Monitoring of Coral Reefs Using Artificial Intelligence: A Feasible and Cost-Effective Approach

Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly improved the speed of underwater data collection for monitoring benthic communities, image analysis remains a bottleneck in reporting observations....

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 3; p. 489
Main Authors González-Rivero, Manuel, Beijbom, Oscar, Rodriguez-Ramirez, Alberto, Bryant, Dominic E. P., Ganase, Anjani, Gonzalez-Marrero, Yeray, Herrera-Reveles, Ana, Kennedy, Emma V., Kim, Catherine J. S., Lopez-Marcano, Sebastian, Markey, Kathryn, Neal, Benjamin P., Osborne, Kate, Reyes-Nivia, Catalina, Sampayo, Eugenia M., Stolberg, Kristin, Taylor, Abbie, Vercelloni, Julie, Wyatt, Mathew, Hoegh-Guldberg, Ove
Format Journal Article
LanguageEnglish
Published MDPI AG 01.02.2020
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs12030489

Cover

Abstract Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly improved the speed of underwater data collection for monitoring benthic communities, image analysis remains a bottleneck in reporting observations. In recent years, a rapid evolution of artificial intelligence in image recognition has been evident in its broad applications in modern society, offering new opportunities for increasing the capabilities of coral reef monitoring. Here, we evaluated the performance of Deep Learning Convolutional Neural Networks for automated image analysis, using a global coral reef monitoring dataset. The study demonstrates the advantages of automated image analysis for coral reef monitoring in terms of error and repeatability of benthic abundance estimations, as well as cost and benefit. We found unbiased and high agreement between expert and automated observations (97%). Repeated surveys and comparisons against existing monitoring programs also show that automated estimation of benthic composition is equally robust in detecting change and ensuring the continuity of existing monitoring data. Using this automated approach, data analysis and reporting can be accelerated by at least 200x and at a fraction of the cost (1%). Combining commonly used underwater imagery in monitoring with automated image annotation can dramatically improve how we measure and monitor coral reefs worldwide, particularly in terms of allocating limited resources, rapid reporting and data integration within and across management areas.
AbstractList Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly improved the speed of underwater data collection for monitoring benthic communities, image analysis remains a bottleneck in reporting observations. In recent years, a rapid evolution of artificial intelligence in image recognition has been evident in its broad applications in modern society, offering new opportunities for increasing the capabilities of coral reef monitoring. Here, we evaluated the performance of Deep Learning Convolutional Neural Networks for automated image analysis, using a global coral reef monitoring dataset. The study demonstrates the advantages of automated image analysis for coral reef monitoring in terms of error and repeatability of benthic abundance estimations, as well as cost and benefit. We found unbiased and high agreement between expert and automated observations (97%). Repeated surveys and comparisons against existing monitoring programs also show that automated estimation of benthic composition is equally robust in detecting change and ensuring the continuity of existing monitoring data. Using this automated approach, data analysis and reporting can be accelerated by at least 200x and at a fraction of the cost (1%). Combining commonly used underwater imagery in monitoring with automated image annotation can dramatically improve how we measure and monitor coral reefs worldwide, particularly in terms of allocating limited resources, rapid reporting and data integration within and across management areas.
Author Markey, Kathryn
Kennedy, Emma V.
Kim, Catherine J. S.
Taylor, Abbie
Gonzalez-Marrero, Yeray
Rodriguez-Ramirez, Alberto
Herrera-Reveles, Ana
Vercelloni, Julie
Wyatt, Mathew
Beijbom, Oscar
Bryant, Dominic E. P.
Lopez-Marcano, Sebastian
Reyes-Nivia, Catalina
Ganase, Anjani
Sampayo, Eugenia M.
Stolberg, Kristin
Hoegh-Guldberg, Ove
González-Rivero, Manuel
Neal, Benjamin P.
Osborne, Kate
Author_xml – sequence: 1
  givenname: Manuel
  surname: González-Rivero
  fullname: González-Rivero, Manuel
– sequence: 2
  givenname: Oscar
  surname: Beijbom
  fullname: Beijbom, Oscar
– sequence: 3
  givenname: Alberto
  surname: Rodriguez-Ramirez
  fullname: Rodriguez-Ramirez, Alberto
– sequence: 4
  givenname: Dominic E. P.
  surname: Bryant
  fullname: Bryant, Dominic E. P.
– sequence: 5
  givenname: Anjani
  surname: Ganase
  fullname: Ganase, Anjani
– sequence: 6
  givenname: Yeray
  surname: Gonzalez-Marrero
  fullname: Gonzalez-Marrero, Yeray
– sequence: 7
  givenname: Ana
  surname: Herrera-Reveles
  fullname: Herrera-Reveles, Ana
– sequence: 8
  givenname: Emma V.
  surname: Kennedy
  fullname: Kennedy, Emma V.
– sequence: 9
  givenname: Catherine J. S.
  surname: Kim
  fullname: Kim, Catherine J. S.
– sequence: 10
  givenname: Sebastian
  orcidid: 0000-0002-0814-2906
  surname: Lopez-Marcano
  fullname: Lopez-Marcano, Sebastian
– sequence: 11
  givenname: Kathryn
  surname: Markey
  fullname: Markey, Kathryn
– sequence: 12
  givenname: Benjamin P.
  surname: Neal
  fullname: Neal, Benjamin P.
– sequence: 13
  givenname: Kate
  surname: Osborne
  fullname: Osborne, Kate
– sequence: 14
  givenname: Catalina
  surname: Reyes-Nivia
  fullname: Reyes-Nivia, Catalina
– sequence: 15
  givenname: Eugenia M.
  surname: Sampayo
  fullname: Sampayo, Eugenia M.
– sequence: 16
  givenname: Kristin
  surname: Stolberg
  fullname: Stolberg, Kristin
– sequence: 17
  givenname: Abbie
  surname: Taylor
  fullname: Taylor, Abbie
– sequence: 18
  givenname: Julie
  surname: Vercelloni
  fullname: Vercelloni, Julie
– sequence: 19
  givenname: Mathew
  surname: Wyatt
  fullname: Wyatt, Mathew
– sequence: 20
  givenname: Ove
  surname: Hoegh-Guldberg
  fullname: Hoegh-Guldberg, Ove
BookMark eNptUV1rVDEQDVLBWvviL7iPIlxNJrk3iW_L0upCRRD7HObmY025TdYkFfrvm7pSRZyXMxzOnOFwXpKTlJMn5DWj7zjX9H2pDCinQuln5BSohFGAhpO_9hfkvNYb2odzpqk4JeZzTrHlEtN-yGHY5oLr8NX7UIfr-khuSosh2tjpXWp-XePeJ-s_DJvh0mONy-oHTK5f1jZehOBtiz_9sDkcSkb7_RV5HnCt_vw3npHry4tv20_j1ZePu-3marR8ntsIQijJJ6ndIq1elAI9Wy7EBNxJUA5BsLAwKtGpaWYCOgRnqQ1KOg2Wn5Hd0ddlvDGHEm-x3JuM0fwictkb7Ens6s0UQABTAblGMTmKdALFJDimZi4W3b3eHL16hB93vjZzG6vt0TH5fFcNaDVLPcMku_TtUWpLrrX48PSaUfNYivlTShfTf8Q2Nmwxp1Ywrv87eQCp_44h
CitedBy_id crossref_primary_10_1002_ecs2_3934
crossref_primary_10_1007_s10489_021_02264_y
crossref_primary_10_1007_s13199_021_00778_0
crossref_primary_10_1111_1365_2664_14408
crossref_primary_10_1002_lom3_10557
crossref_primary_10_1007_s12518_020_00331_6
crossref_primary_10_1038_s41598_024_72006_w
crossref_primary_10_3390_bdcc5040053
crossref_primary_10_1007_s00338_025_02620_1
crossref_primary_10_1007_s10462_021_10025_z
crossref_primary_10_1109_JSTARS_2024_3430899
crossref_primary_10_3390_su14106161
crossref_primary_10_1007_s44289_024_00023_8
crossref_primary_10_1016_j_ecoinf_2021_101311
crossref_primary_10_1007_s44295_024_00052_1
crossref_primary_10_1016_j_ecoinf_2024_102619
crossref_primary_10_1109_ACCESS_2023_3341156
crossref_primary_10_3390_electronics13245027
crossref_primary_10_3390_rs16071264
crossref_primary_10_5586_aa_196387
crossref_primary_10_1111_gcb_15059
crossref_primary_10_3389_fenvs_2022_1044706
crossref_primary_10_3390_coasts3040022
crossref_primary_10_1016_j_jip_2021_107538
crossref_primary_10_1016_j_marpolbul_2024_116273
crossref_primary_10_1016_j_rse_2023_113584
crossref_primary_10_3390_d12110430
crossref_primary_10_1038_s41598_024_59123_2
crossref_primary_10_1038_s41598_021_96799_2
crossref_primary_10_1111_ecog_06818
crossref_primary_10_1016_j_marenvres_2024_106454
crossref_primary_10_1007_s00338_021_02104_y
crossref_primary_10_1186_s40537_022_00615_1
crossref_primary_10_1016_j_ecoinf_2024_102665
crossref_primary_10_1038_s42256_020_0192_3
crossref_primary_10_1016_j_ecoinf_2024_102989
crossref_primary_10_3389_fmars_2021_629485
crossref_primary_10_1016_j_ecoinf_2022_101786
crossref_primary_10_3390_rs15164112
crossref_primary_10_1111_insr_12542
crossref_primary_10_3389_fmars_2024_1467371
crossref_primary_10_1111_2041_210X_13841
crossref_primary_10_3390_jmse9020157
crossref_primary_10_1038_s41597_020_00698_6
crossref_primary_10_3390_rs13142762
crossref_primary_10_1007_s00300_022_03096_3
crossref_primary_10_1111_2041_210X_14175
crossref_primary_10_3389_fmars_2022_918104
crossref_primary_10_3390_drones7040221
crossref_primary_10_1146_annurev_marine_032223_024511
crossref_primary_10_3390_jmse12050812
crossref_primary_10_3390_jmse8100760
crossref_primary_10_1007_s11356_022_23242_y
crossref_primary_10_3390_app12104898
crossref_primary_10_1038_s41598_023_48263_6
crossref_primary_10_3390_ijgi12090381
crossref_primary_10_1016_j_inffus_2022_12_012
crossref_primary_10_1111_2041_210X_14029
crossref_primary_10_1038_s41597_021_00871_5
crossref_primary_10_7717_peerj_11090
crossref_primary_10_1016_j_rsma_2021_101731
crossref_primary_10_1016_j_ecoinf_2023_102261
crossref_primary_10_1016_j_jenvman_2021_113209
crossref_primary_10_1111_rec_70001
crossref_primary_10_1007_s00338_024_02468_x
crossref_primary_10_1007_s00371_024_03630_w
crossref_primary_10_1080_10106049_2021_1958066
crossref_primary_10_35229_jaes_1197703
crossref_primary_10_7717_peerj_12413
crossref_primary_10_1080_10095020_2024_2343323
crossref_primary_10_7717_peerj_16219
crossref_primary_10_1098_rsta_2022_0156
crossref_primary_10_3389_fmars_2021_691313
crossref_primary_10_1002_aqc_4241
crossref_primary_10_1007_s10661_021_09314_5
crossref_primary_10_1111_jfb_15651
crossref_primary_10_1186_s41018_023_00135_4
crossref_primary_10_3390_ecologies6010010
crossref_primary_10_1080_10106049_2022_2037732
crossref_primary_10_1002_ece3_7656
crossref_primary_10_1007_s13437_024_00334_9
crossref_primary_10_1145_3567724
crossref_primary_10_1002_aqc_3432
crossref_primary_10_1016_j_anbehav_2021_04_018
crossref_primary_10_1111_2041_210X_14477
crossref_primary_10_1109_LRA_2022_3187836
crossref_primary_10_1002_aqc_3878
crossref_primary_10_3389_fmars_2021_636902
crossref_primary_10_3389_fmars_2023_1126301
Cites_doi 10.3389/fmars.2019.00580
10.1016/j.tree.2010.07.011
10.1016/j.tree.2014.05.004
10.1147/rd.33.0210
10.1016/S0169-5347(01)02205-4
10.1038/s41598-017-07337-y
10.1109/MGRS.2017.2762307
10.1109/TPAMI.2017.2723009
10.3389/fmars.2019.00727
10.1353/psc.2004.0013
10.14264/uql.2019.930
10.1109/MSP.2012.2205597
10.3354/meps265107
10.1109/CVPR.2018.00907
10.1073/pnas.0909335107
10.1016/j.cageo.2005.11.009
10.1016/j.biocon.2010.02.013
10.1002/aqc.2505
10.1007/s10278-017-9965-6
10.1109/CVPR.2009.5206848
10.1002/sim.3086
10.3390/ijgi7110441
10.1111/j.1755-263X.2010.00134.x
10.1016/j.tree.2006.08.007
10.1038/srep23166
10.1016/0022-0981(79)90003-0
10.11613/BM.2015.015
10.3389/fmars.2019.00222
10.5479/si.00775630.421.1
10.1007/s00338-001-0202-9
10.1111/2041-210X.13011
10.1038/nature14539
10.1111/j.1469-185X.2008.00045.x
10.3390/rs8010030
10.1023/A:1025593728986
10.1371/journal.pone.0130312
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs12030489
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (no login required)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_5f24218fa39a45d0a0528172d18634b9
10_3390_rs12030489
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PUEGO
TR2
TUS
7S9
L.6
ID FETCH-LOGICAL-c366t-244873579db7c9b88296c344523d728da241fb107ad856142d85fdc0cf87d92c3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:09:07 EDT 2025
Thu Sep 04 23:59:54 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Wed Oct 01 04:52:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-244873579db7c9b88296c344523d728da241fb107ad856142d85fdc0cf87d92c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0814-2906
OpenAccessLink https://doaj.org/article/5f24218fa39a45d0a0528172d18634b9
PQID 2986796257
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_5f24218fa39a45d0a0528172d18634b9
proquest_miscellaneous_2986796257
crossref_primary_10_3390_rs12030489
crossref_citationtrail_10_3390_rs12030489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hinton (ref_14) 2012; 29
ref_13
Ninio (ref_9) 2002; 21
ref_10
Zhu (ref_45) 2017; 5
ref_18
ref_17
ref_16
Samuel (ref_11) 1959; 3
Weinstein (ref_15) 2018; 9
Zhou (ref_38) 2018; 40
Erickson (ref_40) 2017; 30
ref_25
ref_22
Foster (ref_34) 1979; 39
Dell (ref_46) 2014; 29
ref_21
ref_20
Chennu (ref_36) 2017; 7
Vaughan (ref_42) 2003; 88
Ninio (ref_8) 2003; 265
ref_29
ref_28
ref_27
ref_26
Aronson (ref_31) 1995; 9
Mills (ref_5) 2010; 3
LeCun (ref_12) 2015; 521
Hughes (ref_6) 2010; 25
ref_35
Nichols (ref_3) 2006; 21
Todd (ref_33) 2008; 83
ref_32
Lindenmayer (ref_2) 2010; 143
Williams (ref_30) 2019; 6
Bongaerts (ref_19) 2014; 24
McCook (ref_4) 2010; 107
ref_39
Giavarina (ref_49) 2015; 25
Beijbom (ref_37) 2016; 6
Aronson (ref_7) 1994; 421
Kohler (ref_23) 2006; 32
ref_47
ref_44
ref_43
ref_41
Brown (ref_24) 2004; 58
Yoccoz (ref_1) 2001; 16
Krouwer (ref_48) 2008; 27
References_xml – ident: ref_28
  doi: 10.3389/fmars.2019.00580
– ident: ref_32
– ident: ref_26
– volume: 25
  start-page: 633
  year: 2010
  ident: ref_6
  article-title: Rising to the challenge of sustaining coral reef resilience
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2010.07.011
– ident: ref_39
– volume: 29
  start-page: 417
  year: 2014
  ident: ref_46
  article-title: Automated image-based tracking and its application in ecology
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2014.05.004
– volume: 3
  start-page: 210
  year: 1959
  ident: ref_11
  article-title: Some Studies in Machine Learning Using the Game of Checkers
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.33.0210
– volume: 16
  start-page: 446
  year: 2001
  ident: ref_1
  article-title: Monitoring of biological diversity in space and time
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(01)02205-4
– volume: 7
  start-page: 7122
  year: 2017
  ident: ref_36
  article-title: A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07337-y
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_45
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 40
  start-page: 1452
  year: 2018
  ident: ref_38
  article-title: Places: A 10 Million Image Database for Scene Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2723009
– ident: ref_47
  doi: 10.3389/fmars.2019.00727
– volume: 58
  start-page: 145
  year: 2004
  ident: ref_24
  article-title: Development of benthic sampling methods for the Coral Reef Assessment and Monitoring Program (CRAMP) in Hawai’i
  publication-title: Pac. Sci.
  doi: 10.1353/psc.2004.0013
– ident: ref_20
  doi: 10.14264/uql.2019.930
– volume: 29
  start-page: 82
  year: 2012
  ident: ref_14
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– ident: ref_27
– volume: 265
  start-page: 107
  year: 2003
  ident: ref_8
  article-title: Estimating cover of benthic organisms from underwater video images: Variability associated with multiple observers
  publication-title: Mar. Ecol.-Prog. Ser.
  doi: 10.3354/meps265107
– ident: ref_10
– ident: ref_35
  doi: 10.1109/CVPR.2018.00907
– volume: 107
  start-page: 18278
  year: 2010
  ident: ref_4
  article-title: Adaptive management of the Great Barrier Reef: A globally significant demonstration of the benefits of networks of marine reserves
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0909335107
– volume: 32
  start-page: 1259
  year: 2006
  ident: ref_23
  article-title: Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.11.009
– volume: 143
  start-page: 1317
  year: 2010
  ident: ref_2
  article-title: The science and application of ecological monitoring
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2010.02.013
– volume: 24
  start-page: 184
  year: 2014
  ident: ref_19
  article-title: The Catlin Seaview Survey-kilometre-scale seascape assessment, and monitoring of coral reef ecosystems
  publication-title: Aquat. Conserv.
  doi: 10.1002/aqc.2505
– ident: ref_41
– ident: ref_13
– volume: 30
  start-page: 400
  year: 2017
  ident: ref_40
  article-title: Toolkits and Libraries for Deep Learning
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-9965-6
– ident: ref_22
  doi: 10.1109/CVPR.2009.5206848
– volume: 27
  start-page: 778
  year: 2008
  ident: ref_48
  article-title: Why Bland–Altman plots should use X, not (Y+X)/2 when X is a reference method
  publication-title: Stat. Med.
  doi: 10.1002/sim.3086
– ident: ref_16
  doi: 10.3390/ijgi7110441
– volume: 9
  start-page: 777
  year: 1995
  ident: ref_31
  article-title: Large-scale, long-term monitoring of Caribbean coral reefs: Simple, quick, inexpensive techniques
  publication-title: Oceanogr. Lit. Rev.
– volume: 3
  start-page: 291
  year: 2010
  ident: ref_5
  article-title: A mismatch of scales: Challenges in planning for implementation of marine protected areas in the Coral Triangle
  publication-title: Conserv. Lett.
  doi: 10.1111/j.1755-263X.2010.00134.x
– volume: 21
  start-page: 668
  year: 2006
  ident: ref_3
  article-title: Monitoring for conservation
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2006.08.007
– volume: 6
  start-page: 23166
  year: 2016
  ident: ref_37
  article-title: Improving automated annotation of benthic survey images using wide-band fluorescence
  publication-title: Sci. Rep.
  doi: 10.1038/srep23166
– ident: ref_44
– ident: ref_21
– volume: 39
  start-page: 25
  year: 1979
  ident: ref_34
  article-title: Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander)
  publication-title: J. Exp. Mar. Biol. Ecol.
  doi: 10.1016/0022-0981(79)90003-0
– volume: 25
  start-page: 141
  year: 2015
  ident: ref_49
  article-title: Understanding Bland Altman analysis
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2015.015
– ident: ref_25
– ident: ref_29
– volume: 6
  start-page: 222
  year: 2019
  ident: ref_30
  article-title: Leveraging Automated Image Analysis Tools to Transform Our Capacity to Assess Status and Trends of Coral Reefs
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00222
– volume: 421
  start-page: 1
  year: 1994
  ident: ref_7
  article-title: Large-scale, long-term monitoring of Caribbean coral reefs: Simple, quick, inexpensive techniques
  publication-title: Atoll Res. Bull.
  doi: 10.5479/si.00775630.421.1
– volume: 21
  start-page: 95
  year: 2002
  ident: ref_9
  article-title: Spatial patterns in benthic communities and the dynamics of a mosaic ecosystem on the Great Barrier Reef, Australia
  publication-title: Coral Reefs
  doi: 10.1007/s00338-001-0202-9
– volume: 9
  start-page: 1435
  year: 2018
  ident: ref_15
  article-title: Scene-specific convolutional neural networks for video-based biodiversity detection
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13011
– ident: ref_43
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_12
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 83
  start-page: 315
  year: 2008
  ident: ref_33
  article-title: Morphological plasticity in scleractinian corals
  publication-title: Biol. Rev.
  doi: 10.1111/j.1469-185X.2008.00045.x
– ident: ref_18
  doi: 10.3390/rs8010030
– volume: 88
  start-page: 399
  year: 2003
  ident: ref_42
  article-title: Linking Ecological Science to Decision-Making: Delivering Environmental Monitoring Information as Societal Feedback
  publication-title: Environ. Monit. Assess.
  doi: 10.1023/A:1025593728986
– ident: ref_17
  doi: 10.1371/journal.pone.0130312
SSID ssj0000331904
Score 2.546177
Snippet Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 489
SubjectTerms artificial intelligence
automated image analysis
automation
benthic organisms
coral reefs
cost effectiveness
data collection
digital images
ecosystems
image analysis
monitoring
neural networks
remote sensing
surveys
Title Monitoring of Coral Reefs Using Artificial Intelligence: A Feasible and Cost-Effective Approach
URI https://www.proquest.com/docview/2986796257
https://doaj.org/article/5f24218fa39a45d0a0528172d18634b9
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86D3oRP3F-jIhePJR1Sdqm3ra5OcUNmQ68lTQfeBidrNvB_96XtJsFBS-eAiWh5b3k_d6vSX4PoWsr0h0B__co59JjgSGeUBGwFKKEDH0ZhMzedx6OwsGEPb4Fb5VSX_ZMWCEPXBiuCaMZwJARNBYsUL7wA8IBdVWLh5Sl7uoewFiFTLkYTGFq-azQI6XA65vzvEXsNqCt515BICfU_yMOO3Dp76HdMivE7eJr9tGGzg7Qdlmg_P3zECXF2rM_4fDM4K69V4_HWpscu01_N7QQg8APFZXNW9zGkOXBvJ9qLDIFI_OFV0gWQ5zD7VJS_AhN-r3X7sArayN4kobhwgNU5hENolilkYxTyJPjUFIGpqcqIlwJQGaTArcTiluxTwKNUdKXhkcqJpIeo1o2y_QJwpDDUCPSSAMVYaEWPDaatiRjKSV-kIo6ulnZK5GlcLitXzFNgEBY2ybftq2jq3Xfj0Iu49deHWv2dQ8rce0egOOT0vHJX46vo8uV0xJYEnafQ2R6tswTEjsVQQhGp__xojO0QyzJdke1z1FtMV_qC8hEFmkDbfL-fQNtte-GTy_Qdnqj53HDTcUvEj_b2w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+Coral+Reefs+Using+Artificial+Intelligence%3A+A+Feasible+and+Cost-Effective+Approach&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Manuel+Gonz%C3%A1lez-Rivero&rft.au=Oscar+Beijbom&rft.au=Alberto+Rodriguez-Ramirez&rft.au=Dominic+E.+P.+Bryant&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=3&rft.spage=489&rft_id=info:doi/10.3390%2Frs12030489&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f24218fa39a45d0a0528172d18634b9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon