: 15 givenname: Eugenia M. surname: Sampayo fullname: Sampayo, Eugenia M. – sequence: 16 givenname: Kristin surname: Stolberg fullname: Stolberg, Kristin – sequence: 17 givenname: Abbie surname: Taylor fullname: Taylor, Abbie – sequence: 18 givenname: Julie surname: Vercelloni fullname: Vercelloni, Julie – sequence: 19 givenname: Mathew surname: Wyatt fullname: Wyatt, Mathew – sequence: 20 givenname: Ove surname: Hoegh-Guldberg fullname: Hoegh-Guldberg, Ove |
BookMark | eNptUV1rVDEQDVLBWvviL7iPIlxNJrk3iW_L0upCRRD7HObmY025TdYkFfrvm7pSRZyXMxzOnOFwXpKTlJMn5DWj7zjX9H2pDCinQuln5BSohFGAhpO_9hfkvNYb2odzpqk4JeZzTrHlEtN-yGHY5oLr8NX7UIfr-khuSosh2tjpXWp-XePeJ-s_DJvh0mONy-oHTK5f1jZehOBtiz_9sDkcSkb7_RV5HnCt_vw3npHry4tv20_j1ZePu-3marR8ntsIQijJJ6ndIq1elAI9Wy7EBNxJUA5BsLAwKtGpaWYCOgRnqQ1KOg2Wn5Hd0ddlvDGHEm-x3JuM0fwictkb7Ens6s0UQABTAblGMTmKdALFJDimZi4W3b3eHL16hB93vjZzG6vt0TH5fFcNaDVLPcMku_TtUWpLrrX48PSaUfNYivlTShfTf8Q2Nmwxp1Ywrv87eQCp_44h |
CitedBy_id | crossref_primary_10_1002_ecs2_3934 crossref_primary_10_1007_s10489_021_02264_y crossref_primary_10_1007_s13199_021_00778_0 crossref_primary_10_1111_1365_2664_14408 crossref_primary_10_1002_lom3_10557 crossref_primary_10_1007_s12518_020_00331_6 crossref_primary_10_1038_s41598_024_72006_w crossref_primary_10_3390_bdcc5040053 crossref_primary_10_1007_s00338_025_02620_1 crossref_primary_10_1007_s10462_021_10025_z crossref_primary_10_1109_JSTARS_2024_3430899 crossref_primary_10_3390_su14106161 crossref_primary_10_1007_s44289_024_00023_8 crossref_primary_10_1016_j_ecoinf_2021_101311 crossref_primary_10_1007_s44295_024_00052_1 crossref_primary_10_1016_j_ecoinf_2024_102619 crossref_primary_10_1109_ACCESS_2023_3341156 crossref_primary_10_3390_electronics13245027 crossref_primary_10_3390_rs16071264 crossref_primary_10_5586_aa_196387 crossref_primary_10_1111_gcb_15059 crossref_primary_10_3389_fenvs_2022_1044706 crossref_primary_10_3390_coasts3040022 crossref_primary_10_1016_j_jip_2021_107538 crossref_primary_10_1016_j_marpolbul_2024_116273 crossref_primary_10_1016_j_rse_2023_113584 crossref_primary_10_3390_d12110430 crossref_primary_10_1038_s41598_024_59123_2 crossref_primary_10_1038_s41598_021_96799_2 crossref_primary_10_1111_ecog_06818 crossref_primary_10_1016_j_marenvres_2024_106454 crossref_primary_10_1007_s00338_021_02104_y crossref_primary_10_1186_s40537_022_00615_1 crossref_primary_10_1016_j_ecoinf_2024_102665 crossref_primary_10_1038_s42256_020_0192_3 crossref_primary_10_1016_j_ecoinf_2024_102989 crossref_primary_10_3389_fmars_2021_629485 crossref_primary_10_1016_j_ecoinf_2022_101786 crossref_primary_10_3390_rs15164112 crossref_primary_10_1111_insr_12542 crossref_primary_10_3389_fmars_2024_1467371 crossref_primary_10_1111_2041_210X_13841 crossref_primary_10_3390_jmse9020157 crossref_primary_10_1038_s41597_020_00698_6 crossref_primary_10_3390_rs13142762 crossref_primary_10_1007_s00300_022_03096_3 crossref_primary_10_1111_2041_210X_14175 crossref_primary_10_3389_fmars_2022_918104 crossref_primary_10_3390_drones7040221 crossref_primary_10_1146_annurev_marine_032223_024511 crossref_primary_10_3390_jmse12050812 crossref_primary_10_3390_jmse8100760 crossref_primary_10_1007_s11356_022_23242_y crossref_primary_10_3390_app12104898 crossref_primary_10_1038_s41598_023_48263_6 crossref_primary_10_3390_ijgi12090381 crossref_primary_10_1016_j_inffus_2022_12_012 crossref_primary_10_1111_2041_210X_14029 crossref_primary_10_1038_s41597_021_00871_5 crossref_primary_10_7717_peerj_11090 crossref_primary_10_1016_j_rsma_2021_101731 crossref_primary_10_1016_j_ecoinf_2023_102261 crossref_primary_10_1016_j_jenvman_2021_113209 crossref_primary_10_1111_rec_70001 crossref_primary_10_1007_s00338_024_02468_x crossref_primary_10_1007_s00371_024_03630_w crossref_primary_10_1080_10106049_2021_1958066 crossref_primary_10_35229_jaes_1197703 crossref_primary_10_7717_peerj_12413 crossref_primary_10_1080_10095020_2024_2343323 crossref_primary_10_7717_peerj_16219 crossref_primary_10_1098_rsta_2022_0156 crossref_primary_10_3389_fmars_2021_691313 crossref_primary_10_1002_aqc_4241 crossref_primary_10_1007_s10661_021_09314_5 crossref_primary_10_1111_jfb_15651 crossref_primary_10_1186_s41018_023_00135_4 crossref_primary_10_3390_ecologies6010010 crossref_primary_10_1080_10106049_2022_2037732 crossref_primary_10_1002_ece3_7656 crossref_primary_10_1007_s13437_024_00334_9 crossref_primary_10_1145_3567724 crossref_primary_10_1002_aqc_3432 crossref_primary_10_1016_j_anbehav_2021_04_018 crossref_primary_10_1111_2041_210X_14477 crossref_primary_10_1109_LRA_2022_3187836 crossref_primary_10_1002_aqc_3878 crossref_primary_10_3389_fmars_2021_636902 crossref_primary_10_3389_fmars_2023_1126301 |
Cites_doi | 10.3389/fmars.2019.00580 10.1016/j.tree.2010.07.011 10.1016/j.tree.2014.05.004 10.1147/rd.33.0210 10.1016/S0169-5347(01)02205-4 10.1038/s41598-017-07337-y 10.1109/MGRS.2017.2762307 10.1109/TPAMI.2017.2723009 10.3389/fmars.2019.00727 10.1353/psc.2004.0013 10.14264/uql.2019.930 10.1109/MSP.2012.2205597 10.3354/meps265107 10.1109/CVPR.2018.00907 10.1073/pnas.0909335107 10.1016/j.cageo.2005.11.009 10.1016/j.biocon.2010.02.013 10.1002/aqc.2505 10.1007/s10278-017-9965-6 10.1109/CVPR.2009.5206848 10.1002/sim.3086 10.3390/ijgi7110441 10.1111/j.1755-263X.2010.00134.x 10.1016/j.tree.2006.08.007 10.1038/srep23166 10.1016/0022-0981(79)90003-0 10.11613/BM.2015.015 10.3389/fmars.2019.00222 10.5479/si.00775630.421.1 10.1007/s00338-001-0202-9 10.1111/2041-210X.13011 10.1038/nature14539 10.1111/j.1469-185X.2008.00045.x 10.3390/rs8010030 10.1023/A:1025593728986 10.1371/journal.pone.0130312 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs12030489 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (no login required) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_5f24218fa39a45d0a0528172d18634b9 10_3390_rs12030489 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PUEGO TR2 TUS 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-244873579db7c9b88296c344523d728da241fb107ad856142d85fdc0cf87d92c3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:09:07 EDT 2025 Thu Sep 04 23:59:54 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Wed Oct 01 04:52:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-244873579db7c9b88296c344523d728da241fb107ad856142d85fdc0cf87d92c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0814-2906 |
OpenAccessLink | https://doaj.org/article/5f24218fa39a45d0a0528172d18634b9 |
PQID | 2986796257 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f24218fa39a45d0a0528172d18634b9 proquest_miscellaneous_2986796257 crossref_primary_10_3390_rs12030489 crossref_citationtrail_10_3390_rs12030489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hinton (ref_14) 2012; 29 ref_13 Ninio (ref_9) 2002; 21 ref_10 Zhu (ref_45) 2017; 5 ref_18 ref_17 ref_16 Samuel (ref_11) 1959; 3 Weinstein (ref_15) 2018; 9 Zhou (ref_38) 2018; 40 Erickson (ref_40) 2017; 30 ref_25 ref_22 Foster (ref_34) 1979; 39 Dell (ref_46) 2014; 29 ref_21 ref_20 Chennu (ref_36) 2017; 7 Vaughan (ref_42) 2003; 88 Ninio (ref_8) 2003; 265 ref_29 ref_28 ref_27 ref_26 Aronson (ref_31) 1995; 9 Mills (ref_5) 2010; 3 LeCun (ref_12) 2015; 521 Hughes (ref_6) 2010; 25 ref_35 Nichols (ref_3) 2006; 21 Todd (ref_33) 2008; 83 ref_32 Lindenmayer (ref_2) 2010; 143 Williams (ref_30) 2019; 6 Bongaerts (ref_19) 2014; 24 McCook (ref_4) 2010; 107 ref_39 Giavarina (ref_49) 2015; 25 Beijbom (ref_37) 2016; 6 Aronson (ref_7) 1994; 421 Kohler (ref_23) 2006; 32 ref_47 ref_44 ref_43 ref_41 Brown (ref_24) 2004; 58 Yoccoz (ref_1) 2001; 16 Krouwer (ref_48) 2008; 27 |
References_xml | – ident: ref_28 doi: 10.3389/fmars.2019.00580 – ident: ref_32 – ident: ref_26 – volume: 25 start-page: 633 year: 2010 ident: ref_6 article-title: Rising to the challenge of sustaining coral reef resilience publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2010.07.011 – ident: ref_39 – volume: 29 start-page: 417 year: 2014 ident: ref_46 article-title: Automated image-based tracking and its application in ecology publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2014.05.004 – volume: 3 start-page: 210 year: 1959 ident: ref_11 article-title: Some Studies in Machine Learning Using the Game of Checkers publication-title: IBM J. Res. Dev. doi: 10.1147/rd.33.0210 – volume: 16 start-page: 446 year: 2001 ident: ref_1 article-title: Monitoring of biological diversity in space and time publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(01)02205-4 – volume: 7 start-page: 7122 year: 2017 ident: ref_36 article-title: A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats publication-title: Sci. Rep. doi: 10.1038/s41598-017-07337-y – volume: 5 start-page: 8 year: 2017 ident: ref_45 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 40 start-page: 1452 year: 2018 ident: ref_38 article-title: Places: A 10 Million Image Database for Scene Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2723009 – ident: ref_47 doi: 10.3389/fmars.2019.00727 – volume: 58 start-page: 145 year: 2004 ident: ref_24 article-title: Development of benthic sampling methods for the Coral Reef Assessment and Monitoring Program (CRAMP) in Hawai’i publication-title: Pac. Sci. doi: 10.1353/psc.2004.0013 – ident: ref_20 doi: 10.14264/uql.2019.930 – volume: 29 start-page: 82 year: 2012 ident: ref_14 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – ident: ref_27 – volume: 265 start-page: 107 year: 2003 ident: ref_8 article-title: Estimating cover of benthic organisms from underwater video images: Variability associated with multiple observers publication-title: Mar. Ecol.-Prog. Ser. doi: 10.3354/meps265107 – ident: ref_10 – ident: ref_35 doi: 10.1109/CVPR.2018.00907 – volume: 107 start-page: 18278 year: 2010 ident: ref_4 article-title: Adaptive management of the Great Barrier Reef: A globally significant demonstration of the benefits of networks of marine reserves publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0909335107 – volume: 32 start-page: 1259 year: 2006 ident: ref_23 article-title: Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.11.009 – volume: 143 start-page: 1317 year: 2010 ident: ref_2 article-title: The science and application of ecological monitoring publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2010.02.013 – volume: 24 start-page: 184 year: 2014 ident: ref_19 article-title: The Catlin Seaview Survey-kilometre-scale seascape assessment, and monitoring of coral reef ecosystems publication-title: Aquat. Conserv. doi: 10.1002/aqc.2505 – ident: ref_41 – ident: ref_13 – volume: 30 start-page: 400 year: 2017 ident: ref_40 article-title: Toolkits and Libraries for Deep Learning publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-9965-6 – ident: ref_22 doi: 10.1109/CVPR.2009.5206848 – volume: 27 start-page: 778 year: 2008 ident: ref_48 article-title: Why Bland–Altman plots should use X, not (Y+X)/2 when X is a reference method publication-title: Stat. Med. doi: 10.1002/sim.3086 – ident: ref_16 doi: 10.3390/ijgi7110441 – volume: 9 start-page: 777 year: 1995 ident: ref_31 article-title: Large-scale, long-term monitoring of Caribbean coral reefs: Simple, quick, inexpensive techniques publication-title: Oceanogr. Lit. Rev. – volume: 3 start-page: 291 year: 2010 ident: ref_5 article-title: A mismatch of scales: Challenges in planning for implementation of marine protected areas in the Coral Triangle publication-title: Conserv. Lett. doi: 10.1111/j.1755-263X.2010.00134.x – volume: 21 start-page: 668 year: 2006 ident: ref_3 article-title: Monitoring for conservation publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2006.08.007 – volume: 6 start-page: 23166 year: 2016 ident: ref_37 article-title: Improving automated annotation of benthic survey images using wide-band fluorescence publication-title: Sci. Rep. doi: 10.1038/srep23166 – ident: ref_44 – ident: ref_21 – volume: 39 start-page: 25 year: 1979 ident: ref_34 article-title: Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander) publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/0022-0981(79)90003-0 – volume: 25 start-page: 141 year: 2015 ident: ref_49 article-title: Understanding Bland Altman analysis publication-title: Biochem. Med. doi: 10.11613/BM.2015.015 – ident: ref_25 – ident: ref_29 – volume: 6 start-page: 222 year: 2019 ident: ref_30 article-title: Leveraging Automated Image Analysis Tools to Transform Our Capacity to Assess Status and Trends of Coral Reefs publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00222 – volume: 421 start-page: 1 year: 1994 ident: ref_7 article-title: Large-scale, long-term monitoring of Caribbean coral reefs: Simple, quick, inexpensive techniques publication-title: Atoll Res. Bull. doi: 10.5479/si.00775630.421.1 – volume: 21 start-page: 95 year: 2002 ident: ref_9 article-title: Spatial patterns in benthic communities and the dynamics of a mosaic ecosystem on the Great Barrier Reef, Australia publication-title: Coral Reefs doi: 10.1007/s00338-001-0202-9 – volume: 9 start-page: 1435 year: 2018 ident: ref_15 article-title: Scene-specific convolutional neural networks for video-based biodiversity detection publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13011 – ident: ref_43 – volume: 521 start-page: 436 year: 2015 ident: ref_12 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 83 start-page: 315 year: 2008 ident: ref_33 article-title: Morphological plasticity in scleractinian corals publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.2008.00045.x – ident: ref_18 doi: 10.3390/rs8010030 – volume: 88 start-page: 399 year: 2003 ident: ref_42 article-title: Linking Ecological Science to Decision-Making: Delivering Environmental Monitoring Information as Societal Feedback publication-title: Environ. Monit. Assess. doi: 10.1023/A:1025593728986 – ident: ref_17 doi: 10.1371/journal.pone.0130312 |
SSID | ssj0000331904 |
Score | 2.546177 |
Snippet | Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 489 |
SubjectTerms | artificial intelligence automated image analysis automation benthic organisms coral reefs cost effectiveness data collection digital images ecosystems image analysis monitoring neural networks remote sensing surveys |
Title | Monitoring of Coral Reefs Using Artificial Intelligence: A Feasible and Cost-Effective Approach |
URI | https://www.proquest.com/docview/2986796257 https://doaj.org/article/5f24218fa39a45d0a0528172d18634b9 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86D3oRP3F-jIhePJR1Sdqm3ra5OcUNmQ68lTQfeBidrNvB_96XtJsFBS-eAiWh5b3k_d6vSX4PoWsr0h0B__co59JjgSGeUBGwFKKEDH0ZhMzedx6OwsGEPb4Fb5VSX_ZMWCEPXBiuCaMZwJARNBYsUL7wA8IBdVWLh5Sl7uoewFiFTLkYTGFq-azQI6XA65vzvEXsNqCt515BICfU_yMOO3Dp76HdMivE7eJr9tGGzg7Qdlmg_P3zECXF2rM_4fDM4K69V4_HWpscu01_N7QQg8APFZXNW9zGkOXBvJ9qLDIFI_OFV0gWQ5zD7VJS_AhN-r3X7sArayN4kobhwgNU5hENolilkYxTyJPjUFIGpqcqIlwJQGaTArcTiluxTwKNUdKXhkcqJpIeo1o2y_QJwpDDUCPSSAMVYaEWPDaatiRjKSV-kIo6ulnZK5GlcLitXzFNgEBY2ybftq2jq3Xfj0Iu49deHWv2dQ8rce0egOOT0vHJX46vo8uV0xJYEnafQ2R6tswTEjsVQQhGp__xojO0QyzJdke1z1FtMV_qC8hEFmkDbfL-fQNtte-GTy_Qdnqj53HDTcUvEj_b2w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+Coral+Reefs+Using+Artificial+Intelligence%3A+A+Feasible+and+Cost-Effective+Approach&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Manuel+Gonz%C3%A1lez-Rivero&rft.au=Oscar+Beijbom&rft.au=Alberto+Rodriguez-Ramirez&rft.au=Dominic+E.+P.+Bryant&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=3&rft.spage=489&rft_id=info:doi/10.3390%2Frs12030489&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f24218fa39a45d0a0528172d18634b9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |