A nonparametric approach to confidence intervals for concordance index and difference between correlated indices
Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index...
Saved in:
| Published in | Journal of biopharmaceutical statistics Vol. 32; no. 5; pp. 740 - 767 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Taylor & Francis
03.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1054-3406 1520-5711 1520-5711 |
| DOI | 10.1080/10543406.2022.2030747 |
Cover
| Abstract | Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher's
-transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided. |
|---|---|
| AbstractList | Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher’s z-transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided. Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher’s z-transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided.Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher’s z-transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided. Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application in practice, as a measure of effect size in group-comparison studies, an index of accuracy in diagnostic studies, and a discrimination index for prediction models. Herein, we provide a unified framework for statistical inference involving concordance indices for standard variables of binary, ordinal, and continuous types. In particular, we develop confidence interval procedures for a single concordance index and differences between two correlated indices. Simulation results show that procedures based on logit-transformation for a single index and Fisher's -transformation for a difference between indices perform very well in terms of coverage and tail errors even when the sample size is as small as 30, unless the concordance is high and the standard is a binary variable for which at least 50 subjects are needed. We illustrate the procedures for a variety of standard variables with previously published data. Illustrative SAS code is provided. |
| Author | Smith, Emma Jairath, Vipul Zou, Guangyong |
| Author_xml | – sequence: 1 givenname: Guangyong surname: Zou fullname: Zou, Guangyong email: gy.zou@robartsinc.com organization: Robarts Research Institute, Western University – sequence: 2 givenname: Emma surname: Smith fullname: Smith, Emma organization: Schulich School of Medicine & Dentistry, Western University – sequence: 3 givenname: Vipul surname: Jairath fullname: Jairath, Vipul organization: Schulich School of Medicine & Dentistry, Western University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35216545$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1TAQhS1URB_wE0BZsknxO7liQ1XRglSJDaytsT0RRokdbF9K_z0O95YFC9iMR5rvHMnnnJOTmCIS8pLRS0ZH-oZRJYWk-pJTztsQdJDDE3LGFKe9Ghg7aXtj-g06JeelfKOUqWGUz8ipUJxpJdUZWa-6ZrxChgVrDq6Ddc0J3Neups6lOAWP0WEXYsX8A-bSTSlvB5eyh8PF488Oou98mCbMv3GL9R4xNjBnnKGi37jgsDwnT6dmgy-O7wX5cvP-8_WH_u7T7cfrq7veCa1rz9y4k87SQewcKGu1HS0CA45WMpSDZ84Cd1ZoxxQqBVLDqLmTOysllyAuyOuDb_vO9z2WapZQHM4zREz7YrgWYtRMyrGhr47o3i7ozZrDAvnBPKbUAHUAXE6lZJz-IIyarQ3z2IbZ2jDHNpru7V86FyrUkGLNEOb_qt8d1CG2zBe4T3n2psLDnPKUW_ahGPFvi1-8zKQl |
| CitedBy_id | crossref_primary_10_3389_fcvm_2022_879834 crossref_primary_10_1016_j_medj_2024_09_001 crossref_primary_10_1161_CIRCHEARTFAILURE_123_011360 crossref_primary_10_1002_sim_10172 crossref_primary_10_1161_JAHA_122_029058 crossref_primary_10_1016_j_injury_2023_05_044 |
| Cites_doi | 10.2307/2531493 10.1002/sim.4508 10.1016/0022-2496(75)90001-2 10.1080/00031305.2016.1154108 10.1080/19466315.2019.1575279 10.1148/radiology.143.1.7063747 10.1007/978-3-319-19425-7 10.1002/sim.2871 10.1002/sim.8918 10.18637/jss.v051.i03 10.7326/0003-4819-130-6-199903160-00016 10.1214/aoms/1177730196 10.1177/0272989X09333128 10.1016/S0895-4356(99)00206-1 10.1207/s15327906mbr2604_6 10.1002/sim.2228 10.1002/bimj.201200026 10.1002/sim.1917 10.7326/M14-0698 10.1023/A:1010920819831 10.1002/sim.4154 10.1002/sim.4368 10.2307/2533958 10.1002/sim.7257 10.1016/0021-9681(86)90038-X 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1093/biomet/41.1-2.133 10.2307/2531595 10.1001/jama.1982.03320430047030 10.1093/biomet/33.3.239 10.7326/0003-4819-152-11-201006010-00232 10.1080/03461238.1924.10405384 10.1111/biom.12653 10.1002/pst.1743 10.1002/sim.8967 10.1148/radiology.148.3.6878708 10.1002/sim.5634 10.1016/j.acra.2005.05.013 10.1002/sim.6370 10.1002/sim.944 10.1080/01621459.1957.10501395 10.1007/978-3-030-16399-0 10.1002/bimj.201800107 10.1136/bmj.h5527 10.1002/sim.7414 10.1093/biomet/30.1-2.81 10.1214/aoms/1177730491 10.1016/S2468-1253(18)30306-6 10.1093/biomet/34.3-4.197 10.1111/j.2044-8317.1997.tb01100.x 10.1002/sim.7799 10.1056/NEJMoa1513248 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1080/10543406.2022.2030747 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1520-5711 |
| EndPage | 767 |
| ExternalDocumentID | 35216545 10_1080_10543406_2022_2030747 2030747 |
| Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .7F .QJ 0BK 0R~ 29K 30N 36B 4.4 53G 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 D-I DGEBU DKSSO DU5 EAP EBC EBD EBR EBS EBU EHE EMB EMK EMOBN EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z MK0 ML~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF SV3 TASJS TBQAZ TDBHL TEJ TFL TFT TFW TH9 TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION ADYSH CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c366t-1c894cb0739ca5bb6b8bea1a2eb41e47d1cba2cb36c15e55a46a862c49b4424a3 |
| ISSN | 1054-3406 1520-5711 |
| IngestDate | Tue Aug 05 10:25:44 EDT 2025 Thu Apr 03 07:07:24 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Wed Oct 01 01:45:14 EDT 2025 Mon Oct 20 23:46:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Wilcoxon–Mann-Whitney statistic Diagnostic accuracy discrimination effect size receiver operating characteristic curve statistics responsiveness |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c366t-1c894cb0739ca5bb6b8bea1a2eb41e47d1cba2cb36c15e55a46a862c49b4424a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 35216545 |
| PQID | 2633861448 |
| PQPubID | 23479 |
| PageCount | 28 |
| ParticipantIDs | crossref_citationtrail_10_1080_10543406_2022_2030747 proquest_miscellaneous_2633861448 informaworld_taylorfrancis_310_1080_10543406_2022_2030747 pubmed_primary_35216545 crossref_primary_10_1080_10543406_2022_2030747 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-03 |
| PublicationDateYYYYMMDD | 2022-09-03 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of biopharmaceutical statistics |
| PublicationTitleAlternate | J Biopharm Stat |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0033 cit0034 cit0031 cit0032 cit0030 cit0037 cit0038 cit0035 cit0036 cit0022 cit0020 cit0021 Hoeffding W (cit0023) 1947; 34 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 Nakas C. T (cit0039) 2014; 12 cit0051 cit0052 cit0050 Casella G. (cit0005) 2002 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 Cliff N (cit0006) 1996 cit0008 cit0009 cit0007 cit0004 cit0048 cit0049 cit0002 cit0046 cit0003 cit0047 |
| References_xml | – ident: cit0015 doi: 10.2307/2531493 – ident: cit0045 doi: 10.1002/sim.4508 – ident: cit0001 doi: 10.1016/0022-2496(75)90001-2 – ident: cit0055 doi: 10.1080/00031305.2016.1154108 – ident: cit0011 doi: 10.1080/19466315.2019.1575279 – ident: cit0018 doi: 10.1148/radiology.143.1.7063747 – ident: cit0020 doi: 10.1007/978-3-319-19425-7 – ident: cit0014 doi: 10.1002/sim.2871 – ident: cit0056 doi: 10.1002/sim.8918 – ident: cit0036 doi: 10.18637/jss.v051.i03 – volume-title: Statistical Inference year: 2002 ident: cit0005 – ident: cit0028 doi: 10.7326/0003-4819-130-6-199903160-00016 – ident: cit0024 doi: 10.1214/aoms/1177730196 – ident: cit0002 doi: 10.1177/0272989X09333128 – ident: cit0025 doi: 10.1016/S0895-4356(99)00206-1 – ident: cit0007 doi: 10.1207/s15327906mbr2604_6 – ident: cit0043 doi: 10.1002/sim.2228 – ident: cit0053 doi: 10.1002/bimj.201200026 – ident: cit0040 doi: 10.1002/sim.1917 – ident: cit0038 doi: 10.7326/M14-0698 – ident: cit0017 doi: 10.1023/A:1010920819831 – ident: cit0052 doi: 10.1002/sim.4154 – volume-title: Ordinal methods for behaviorial data analysis year: 1996 ident: cit0006 – ident: cit0035 doi: 10.1002/sim.4368 – ident: cit0041 doi: 10.2307/2533958 – ident: cit0047 doi: 10.1002/sim.7257 – ident: cit0010 doi: 10.1016/0021-9681(86)90038-X – ident: cit0022 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: cit0027 doi: 10.1093/biomet/41.1-2.133 – ident: cit0009 doi: 10.2307/2531595 – ident: cit0021 doi: 10.1001/jama.1982.03320430047030 – ident: cit0031 doi: 10.1093/biomet/33.3.239 – ident: cit0049 doi: 10.7326/0003-4819-152-11-201006010-00232 – ident: cit0012 doi: 10.1080/03461238.1924.10405384 – ident: cit0050 doi: 10.1111/biom.12653 – ident: cit0054 doi: 10.1002/pst.1743 – ident: cit0004 doi: 10.1002/sim.8967 – ident: cit0019 doi: 10.1148/radiology.148.3.6878708 – ident: cit0032 doi: 10.1002/sim.5634 – ident: cit0042 doi: 10.1016/j.acra.2005.05.013 – volume: 34 start-page: 183 year: 1947 ident: cit0023 publication-title: Biometrika – ident: cit0029 doi: 10.1002/sim.6370 – ident: cit0044 doi: 10.1002/sim.944 – ident: cit0033 doi: 10.1080/01621459.1957.10501395 – volume: 12 start-page: 43 year: 2014 ident: cit0039 publication-title: Revstat Statistical Journal – ident: cit0051 doi: 10.1007/978-3-030-16399-0 – ident: cit0046 doi: 10.1002/bimj.201800107 – ident: cit0003 doi: 10.1136/bmj.h5527 – ident: cit0016 doi: 10.1002/sim.7414 – ident: cit0030 doi: 10.1093/biomet/30.1-2.81 – ident: cit0037 doi: 10.1214/aoms/1177730491 – ident: cit0026 doi: 10.1016/S2468-1253(18)30306-6 – ident: cit0008 doi: 10.1093/biomet/34.3-4.197 – ident: cit0034 doi: 10.1111/j.2044-8317.1997.tb01100.x – ident: cit0013 doi: 10.1002/sim.7799 – ident: cit0048 doi: 10.1056/NEJMoa1513248 |
| SSID | ssj0015784 |
| Score | 2.3113394 |
| Snippet | Concordance refers to the probability that subjects with high values on one variable also have high values on another variable. This index has wide application... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 740 |
| SubjectTerms | Computer Simulation Confidence Intervals Diagnostic accuracy discrimination effect size Humans Models, Statistical receiver operating characteristic curve responsiveness ROC Curve Sample Size statistics Statistics, Nonparametric Wilcoxon-Mann-Whitney statistic |
| Title | A nonparametric approach to confidence intervals for concordance index and difference between correlated indices |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10543406.2022.2030747 https://www.ncbi.nlm.nih.gov/pubmed/35216545 https://www.proquest.com/docview/2633861448 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1520-5711 dateEnd: 20241104 omitProxy: true ssIdentifier: ssj0015784 issn: 1054-3406 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1520-5711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015784 issn: 1054-3406 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1520-5711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015784 issn: 1054-3406 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK97IXBONWbjIS2gtLSWI7l8cKhqpJoEl0MPES2a4zJm1NtSXTyp_hr3JO7FzKBmO8RJWjuE7P1-Nz83cIec1FGqUmZV4i8tzj2ldeKhPh5QzQY0TIWU2k_fFTND3ge4ficDD42ataqko11j-uPVfyP1KFMZArnpK9hWTbSWEAPoN84QoShus_yXjyBpx3JO8-xb5YuiUIR4MS_NzcNgytKSHOLpAnGWsK4QZ6nNLemZvLOn_QNEqBwaZ0S2PjjhOJJikmtrWrNrxqyarjYvl9LTSOx5QsA3QbmC6qOgRfycXRqnDbZT-ys3va7RB7ErP_9fCX46UrXXShCfBqMdHCetoU7EGPcd9xXTsNC_6qiJ2GdSq4C3F2Se5an8aWy8ltzbHt3HFF69sySfw2_LIxLgUuDHsDdNtck9r_bfdraxIDR5baTJPhNJmb5g7ZCGHb8IdkYzJ9_-1rm6gChVcXLjRv2hwSS_y3165nzfxZI8f9s4tTmzqze-SukyydWMDdJwOz2CLb-1bEqx06687sne_Qbbrf0Z-vtsjm51b4D8hyQtcgShuI0rKgHURpC1EKS6U9iNIaohQgSjuIUgdR2kGUOog-JAcfdmfvpp5r8uFpFkWlF-gk5VphwlhLoVSkEmVkIEOjeGB4PA-0kqFWLNKBMEJIHknwwjVPFechl-wRGcKLmCeE8pTxUMV-NE8FV6Bk5DzSoUnAOgsTmHBEePPbZ9ox4GMjlpPsr7IfkXH72NJSwNz0QNoXbFbWsbfcNsrJ2A3PvmpQkIGix-ydXJiiOs_CiLEEwzfJiDy28GiXA14UnkoUT2-71Gdks_vjPifD8qwyL8DKLtVLh_RfD6_L-w |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619FAufUAf2xdGQpzIauMX8RFVRdsCKw6LxM2yHUdCtLsIslLpr--MnSwPCXHgFCn2OPFkJp6xZ74B2JLKaBONKCrVNIUMI18YV6miESg9UXEpEpD20USPT-SvU3V6KxeGwirJh24yUET6V5Ny02Z0HxKHV0qIHFGEAadkKkEo8M_hhUJjn6oYiNFkeZKAEplOlpGkIJo-i-ehYe6sT3fQSx-2QdNatP8aQj-LHIJyPly0fhj-3QN4fNo038CrzlRle1m23sKzOFuD7eOMdX29w6Y3qVtXO2ybHd-gYF-vwSqZsRkFeh0u9thsPiOY8T9UwSuwHsqctXOGHnmTS5uysxSBiRrBkCHUQL6xyy11_MtwLqwv6YI3uyAz7HiZcnJiTf3o1_cOTvZ_TL-Pi67WQxGE1m1RhsrI4OncMDjlvfaVj650PHpZRrlbl8E7HrzQoVRRKSe1Q2csSOOl5NKJ97CCE4kfgUkjJPe7I10bJT3Kmqt14LHCRZpXOOAAZP-FbeiA0Kkex29bdnipPeMtMd52jB_AcEl2kZFAHiMwt8XHtmkLpsn1Uqx4hHazlzWL-k6HOG4W54sry7UQFXnx1QA-ZCFcvg4a05Scpj494ckb8HI8PTq0hz8nB59hlZpSSJ34Aivt5SJ-RRus9d-Skv0Hi4wh-Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aFEouaZs-sm3SqlByipe1XrGPIc2SvpY9JNCbkGQZQtvdJeuFpr--M5K1aQohh5wMlkb2yCNpxjPzDcAHqWpdh1oUlWrbQvqRK2pbqaIVKD1BcSkikPa3iT49l5-_qxxNuOzDKsmGbhNQRNyraXEvmjZHxOGV8iFHFGDAKZdKEAj8Q3ikyStGWRyjydqRgAIZHctIUhBNTuK5bZgbx9MN8NLbVdB4FI2fgMtMpAiUH8NV54b-z3_4jvfi8ils9YoqO0qS9QwehNk27E8T0vXVATu7TtxaHrB9Nr3GwL7ahk1SYhMG9HNYHLHZfEYg47-ofpdnGcicdXOG9nibCpuyixh_ieuB4XxQA1nGNrU04TdDVlgu6II3-xAz7HgZM3JCQ_1o43sB5-OTs-PToq_0UHihdVeUvqqld-Q19FY5p13lgi0tD06WQR42pXeWeye0L1VQykpt0RTzsnZScmnFS9hARsIOMFkLyd3hSDe1kg4lzTba81DhEc0rHHAAMn9g43sYdKrG8dOUPVpqnnhDE2_6iR_AcE22SDggdxHU_0qP6eIPmDZVSzHiDtr3WdQMrnZy4dhZmK-WhmshKrLhqwG8SjK4fh1UpSk1Tb2-x5PfwePpx7H5-mny5Q1sUkuMpxO7sNFdrsIeKmCdexuX2F_T9iCd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonparametric+approach+to+confidence+intervals+for+concordance+index+and+difference+between+correlated+indices&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Zou%2C+Guangyong&rft.au=Smith%2C+Emma&rft.au=Jairath%2C+Vipul&rft.date=2022-09-03&rft.issn=1054-3406&rft.eissn=1520-5711&rft.volume=32&rft.issue=5&rft.spage=740&rft.epage=767&rft_id=info:doi/10.1080%2F10543406.2022.2030747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10543406_2022_2030747 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon |