A nonparametric approach to confidence intervals for concordance index and difference between correlated indices

Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index...

Full description

Saved in:
Bibliographic Details
Published inJournal of biopharmaceutical statistics Vol. 32; no. 5; pp. 740 - 767
Main Authors Zou, Guangyong, Smith, Emma, Jairath, Vipul
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.09.2022
Subjects
Online AccessGet full text
ISSN1054-3406
1520-5711
1520-5711
DOI10.1080/10543406.2022.2030747

Cover

Abstract Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher's -transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided.
AbstractList Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher’s z-transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided.
Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher’s z-transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided.Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher’s z-transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided.
Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher's -transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided.
Author Smith, Emma
Jairath, Vipul
Zou, Guangyong
Author_xml – sequence: 1
  givenname: Guangyong
  surname: Zou
  fullname: Zou, Guangyong
  email: gy.zou@robartsinc.com
  organization: Robarts Research Institute, Western University
– sequence: 2
  givenname: Emma
  surname: Smith
  fullname: Smith, Emma
  organization: Schulich School of Medicine & Dentistry, Western University
– sequence: 3
  givenname: Vipul
  surname: Jairath
  fullname: Jairath, Vipul
  organization: Schulich School of Medicine & Dentistry, Western University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35216545$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB_wE0BZsknxO7liQ1XRglSJDaytsT0RRokdbF9K_z0O95YFC9iMR5rvHMnnnJOTmCIS8pLRS0ZH-oZRJYWk-pJTztsQdJDDE3LGFKe9Ghg7aXtj-g06JeelfKOUqWGUz8ipUJxpJdUZWa-6ZrxChgVrDq6Ddc0J3Neups6lOAWP0WEXYsX8A-bSTSlvB5eyh8PF488Oou98mCbMv3GL9R4xNjBnnKGi37jgsDwnT6dmgy-O7wX5cvP-8_WH_u7T7cfrq7veCa1rz9y4k87SQewcKGu1HS0CA45WMpSDZ84Cd1ZoxxQqBVLDqLmTOysllyAuyOuDb_vO9z2WapZQHM4zREz7YrgWYtRMyrGhr47o3i7ozZrDAvnBPKbUAHUAXE6lZJz-IIyarQ3z2IbZ2jDHNpru7V86FyrUkGLNEOb_qt8d1CG2zBe4T3n2psLDnPKUW_ahGPFvi1-8zKQl
CitedBy_id crossref_primary_10_3389_fcvm_2022_879834
crossref_primary_10_1016_j_medj_2024_09_001
crossref_primary_10_1161_CIRCHEARTFAILURE_123_011360
crossref_primary_10_1002_sim_10172
crossref_primary_10_1161_JAHA_122_029058
crossref_primary_10_1016_j_injury_2023_05_044
Cites_doi 10.2307/2531493
10.1002/sim.4508
10.1016/0022-2496(75)90001-2
10.1080/00031305.2016.1154108
10.1080/19466315.2019.1575279
10.1148/radiology.143.1.7063747
10.1007/978-3-319-19425-7
10.1002/sim.2871
10.1002/sim.8918
10.18637/jss.v051.i03
10.7326/0003-4819-130-6-199903160-00016
10.1214/aoms/1177730196
10.1177/0272989X09333128
10.1016/S0895-4356(99)00206-1
10.1207/s15327906mbr2604_6
10.1002/sim.2228
10.1002/bimj.201200026
10.1002/sim.1917
10.7326/M14-0698
10.1023/A:1010920819831
10.1002/sim.4154
10.1002/sim.4368
10.2307/2533958
10.1002/sim.7257
10.1016/0021-9681(86)90038-X
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1093/biomet/41.1-2.133
10.2307/2531595
10.1001/jama.1982.03320430047030
10.1093/biomet/33.3.239
10.7326/0003-4819-152-11-201006010-00232
10.1080/03461238.1924.10405384
10.1111/biom.12653
10.1002/pst.1743
10.1002/sim.8967
10.1148/radiology.148.3.6878708
10.1002/sim.5634
10.1016/j.acra.2005.05.013
10.1002/sim.6370
10.1002/sim.944
10.1080/01621459.1957.10501395
10.1007/978-3-030-16399-0
10.1002/bimj.201800107
10.1136/bmj.h5527
10.1002/sim.7414
10.1093/biomet/30.1-2.81
10.1214/aoms/1177730491
10.1016/S2468-1253(18)30306-6
10.1093/biomet/34.3-4.197
10.1111/j.2044-8317.1997.tb01100.x
10.1002/sim.7799
10.1056/NEJMoa1513248
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/10543406.2022.2030747
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-5711
EndPage 767
ExternalDocumentID 35216545
10_1080_10543406_2022_2030747
2030747
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29K
30N
36B
4.4
53G
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
D-I
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBR
EBS
EBU
EHE
EMB
EMK
EMOBN
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
MK0
ML~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
SV3
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c366t-1c894cb0739ca5bb6b8bea1a2eb41e47d1cba2cb36c15e55a46a862c49b4424a3
ISSN 1054-3406
1520-5711
IngestDate Tue Aug 05 10:25:44 EDT 2025
Thu Apr 03 07:07:24 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Oct 01 01:45:14 EDT 2025
Mon Oct 20 23:46:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Wilcoxon–Mann-Whitney statistic
Diagnostic accuracy
discrimination
effect size
receiver operating characteristic curve
statistics
responsiveness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-1c894cb0739ca5bb6b8bea1a2eb41e47d1cba2cb36c15e55a46a862c49b4424a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35216545
PQID 2633861448
PQPubID 23479
PageCount 28
ParticipantIDs crossref_citationtrail_10_1080_10543406_2022_2030747
proquest_miscellaneous_2633861448
informaworld_taylorfrancis_310_1080_10543406_2022_2030747
pubmed_primary_35216545
crossref_primary_10_1080_10543406_2022_2030747
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-03
PublicationDateYYYYMMDD 2022-09-03
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of biopharmaceutical statistics
PublicationTitleAlternate J Biopharm Stat
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0031
cit0032
cit0030
cit0037
cit0038
cit0035
cit0036
cit0022
cit0020
cit0021
Hoeffding W (cit0023) 1947; 34
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
Nakas C. T (cit0039) 2014; 12
cit0051
cit0052
cit0050
Casella G. (cit0005) 2002
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
Cliff N (cit0006) 1996
cit0008
cit0009
cit0007
cit0004
cit0048
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0015
  doi: 10.2307/2531493
– ident: cit0045
  doi: 10.1002/sim.4508
– ident: cit0001
  doi: 10.1016/0022-2496(75)90001-2
– ident: cit0055
  doi: 10.1080/00031305.2016.1154108
– ident: cit0011
  doi: 10.1080/19466315.2019.1575279
– ident: cit0018
  doi: 10.1148/radiology.143.1.7063747
– ident: cit0020
  doi: 10.1007/978-3-319-19425-7
– ident: cit0014
  doi: 10.1002/sim.2871
– ident: cit0056
  doi: 10.1002/sim.8918
– ident: cit0036
  doi: 10.18637/jss.v051.i03
– volume-title: Statistical Inference
  year: 2002
  ident: cit0005
– ident: cit0028
  doi: 10.7326/0003-4819-130-6-199903160-00016
– ident: cit0024
  doi: 10.1214/aoms/1177730196
– ident: cit0002
  doi: 10.1177/0272989X09333128
– ident: cit0025
  doi: 10.1016/S0895-4356(99)00206-1
– ident: cit0007
  doi: 10.1207/s15327906mbr2604_6
– ident: cit0043
  doi: 10.1002/sim.2228
– ident: cit0053
  doi: 10.1002/bimj.201200026
– ident: cit0040
  doi: 10.1002/sim.1917
– ident: cit0038
  doi: 10.7326/M14-0698
– ident: cit0017
  doi: 10.1023/A:1010920819831
– ident: cit0052
  doi: 10.1002/sim.4154
– volume-title: Ordinal methods for behaviorial data analysis
  year: 1996
  ident: cit0006
– ident: cit0035
  doi: 10.1002/sim.4368
– ident: cit0041
  doi: 10.2307/2533958
– ident: cit0047
  doi: 10.1002/sim.7257
– ident: cit0010
  doi: 10.1016/0021-9681(86)90038-X
– ident: cit0022
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– ident: cit0027
  doi: 10.1093/biomet/41.1-2.133
– ident: cit0009
  doi: 10.2307/2531595
– ident: cit0021
  doi: 10.1001/jama.1982.03320430047030
– ident: cit0031
  doi: 10.1093/biomet/33.3.239
– ident: cit0049
  doi: 10.7326/0003-4819-152-11-201006010-00232
– ident: cit0012
  doi: 10.1080/03461238.1924.10405384
– ident: cit0050
  doi: 10.1111/biom.12653
– ident: cit0054
  doi: 10.1002/pst.1743
– ident: cit0004
  doi: 10.1002/sim.8967
– ident: cit0019
  doi: 10.1148/radiology.148.3.6878708
– ident: cit0032
  doi: 10.1002/sim.5634
– ident: cit0042
  doi: 10.1016/j.acra.2005.05.013
– volume: 34
  start-page: 183
  year: 1947
  ident: cit0023
  publication-title: Biometrika
– ident: cit0029
  doi: 10.1002/sim.6370
– ident: cit0044
  doi: 10.1002/sim.944
– ident: cit0033
  doi: 10.1080/01621459.1957.10501395
– volume: 12
  start-page: 43
  year: 2014
  ident: cit0039
  publication-title: Revstat Statistical Journal
– ident: cit0051
  doi: 10.1007/978-3-030-16399-0
– ident: cit0046
  doi: 10.1002/bimj.201800107
– ident: cit0003
  doi: 10.1136/bmj.h5527
– ident: cit0016
  doi: 10.1002/sim.7414
– ident: cit0030
  doi: 10.1093/biomet/30.1-2.81
– ident: cit0037
  doi: 10.1214/aoms/1177730491
– ident: cit0026
  doi: 10.1016/S2468-1253(18)30306-6
– ident: cit0008
  doi: 10.1093/biomet/34.3-4.197
– ident: cit0034
  doi: 10.1111/j.2044-8317.1997.tb01100.x
– ident: cit0013
  doi: 10.1002/sim.7799
– ident: cit0048
  doi: 10.1056/NEJMoa1513248
SSID ssj0015784
Score 2.3113394
Snippet Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 740
SubjectTerms Computer Simulation
Confidence Intervals
Diagnostic accuracy
discrimination
effect size
Humans
Models, Statistical
receiver operating characteristic curve
responsiveness
ROC Curve
Sample Size
statistics
Statistics, Nonparametric
Wilcoxon-Mann-Whitney statistic
Title A nonparametric approach to confidence intervals for concordance index and difference between correlated indices
URI https://www.tandfonline.com/doi/abs/10.1080/10543406.2022.2030747
https://www.ncbi.nlm.nih.gov/pubmed/35216545
https://www.proquest.com/docview/2633861448
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1520-5711
  dateEnd: 20241104
  omitProxy: true
  ssIdentifier: ssj0015784
  issn: 1054-3406
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1520-5711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015784
  issn: 1054-3406
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1520-5711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015784
  issn: 1054-3406
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK97IXBONWbjIS2gtLSWI7l8cKhqpJoEl0MPES2a4zJm1NtSXTyp_hr3JO7FzKBmO8RJWjuE7P1-Nz83cIec1FGqUmZV4i8tzj2ldeKhPh5QzQY0TIWU2k_fFTND3ge4ficDD42ataqko11j-uPVfyP1KFMZArnpK9hWTbSWEAPoN84QoShus_yXjyBpx3JO8-xb5YuiUIR4MS_NzcNgytKSHOLpAnGWsK4QZ6nNLemZvLOn_QNEqBwaZ0S2PjjhOJJikmtrWrNrxqyarjYvl9LTSOx5QsA3QbmC6qOgRfycXRqnDbZT-ys3va7RB7ErP_9fCX46UrXXShCfBqMdHCetoU7EGPcd9xXTsNC_6qiJ2GdSq4C3F2Se5an8aWy8ltzbHt3HFF69sySfw2_LIxLgUuDHsDdNtck9r_bfdraxIDR5baTJPhNJmb5g7ZCGHb8IdkYzJ9_-1rm6gChVcXLjRv2hwSS_y3165nzfxZI8f9s4tTmzqze-SukyydWMDdJwOz2CLb-1bEqx06687sne_Qbbrf0Z-vtsjm51b4D8hyQtcgShuI0rKgHURpC1EKS6U9iNIaohQgSjuIUgdR2kGUOog-JAcfdmfvpp5r8uFpFkWlF-gk5VphwlhLoVSkEmVkIEOjeGB4PA-0kqFWLNKBMEJIHknwwjVPFechl-wRGcKLmCeE8pTxUMV-NE8FV6Bk5DzSoUnAOgsTmHBEePPbZ9ox4GMjlpPsr7IfkXH72NJSwNz0QNoXbFbWsbfcNsrJ2A3PvmpQkIGix-ydXJiiOs_CiLEEwzfJiDy28GiXA14UnkoUT2-71Gdks_vjPifD8qwyL8DKLtVLh_RfD6_L-w
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619FAufUAf2xdGQpzIauMX8RFVRdsCKw6LxM2yHUdCtLsIslLpr--MnSwPCXHgFCn2OPFkJp6xZ74B2JLKaBONKCrVNIUMI18YV6miESg9UXEpEpD20USPT-SvU3V6KxeGwirJh24yUET6V5Ny02Z0HxKHV0qIHFGEAadkKkEo8M_hhUJjn6oYiNFkeZKAEplOlpGkIJo-i-ehYe6sT3fQSx-2QdNatP8aQj-LHIJyPly0fhj-3QN4fNo038CrzlRle1m23sKzOFuD7eOMdX29w6Y3qVtXO2ybHd-gYF-vwSqZsRkFeh0u9thsPiOY8T9UwSuwHsqctXOGHnmTS5uysxSBiRrBkCHUQL6xyy11_MtwLqwv6YI3uyAz7HiZcnJiTf3o1_cOTvZ_TL-Pi67WQxGE1m1RhsrI4OncMDjlvfaVj650PHpZRrlbl8E7HrzQoVRRKSe1Q2csSOOl5NKJ97CCE4kfgUkjJPe7I10bJT3Kmqt14LHCRZpXOOAAZP-FbeiA0Kkex29bdnipPeMtMd52jB_AcEl2kZFAHiMwt8XHtmkLpsn1Uqx4hHazlzWL-k6HOG4W54sry7UQFXnx1QA-ZCFcvg4a05Scpj494ckb8HI8PTq0hz8nB59hlZpSSJ34Aivt5SJ-RRus9d-Skv0Hi4wh-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aFEouaZs-sm3SqlByipe1XrGPIc2SvpY9JNCbkGQZQtvdJeuFpr--M5K1aQohh5wMlkb2yCNpxjPzDcAHqWpdh1oUlWrbQvqRK2pbqaIVKD1BcSkikPa3iT49l5-_qxxNuOzDKsmGbhNQRNyraXEvmjZHxOGV8iFHFGDAKZdKEAj8Q3ikyStGWRyjydqRgAIZHctIUhBNTuK5bZgbx9MN8NLbVdB4FI2fgMtMpAiUH8NV54b-z3_4jvfi8ils9YoqO0qS9QwehNk27E8T0vXVATu7TtxaHrB9Nr3GwL7ahk1SYhMG9HNYHLHZfEYg47-ofpdnGcicdXOG9nibCpuyixh_ieuB4XxQA1nGNrU04TdDVlgu6II3-xAz7HgZM3JCQ_1o43sB5-OTs-PToq_0UHihdVeUvqqld-Q19FY5p13lgi0tD06WQR42pXeWeye0L1VQykpt0RTzsnZScmnFS9hARsIOMFkLyd3hSDe1kg4lzTba81DhEc0rHHAAMn9g43sYdKrG8dOUPVpqnnhDE2_6iR_AcE22SDggdxHU_0qP6eIPmDZVSzHiDtr3WdQMrnZy4dhZmK-WhmshKrLhqwG8SjK4fh1UpSk1Tb2-x5PfwePpx7H5-mny5Q1sUkuMpxO7sNFdrsIeKmCdexuX2F_T9iCd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonparametric+approach+to+confidence+intervals+for+concordance+index+and+difference+between+correlated+indices&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Zou%2C+Guangyong&rft.au=Smith%2C+Emma&rft.au=Jairath%2C+Vipul&rft.date=2022-09-03&rft.issn=1054-3406&rft.eissn=1520-5711&rft.volume=32&rft.issue=5&rft.spage=740&rft.epage=767&rft_id=info:doi/10.1080%2F10543406.2022.2030747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10543406_2022_2030747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon