Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity
This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of a...
        Saved in:
      
    
          | Published in | International journal for numerical methods in engineering Vol. 87; no. 1-5; pp. 96 - 114 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Chichester, UK
          John Wiley & Sons, Ltd
    
        08.07.2011
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0029-5981 1097-0207 1097-0207  | 
| DOI | 10.1002/nme.2986 | 
Cover
| Abstract | This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic‐based split scheme along with the one‐equation Spalart–Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea. Copyright © 2010 John Wiley & Sons, Ltd. | 
    
|---|---|
| AbstractList | This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic-based split scheme along with the one-equation Spalart-Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea. This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic‐based split scheme along with the one‐equation Spalart–Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea. Copyright © 2010 John Wiley & Sons, Ltd.  | 
    
| Author | Sazonov, I. Nithiarasu, P. Saksono, P. H. Yeo, S. Y.  | 
    
| Author_xml | – sequence: 1 givenname: P. H. surname: Saksono fullname: Saksono, P. H. organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K – sequence: 2 givenname: P. surname: Nithiarasu fullname: Nithiarasu, P. email: P.Nithiarasu@swansea.ac.uk organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K – sequence: 3 givenname: I. surname: Sazonov fullname: Sazonov, I. organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K – sequence: 4 givenname: S. Y. surname: Yeo fullname: Yeo, S. Y. organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24260850$$DView record in Pascal Francis | 
    
| BookMark | eNp1kdtqFEEQhhuJ4CYKPkLfCN7M2oedntlLWWIMJNELD-BNU9NTbTr29Ez6kHXfwMd2kg0Lil4VVH31V_H_x-QojAEJecnZkjMm3oQBl2Ldqidkwdm6qZhgzRFZzKN1Va9b_owcp3TDGOc1kwvyazMOU8mQ3RjAU-vHLU259A4TdYECTaW7QZOrNKFx1hl6XQYItEwTRgoubmFHS3Lh-8zOn1R4Wx7EaC6xKx6DQTqMPfolPQ_Wl4fGaGm-RhogzTcN3Lm8e06eWvAJXzzWE_L53emnzfvq4sPZ-ebtRWWkUqrqjQClWqE67JUEXgvem050TNV1y5iRuALbdL3tOzBWYt9bIVuw0BlplVjJE_J6rzvF8bZgynpwyaD3EHAsSXMmRNsIztSMvnpEIRnwNkIwLukpugHiTouVUKydXTxImjimFNEeEM70fSh6DkXfhzKjy79Q4_bm5wjO_2uh2i9sncfdf4X11eXpn7xLGX8eeIg_tGpkU-uvV2e6_SLX3z5eKr2RvwEM-LHH | 
    
| CODEN | IJNMBH | 
    
| CitedBy_id | crossref_primary_10_1115_1_4005158 crossref_primary_10_4193_RHINOL_21_053 crossref_primary_10_1016_j_compbiomed_2015_12_003 crossref_primary_10_1016_j_jaerosci_2020_105649 crossref_primary_10_1002_cnm_3144 crossref_primary_10_1002_cnm_3112 crossref_primary_10_1002_cnm_1446 crossref_primary_10_1002_cnm_2854 crossref_primary_10_1016_j_resp_2016_09_002 crossref_primary_10_1016_j_cmpb_2019_105036 crossref_primary_10_1007_s11427_013_4448_6 crossref_primary_10_1016_j_jaerosci_2018_05_008  | 
    
| Cites_doi | 10.1090/S0025-5718-1968-0242392-2 10.1152/japplphysiol.00364.2005 10.1002/cnm.1205 10.1002/nme.1698 10.1016/j.medengphy.2006.08.017 10.1016/j.jaerosci.2008.11.007 10.1016/j.jaerosci.2006.09.008 10.1016/j.jaerosci.2007.03.003 10.1002/fld.682 10.1016/0021-8502(92)90008-J 10.1016/j.compbiomed.2008.01.014 10.1002/nme.712 10.1002/fld.987 10.1007/s10439-010-9951-3 10.1002/cnm.939 10.1115/1.2838041 10.1016/j.compfluid.2007.05.001 10.1093/oxfordjournals.rpd.a081072 10.1002/cnm.1117 10.1016/j.jaerosci.2007.11.007 10.1115/1.2133762 10.1016/j.cma.2005.11.004 10.1002/fld.1802 10.2514/6.1992-439 10.1108/09615539810201839 10.1016/j.medengphy.2004.02.008 10.1016/j.smrv.2008.09.008 10.1016/j.resp.2007.02.006 10.1145/218380.218473 10.1098/rsif.2009.0306 10.1002/nme.1620310607 10.1016/j.resp.2008.07.027 10.1016/S0021-8502(99)00547-9 10.1016/j.resp.2008.07.002 10.1152/japplphysiol.90376.2008 10.1002/cnm.894 10.1002/(SICI)1097-0207(19960229)39:4<549::AID-NME868>3.0.CO;2-O 10.1002/fld.1805 10.1016/j.jbiomech.2008.04.013 10.1002/fld.544 10.1080/08958370701271704 10.1007/s10439-006-9184-7 10.1007/s10439-006-9094-8 10.1007/s00348-004-0857-4 10.1016/j.cma.2005.05.037 10.1098/rsta.2008.0295 10.1016/j.jbiomech.2009.03.035 10.1016/j.cma.2005.10.028 10.1016/j.jaerosci.2007.02.002 10.1016/j.cma.2004.09.017 10.1016/j.jbiomech.2005.06.021 10.1089/jam.1996.9.409 10.1152/japplphysiol.01118.2006 10.1002/nme.1620371203 10.1089/jamp.2007.0651 10.1002/cnm.1290 10.1016/j.jbiomech.2005.10.009 10.1243/09544119JEIM330 10.1007/s10439-008-9620-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2010 John Wiley & Sons, Ltd. 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS  | 
    
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1002/nme.2986 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering Mathematics Physics  | 
    
| EISSN | 1097-0207 | 
    
| EndPage | 114 | 
    
| ExternalDocumentID | 24260850 10_1002_nme_2986 NME2986 ark_67375_WNG_8V39ZPM6_C  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION .4S 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK IQODW M6O PALCI RIWAO SAMSI VH1 VOH ZY4 ~A~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c3666-dc2a66826bed63a1521dcb2b0655800c3e4af7bdfdbacf3eddf238afabc3f6243 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0029-5981 1097-0207  | 
    
| IngestDate | Fri Sep 05 10:38:48 EDT 2025 Mon Jul 21 09:14:50 EDT 2025 Wed Oct 01 05:10:29 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Wed Aug 20 07:26:44 EDT 2025 Sun Sep 21 06:22:03 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1-5 | 
    
| Keywords | Turbulent flow Upper respiratory tract Steady flow Inlet flow Respiratory system Automatic mesh generation Modeling Finite element method CBS subject-specific Larynx Localization Steady state solution Trachea Mesh generation Human Method of characteristics nose Unstructured mesh Flow rate Fluid dynamics one-equation turbulence Bifurcation Fractional step method Computerized tomography Air flow human upper airway Recirculating flow Truncated shape Nasal fossa  | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3666-dc2a66826bed63a1521dcb2b0655800c3e4af7bdfdbacf3eddf238afabc3f6243 | 
    
| Notes | istex:314587F182D751453D56E13B89A2F0C6D1D520B8 ArticleID:NME2986 ark:/67375/WNG-8V39ZPM6-C Professor. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1022872106 | 
    
| PQPubID | 23500 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | proquest_miscellaneous_1022872106 pascalfrancis_primary_24260850 crossref_primary_10_1002_nme_2986 crossref_citationtrail_10_1002_nme_2986 wiley_primary_10_1002_nme_2986_NME2986 istex_primary_ark_67375_WNG_8V39ZPM6_C  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-07-08 | 
    
| PublicationDateYYYYMMDD | 2011-07-08 | 
    
| PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-08 day: 08  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Chichester, UK | 
    
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester  | 
    
| PublicationTitle | International journal for numerical methods in engineering | 
    
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng | 
    
| PublicationYear | 2011 | 
    
| Publisher | John Wiley & Sons, Ltd Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley  | 
    
| References | Shi H, Kleinstreuer C, Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. Journal of Aerosol Science 2007; 38(4):398-419. Hassan O, Morgan K, Probert EJ, Peraire J. Unstructured tetrahedral mesh generation for three-dimensional viscous flows. International Journal for Numerical Methods in Engineering 1996; 39(4):549-567. Mansour KF, Rowley JA, Badr MS. Measurement of pharyngeal cross-sectional area by finite element analysis. Journal of Applied Physiology 2006; 100(1):294-303. Mihaescu M, Murugappan S, Kalra M, Khosla S, Gutmark E. Large eddy simulation and Reynolds-averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. Journal of Biomechanics 2008; 41(10):2279-2288. Aittokallio T, Virkki A, Polo O. Understanding sleep-disordered breathing through mathematical modelling. Sleep Medicine Reviews 2009; 13(5):333-343. Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respiratory Physiology and Neurobiology 2007; 157(2-3):295-309. Soni B, Lindley C, Thompson D. The combined effects of non-planarity and asymmetry on primary and secondary flows in the small bronchial tubes. International Journal for Numerical Methods in Fluids 2009; 59(2):117-146. Nithiarasu P, liu C-B, Massarotti N. Laminar and turbulent flow through a model human upper airway. Communications in Numerical Methods in Engineering 2007; 23:1057-1069. Croce C, Fodil R, Durand M, Sbirlea-Apiou G, Caillibotte G, Papon JF, Blondeau JR, Coste A, Isabey D, Louis B. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Annals of Biomedical Engineering 2006; 34(6):997-1007. Nithiarasu P, Zienkiewicz OC. Analysis of an explicit and matrix free fractional step method for incompressible flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:5537-5551. Nithiarasu P. An efficient artificial compressibility (ac) scheme based on the characteristic based split (cbs) method for incompressible flows. International Journal for Numerical Methods in Fluids 2003; 56:1815-1845. Ma B, Lutchen KR. CFD Simulation of aerosol deposition in an anatomically based human large-medium airway model. Annals of Biomedical Engineering 2009; 37(2):271-285. Jayaraju ST, Brouns M, Verbanck S, Lacor C. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. Journal of Aerosol Science 2007; 38:494-508. Longest PW, Vinchurkar S. Inertial deposition of aerosols in bifurcating models during steady expiratory flow. Journal of Aerosol Science 2009; 40(4):370-378. Sazonov I, Saksono PH, Nithiarasu P, Luckraz H, van Loon R. Patient-specific modelling of heamodynamics in aorta with an aneurysm. International Journal for Numerical Methods in Biomedical Engineering 2010; under review. Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (cbs) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546. Garcia GJM, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. Journal of Applied Physiology 2007; 103(3):1082-1092. Chitra K, Vengadesan S, Sundararajan T, Nithiarasu P. An investigation of pulsatile flow in a model cavo-pulmonary vascular system. Communications in Numerical Methods in Engineering 2009; 25:1061-1083. Wang DS, Hassan O, Morgan K, Weatherill NP. Eqsm: an efficient high quality surface grid generation method based on remeshing. Computer Methods in Applied Mechanics and Engineering 2006; 195:5621-5633. Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH. On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Journal of Aerosol Science 2000; 31(6):739-749. Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Computers and Fluids 2008; 37(3):317-331. Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respiratory Physiology and Neurobiology 2008; 163(1-3):100-110. Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417. Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Journal of Biomechanics 2009; 42(10):1553-1559. Löhner R, Cebral J, Soto O, Yim P, Burgess JE. Applications of patient-specific cfd in medicine and life sciences. International Journal for Numerical Methods in Fluids 2003; 43:637-650. Yeo SY, Xie X, Sazonov I, Nithiarasu P. Geometrically induced force interaction for three-dimensional deformable modeling. IEEE Transactions on Image Processing 2010; submitted. Madasu S, Ullman JS, Borhan A. Comparison of axisymmetric and three-dimensional models for gas uptake in a single bifurcation during steady expiration. Journal of Biomechanical Engineering-Transactions of the ASME 2008; 130(1). Fourteenth Annual Conference of the CFD-Society-of-Canada, Kingston, Canada, 16-18 July 2006. Nithiarasu P, Liu C-B. An explicit characteristic based split (cbs) scheme for incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:2961-2982. Jeong S-J, Kim W-S, Sung S-J. Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Medical Engineering and Physics 2007; 29(6):637-651. Jin HH, Fan JR, Zeng MJ, Cen KF. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. Journal of Aerosol Science 2007; 38(3):257-268. Inthavong K, Wen H, Tian Z, Tu J. Numerical study of fibre deposition in a human nasal cavity. Journal of Aerosol Science 2008; 39(3):253-265. Madasu S, Borhan A, Ultman J. Gas uptake in a three-generation model geometry with a flat inlet velocity during steady inspiration: comparison of axisymmetric and three-dimensional models. Inhalation Toxicology 2007; 19(6-7):495-503. Malve M, del Palomar AP, Lopez-Villalobos JL, Ginel A, Doblare M. FSI analysis of the coughing mechanism in a human trachea. Annals of Biomedical Engineering 2010; 38:1556-1565. Frey WH, Field DA. Mesh relaxation: a new technique for improving triangulation. International Journal for Numerical Methods in Engineering 1991; 31:1121-1133. Nithiarasu P, Seetharamu KN, Sundararajan T. Finite element analysis of transient natural convection in an odd-shapped enclosure. International Journal of Numerical Methods for Heat and Fluid Flow 1998; 8:199-216. Darquenne C, Harrington L, Prisk GK. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Physiological Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences 2009; 367(1896):2333-2346. Nithiarasu P. An arbitrary lagrangian Eulerian (ale) method for free surface flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2005; 48:1415-1428. Farkas A, Balashazy I. Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Computers in Biology and Medicine 2008; 38(4):508-518. Sung S-J, Jeong S-J, Yu Y-S, Hwang C-J, Pae E-K. Customized three-dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea. Angle Orthodontist 2006; 76(5):791-799. Peterson JB, Prisk GK, Darquenne C. Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2008; 21(2):159-168. Madasu S, Borhan A, Ultman JS. An axisymmetric single-path model for gas transport in the conducting airways. Journal of Biomechanical Engineering-Transactions of the ASME 2006; 128(1):69-75. Wang DS, Hassan O, Morgan K, Weatherill NP. Enhanced remeshing from stl files with applications to surface grid generation. Communications in Numerical Methods in Engineering 2007; 23:227-239. Nithiarasu P, Mathur JS, Weatherill NP, Morgan K. Three-dimensional incompressible flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2004; 44:1207-1229. Radaelli AG, Peiró J. On the segmentation of vascular geometries from medical images. International Journal for Numerical Methods in Biomedical Engineering 2010; 26:3-34. Weatherill NP, Hassan O. Efficient 3-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37(12):2005-2039. Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden P, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57(5):631-651. Hofmann W, Balashazy I. Particle deposition patterns within airway bifurcations-solution of the 3d Navier Stokes equation. Radiation Protection Dosimetry 1991; 38:57-63. Xu C, Sin S, McDonough JM, Udupa JK, Guez A, Arens R, Wootton DM. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. Journal of Biomechanics 2006; 39(11):2043-2054. Luo XY, Hinton JS, Liew TT, Tan KK. LES modelling of flow in a simple airway model. Medical Engineering and Physics 2004; 26(5):403-413. Johnstone A, Uddin M, Pollard A, Heenan A, Finlay WH. The flow inside an idealised form of the human extra-thoracic airway. Experiments in Fluids 2004; 37(5):673-689. Doorly D, Taylor DJ 2007; 103 2009; 40 1996; 39 2009; 42 2006; 34 2006; 76 2006; 39 2004; 26 2008; 38 2008; 39 2008; 37 2008; 222 1968; 22 2007; 38 2003; 56 2007; 29 2009; 13 2010; 26 2006; 66 2004; 37 2008; 24 2008; 21 1994; 37 2006; 128 2007; 23 2009; 367 2010; 7 2009; 59 1996; 9 2003; 43 2004; 44 2007; 19 2009; 25 1991; 38 2010; 38 2010 1991; 31 2006; 195 2008; 57 1995 1992 2005; 48 2008; 163 2007; 157 2000; 31 2008; 41 1992; 23 2008; 130 2009; 37 2006; 100 2009; 106 1998; 8 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_64_2 e_1_2_8_62_2 e_1_2_8_60_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_34_2 e_1_2_8_59_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_57_2 e_1_2_8_30_2 e_1_2_8_55_2 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_53_2 e_1_2_8_51_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 Sazonov I (e_1_2_8_54_2) 2010 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_4_2 Yeo SY (e_1_2_8_43_2) 2010 e_1_2_8_6_2 e_1_2_8_8_2 Sung S‐J (e_1_2_8_13_2) 2006; 76 e_1_2_8_42_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_61_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_50_2  | 
    
| References_xml | – reference: Nithiarasu P, Seetharamu KN, Sundararajan T. Finite element analysis of transient natural convection in an odd-shapped enclosure. International Journal of Numerical Methods for Heat and Fluid Flow 1998; 8:199-216. – reference: Inthavong K, Wen H, Tian Z, Tu J. Numerical study of fibre deposition in a human nasal cavity. Journal of Aerosol Science 2008; 39(3):253-265. – reference: Mihaescu M, Murugappan S, Kalra M, Khosla S, Gutmark E. Large eddy simulation and Reynolds-averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. Journal of Biomechanics 2008; 41(10):2279-2288. – reference: Aittokallio T, Virkki A, Polo O. Understanding sleep-disordered breathing through mathematical modelling. Sleep Medicine Reviews 2009; 13(5):333-343. – reference: Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respiratory Physiology and Neurobiology 2007; 157(2-3):295-309. – reference: Löhner R, Cebral J, Soto O, Yim P, Burgess JE. Applications of patient-specific cfd in medicine and life sciences. International Journal for Numerical Methods in Fluids 2003; 43:637-650. – reference: Radaelli AG, Peiró J. On the segmentation of vascular geometries from medical images. International Journal for Numerical Methods in Biomedical Engineering 2010; 26:3-34. – reference: Weatherill NP, Hassan O. Efficient 3-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37(12):2005-2039. – reference: Mansour KF, Rowley JA, Badr MS. Measurement of pharyngeal cross-sectional area by finite element analysis. Journal of Applied Physiology 2006; 100(1):294-303. – reference: Croce C, Fodil R, Durand M, Sbirlea-Apiou G, Caillibotte G, Papon JF, Blondeau JR, Coste A, Isabey D, Louis B. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Annals of Biomedical Engineering 2006; 34(6):997-1007. – reference: Nithiarasu P. An efficient artificial compressibility (ac) scheme based on the characteristic based split (cbs) method for incompressible flows. International Journal for Numerical Methods in Fluids 2003; 56:1815-1845. – reference: Sazonov I, Hassan D, Wang D, Morgan KK, Weatherill N. A stitching method for the generation of unstructured meshes for use with co-volume solution techniques. Computer Methods in Applied Mechanics and Engineering 2006; 195:1826-1845. – reference: Jeong S-J, Kim W-S, Sung S-J. Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Medical Engineering and Physics 2007; 29(6):637-651. – reference: Soni B, Lindley C, Thompson D. The combined effects of non-planarity and asymmetry on primary and secondary flows in the small bronchial tubes. International Journal for Numerical Methods in Fluids 2009; 59(2):117-146. – reference: Yeo SY, Xie X, Sazonov I, Nithiarasu P. Geometrically induced force interaction for three-dimensional deformable modeling. IEEE Transactions on Image Processing 2010; submitted. – reference: Sazonov I, Saksono PH, Nithiarasu P, Luckraz H, van Loon R. Patient-specific modelling of heamodynamics in aorta with an aneurysm. International Journal for Numerical Methods in Biomedical Engineering 2010; under review. – reference: Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417. – reference: Wang DS, Hassan O, Morgan K, Weatherill NP. Enhanced remeshing from stl files with applications to surface grid generation. Communications in Numerical Methods in Engineering 2007; 23:227-239. – reference: Madasu S, Ullman JS, Borhan A. Comparison of axisymmetric and three-dimensional models for gas uptake in a single bifurcation during steady expiration. Journal of Biomechanical Engineering-Transactions of the ASME 2008; 130(1). Fourteenth Annual Conference of the CFD-Society-of-Canada, Kingston, Canada, 16-18 July 2006. – reference: Yang XL, Liu Y, Luo HY. Respiratory flow in obstructed airways. Journal of Biomechanics 2006; 39(15):2743-2751. – reference: Nithiarasu P, liu C-B, Massarotti N. Laminar and turbulent flow through a model human upper airway. Communications in Numerical Methods in Engineering 2007; 23:1057-1069. – reference: Chitra K, Vengadesan S, Sundararajan T, Nithiarasu P. An investigation of pulsatile flow in a model cavo-pulmonary vascular system. Communications in Numerical Methods in Engineering 2009; 25:1061-1083. – reference: Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respiratory Physiology and Neurobiology 2008; 163(1-3):100-110. – reference: Madasu S, Borhan A, Ultman JS. An axisymmetric single-path model for gas transport in the conducting airways. Journal of Biomechanical Engineering-Transactions of the ASME 2006; 128(1):69-75. – reference: Hofmann W, Balashazy I. Particle deposition patterns within airway bifurcations-solution of the 3d Navier Stokes equation. Radiation Protection Dosimetry 1991; 38:57-63. – reference: Shi H, Kleinstreuer C, Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. Journal of Aerosol Science 2007; 38(4):398-419. – reference: Nithiarasu P, Liu C-B. An explicit characteristic based split (cbs) scheme for incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:2961-2982. – reference: Nithiarasu P, Zienkiewicz OC. Analysis of an explicit and matrix free fractional step method for incompressible flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:5537-5551. – reference: Wang DS, Hassan O, Morgan K, Weatherill NP. Eqsm: an efficient high quality surface grid generation method based on remeshing. Computer Methods in Applied Mechanics and Engineering 2006; 195:5621-5633. – reference: Darquenne C, Harrington L, Prisk GK. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Physiological Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences 2009; 367(1896):2333-2346. – reference: Frey WH, Field DA. Mesh relaxation: a new technique for improving triangulation. International Journal for Numerical Methods in Engineering 1991; 31:1121-1133. – reference: Jin HH, Fan JR, Zeng MJ, Cen KF. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. Journal of Aerosol Science 2007; 38(3):257-268. – reference: Garcia GJM, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. Journal of Applied Physiology 2007; 103(3):1082-1092. – reference: Farkas A, Balashazy I. Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Computers in Biology and Medicine 2008; 38(4):508-518. – reference: Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH. On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Journal of Aerosol Science 2000; 31(6):739-749. – reference: Longest PW, Vinchurkar S. Inertial deposition of aerosols in bifurcating models during steady expiratory flow. Journal of Aerosol Science 2009; 40(4):370-378. – reference: Sung S-J, Jeong S-J, Yu Y-S, Hwang C-J, Pae E-K. Customized three-dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea. Angle Orthodontist 2006; 76(5):791-799. – reference: Taylor DJ, Doorly DJ, Schroter RC. Inflow boundary profile prescription for numerical simulation of nasal airflow. Journal of the Royal Society Interface 2010; 7:515-527. – reference: Martonen TB, Zhang Z, Yang Y. Interspecies modeling of inhaled particle deposition patterns. Journal of Aerosol Science 1992; 23(4):389-406. – reference: Nithiarasu P, Mathur JS, Weatherill NP, Morgan K. Three-dimensional incompressible flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2004; 44:1207-1229. – reference: Xu C, Sin S, McDonough JM, Udupa JK, Guez A, Arens R, Wootton DM. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. Journal of Biomechanics 2006; 39(11):2043-2054. – reference: Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Computers and Fluids 2008; 37(3):317-331. – reference: Madasu S, Borhan A, Ultman J. Gas uptake in a three-generation model geometry with a flat inlet velocity during steady inspiration: comparison of axisymmetric and three-dimensional models. Inhalation Toxicology 2007; 19(6-7):495-503. – reference: Ma B, Lutchen KR. CFD Simulation of aerosol deposition in an anatomically based human large-medium airway model. Annals of Biomedical Engineering 2009; 37(2):271-285. – reference: Ma B, Lutchen KR. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Annals of Biomedical Engineering 2006; 34(11):1691-1704. – reference: Perzl MA, Schulz H, Paretzke HG, Englmeier KH, Heyder J. Reconstruction of the lung geometry for the simulation of aerosol transport. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung 1996; 9(3):409-418. Symposium on Frontiers in Aerosol Deposition Modeling, at the 10th International Congress of the International-Society-for-Aeorsols-in-Medicine, Hamilton, Canada, 15 May 1995. – reference: Liu Y, Johnson MR, Matida EA, Kherani S, Marsan J. Creation of a standardized geometry of the human nasal cavity. Journal of Applied Physiology 2009; 106(3):784-795. – reference: Luo XY, Hinton JS, Liew TT, Tan KK. LES modelling of flow in a simple airway model. Medical Engineering and Physics 2004; 26(5):403-413. – reference: Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (cbs) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546. – reference: Peterson JB, Prisk GK, Darquenne C. Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2008; 21(2):159-168. – reference: Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden P, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57(5):631-651. – reference: Nithiarasu P. An arbitrary lagrangian Eulerian (ale) method for free surface flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2005; 48:1415-1428. – reference: Johnstone A, Uddin M, Pollard A, Heenan A, Finlay WH. The flow inside an idealised form of the human extra-thoracic airway. Experiments in Fluids 2004; 37(5):673-689. – reference: Doorly D, Taylor DJ, Franke P, Schroter RC. Experimental investigation of nasal airflow. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 2008; 222(H4):439-453. – reference: Jayaraju ST, Brouns M, Verbanck S, Lacor C. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. Journal of Aerosol Science 2007; 38:494-508. – reference: Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Journal of Biomechanics 2009; 42(10):1553-1559. – reference: Hassan O, Morgan K, Probert EJ, Peraire J. Unstructured tetrahedral mesh generation for three-dimensional viscous flows. International Journal for Numerical Methods in Engineering 1996; 39(4):549-567. – reference: Malve M, del Palomar AP, Lopez-Villalobos JL, Ginel A, Doblare M. FSI analysis of the coughing mechanism in a human trachea. Annals of Biomedical Engineering 2010; 38:1556-1565. – reference: Kleinstreuer C, Zhang Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respiratory Physiology and Neurobiology 2008; 163(1-3):128-138. – reference: Chorin AJ. Numerical solution of Navier-Stokes equations. Mathematical Computation 1968; 22:745-762. – volume: 42 start-page: 1553 issue: 10 year: 2009 end-page: 1559 article-title: Validation of computational fluid dynamics methodology used for human upper airway flow simulations publication-title: Journal of Biomechanics – year: 2010 article-title: Patient‐specific modelling of heamodynamics in aorta with an aneurysm publication-title: International Journal for Numerical Methods in Biomedical Engineering – volume: 38 start-page: 508 issue: 4 year: 2008 end-page: 518 article-title: Quantification of particle deposition in asymmetrical tracheobronchial model geometry publication-title: Computers in Biology and Medicine – volume: 37 start-page: 271 issue: 2 year: 2009 end-page: 285 article-title: CFD Simulation of aerosol deposition in an anatomically based human large‐medium airway model publication-title: Annals of Biomedical Engineering – volume: 57 start-page: 631 issue: 5 year: 2008 end-page: 651 article-title: Steady flow through a realistic human upper airway geometry publication-title: International Journal for Numerical Methods in Fluids – volume: 39 start-page: 2043 issue: 11 year: 2006 end-page: 2054 article-title: Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow publication-title: Journal of Biomechanics – volume: 34 start-page: 997 issue: 6 year: 2006 end-page: 1007 article-title: In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry publication-title: Annals of Biomedical Engineering – volume: 76 start-page: 791 issue: 5 year: 2006 end-page: 799 article-title: Customized three‐dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea publication-title: Angle Orthodontist – volume: 38 start-page: 1556 year: 2010 end-page: 1565 article-title: FSI analysis of the coughing mechanism in a human trachea publication-title: Annals of Biomedical Engineering – volume: 25 start-page: 1061 year: 2009 end-page: 1083 article-title: An investigation of pulsatile flow in a model cavo‐pulmonary vascular system publication-title: Communications in Numerical Methods in Engineering – volume: 7 start-page: 515 year: 2010 end-page: 527 article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow publication-title: Journal of the Royal Society Interface – volume: 195 start-page: 2961 year: 2006 end-page: 2982 article-title: An explicit characteristic based split (cbs) scheme for incompressible turbulent flows publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 24 start-page: 367 year: 2008 end-page: 417 article-title: A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (lcg) method publication-title: Communications in Numerical Methods in Engineering – volume: 66 start-page: 1514 year: 2006 end-page: 1546 article-title: The characteristic based split (cbs) scheme—a unified approach to fluid dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 13 start-page: 333 issue: 5 year: 2009 end-page: 343 article-title: Understanding sleep‐disordered breathing through mathematical modelling publication-title: Sleep Medicine Reviews – volume: 31 start-page: 1121 year: 1991 end-page: 1133 article-title: Mesh relaxation: a new technique for improving triangulation publication-title: International Journal for Numerical Methods in Engineering – volume: 367 start-page: 2333 issue: 1896 year: 2009 end-page: 2346 article-title: Alveolar duct expansion greatly enhances aerosol deposition: a three‐dimensional computational fluid dynamics study publication-title: Physiological Transactions of the Royal Society A—Mathematical, Physical and Engineering Sciences – volume: 38 start-page: 398 issue: 4 year: 2007 end-page: 419 article-title: Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness publication-title: Journal of Aerosol Science – volume: 40 start-page: 370 issue: 4 year: 2009 end-page: 378 article-title: Inertial deposition of aerosols in bifurcating models during steady expiratory flow publication-title: Journal of Aerosol Science – volume: 23 start-page: 227 year: 2007 end-page: 239 article-title: Enhanced remeshing from stl files with applications to surface grid generation publication-title: Communications in Numerical Methods in Engineering – volume: 26 start-page: 403 issue: 5 year: 2004 end-page: 413 article-title: LES modelling of flow in a simple airway model publication-title: Medical Engineering and Physics – volume: 23 start-page: 1057 year: 2007 end-page: 1069 article-title: Laminar and turbulent flow through a model human upper airway publication-title: Communications in Numerical Methods in Engineering – volume: 8 start-page: 199 year: 1998 end-page: 216 article-title: Finite element analysis of transient natural convection in an odd‐shapped enclosure publication-title: International Journal of Numerical Methods for Heat and Fluid Flow – year: 2010 article-title: Geometrically induced force interaction for three‐dimensional deformable modeling publication-title: IEEE Transactions on Image Processing – volume: 38 start-page: 257 issue: 3 year: 2007 end-page: 268 article-title: Large eddy simulation of inhaled particle deposition within the human upper respiratory tract publication-title: Journal of Aerosol Science – volume: 100 start-page: 294 issue: 1 year: 2006 end-page: 303 article-title: Measurement of pharyngeal cross‐sectional area by finite element analysis publication-title: Journal of Applied Physiology – volume: 39 start-page: 2743 issue: 15 year: 2006 end-page: 2751 article-title: Respiratory flow in obstructed airways publication-title: Journal of Biomechanics – volume: 38 start-page: 494 year: 2007 end-page: 508 article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids publication-title: Journal of Aerosol Science – volume: 44 start-page: 1207 year: 2004 end-page: 1229 article-title: Three‐dimensional incompressible flow calculations using the characteristic based split (cbs) scheme publication-title: International Journal for Numerical Methods in Fluids – volume: 38 start-page: 57 year: 1991 end-page: 63 article-title: Particle deposition patterns within airway bifurcations—solution of the 3d Navier Stokes equation publication-title: Radiation Protection Dosimetry – volume: 195 start-page: 1826 year: 2006 end-page: 1845 article-title: A stitching method for the generation of unstructured meshes for use with co‐volume solution techniques publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 23 start-page: 389 issue: 4 year: 1992 end-page: 406 article-title: Interspecies modeling of inhaled particle deposition patterns publication-title: Journal of Aerosol Science – volume: 130 issue: 1 year: 2008 article-title: Comparison of axisymmetric and three‐dimensional models for gas uptake in a single bifurcation during steady expiration publication-title: Journal of Biomechanical Engineering—Transactions of the ASME – volume: 56 start-page: 1815 year: 2003 end-page: 1845 article-title: An efficient artificial compressibility (ac) scheme based on the characteristic based split (cbs) method for incompressible flows publication-title: International Journal for Numerical Methods in Fluids – volume: 103 start-page: 1082 issue: 3 year: 2007 end-page: 1092 article-title: Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity publication-title: Journal of Applied Physiology – volume: 157 start-page: 295 issue: 2–3 year: 2007 end-page: 309 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra‐thoracic airways publication-title: Respiratory Physiology and Neurobiology – volume: 31 start-page: 739 issue: 6 year: 2000 end-page: 749 article-title: On the suitability of k‐epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment publication-title: Journal of Aerosol Science – volume: 34 start-page: 1691 issue: 11 year: 2006 end-page: 1704 article-title: An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics publication-title: Annals of Biomedical Engineering – volume: 195 start-page: 5621 year: 2006 end-page: 5633 article-title: Eqsm: an efficient high quality surface grid generation method based on remeshing publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 222 start-page: 439 issue: H4 year: 2008 end-page: 453 article-title: Experimental investigation of nasal airflow publication-title: Proceedings of the Institution of Mechanical Engineers Part H—Journal of Engineering in Medicine – volume: 195 start-page: 5537 year: 2006 end-page: 5551 article-title: Analysis of an explicit and matrix free fractional step method for incompressible flows publication-title: Computer Methods in Applied Mechanics and Engineering – year: 1992 – volume: 59 start-page: 117 issue: 2 year: 2009 end-page: 146 article-title: The combined effects of non‐planarity and asymmetry on primary and secondary flows in the small bronchial tubes publication-title: International Journal for Numerical Methods in Fluids – volume: 21 start-page: 159 issue: 2 year: 2008 end-page: 168 article-title: Aerosol deposition in the human lung periphery is increased by reduced‐density gas breathing publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery – volume: 39 start-page: 253 issue: 3 year: 2008 end-page: 265 article-title: Numerical study of fibre deposition in a human nasal cavity publication-title: Journal of Aerosol Science – volume: 9 start-page: 409 issue: 3 year: 1996 end-page: 418 article-title: Reconstruction of the lung geometry for the simulation of aerosol transport publication-title: Journal of Aerosol Medicine‐Deposition Clearance and Effects in the Lung – volume: 39 start-page: 549 issue: 4 year: 1996 end-page: 567 article-title: Unstructured tetrahedral mesh generation for three‐dimensional viscous flows publication-title: International Journal for Numerical Methods in Engineering – volume: 26 start-page: 3 year: 2010 end-page: 34 article-title: On the segmentation of vascular geometries from medical images publication-title: International Journal for Numerical Methods in Biomedical Engineering – volume: 48 start-page: 1415 year: 2005 end-page: 1428 article-title: An arbitrary lagrangian Eulerian (ale) method for free surface flow calculations using the characteristic based split (cbs) scheme publication-title: International Journal for Numerical Methods in Fluids – volume: 19 start-page: 495 issue: 6–7 year: 2007 end-page: 503 article-title: Gas uptake in a three‐generation model geometry with a flat inlet velocity during steady inspiration: comparison of axisymmetric and three‐dimensional models publication-title: Inhalation Toxicology – volume: 37 start-page: 673 issue: 5 year: 2004 end-page: 689 article-title: The flow inside an idealised form of the human extra‐thoracic airway publication-title: Experiments in Fluids – volume: 41 start-page: 2279 issue: 10 year: 2008 end-page: 2288 article-title: Large eddy simulation and Reynolds‐averaged Navier–Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea publication-title: Journal of Biomechanics – volume: 128 start-page: 69 issue: 1 year: 2006 end-page: 75 article-title: An axisymmetric single‐path model for gas transport in the conducting airways publication-title: Journal of Biomechanical Engineering—Transactions of the ASME – volume: 106 start-page: 784 issue: 3 year: 2009 end-page: 795 article-title: Creation of a standardized geometry of the human nasal cavity publication-title: Journal of Applied Physiology – volume: 37 start-page: 317 issue: 3 year: 2008 end-page: 331 article-title: Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics publication-title: Computers and Fluids – start-page: 351 end-page: 358 – volume: 22 start-page: 745 year: 1968 end-page: 762 article-title: Numerical solution of Navier–Stokes equations publication-title: Mathematical Computation – volume: 43 start-page: 637 year: 2003 end-page: 650 article-title: Applications of patient‐specific cfd in medicine and life sciences publication-title: International Journal for Numerical Methods in Fluids – volume: 37 start-page: 2005 issue: 12 year: 1994 end-page: 2039 article-title: Efficient 3‐dimensional delaunay triangulation with automatic point creation and imposed boundary constraints publication-title: International Journal for Numerical Methods in Engineering – year: 1995 – volume: 163 start-page: 100 issue: 1–3 year: 2008 end-page: 110 article-title: Mechanics of airflow in the human nasal airways publication-title: Respiratory Physiology and Neurobiology – volume: 29 start-page: 637 issue: 6 year: 2007 end-page: 651 article-title: Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics publication-title: Medical Engineering and Physics – volume: 163 start-page: 128 issue: 1–3 year: 2008 end-page: 138 article-title: Modeling airflow and particle transport/deposition in pulmonary airways publication-title: Respiratory Physiology and Neurobiology – ident: e_1_2_8_62_2 doi: 10.1090/S0025-5718-1968-0242392-2 – ident: e_1_2_8_24_2 doi: 10.1152/japplphysiol.00364.2005 – ident: e_1_2_8_61_2 doi: 10.1002/cnm.1205 – ident: e_1_2_8_58_2 doi: 10.1002/nme.1698 – ident: e_1_2_8_14_2 doi: 10.1016/j.medengphy.2006.08.017 – ident: e_1_2_8_9_2 doi: 10.1016/j.jaerosci.2008.11.007 – ident: e_1_2_8_38_2 doi: 10.1016/j.jaerosci.2006.09.008 – ident: e_1_2_8_29_2 doi: 10.1016/j.jaerosci.2007.03.003 – ident: e_1_2_8_56_2 doi: 10.1002/fld.682 – ident: e_1_2_8_3_2 doi: 10.1016/0021-8502(92)90008-J – ident: e_1_2_8_6_2 doi: 10.1016/j.compbiomed.2008.01.014 – ident: e_1_2_8_55_2 doi: 10.1002/nme.712 – ident: e_1_2_8_57_2 doi: 10.1002/fld.987 – ident: e_1_2_8_64_2 doi: 10.1007/s10439-010-9951-3 – ident: e_1_2_8_20_2 doi: 10.1002/cnm.939 – ident: e_1_2_8_21_2 doi: 10.1115/1.2838041 – ident: e_1_2_8_25_2 doi: 10.1016/j.compfluid.2007.05.001 – ident: e_1_2_8_2_2 doi: 10.1093/oxfordjournals.rpd.a081072 – ident: e_1_2_8_60_2 doi: 10.1002/cnm.1117 – ident: e_1_2_8_7_2 doi: 10.1016/j.jaerosci.2007.11.007 – ident: e_1_2_8_18_2 doi: 10.1115/1.2133762 – ident: e_1_2_8_59_2 doi: 10.1016/j.cma.2005.11.004 – ident: e_1_2_8_22_2 doi: 10.1002/fld.1802 – ident: e_1_2_8_39_2 doi: 10.2514/6.1992-439 – ident: e_1_2_8_63_2 doi: 10.1108/09615539810201839 – ident: e_1_2_8_37_2 doi: 10.1016/j.medengphy.2004.02.008 – ident: e_1_2_8_16_2 doi: 10.1016/j.smrv.2008.09.008 – ident: e_1_2_8_28_2 doi: 10.1016/j.resp.2007.02.006 – ident: e_1_2_8_50_2 doi: 10.1145/218380.218473 – ident: e_1_2_8_35_2 doi: 10.1098/rsif.2009.0306 – ident: e_1_2_8_49_2 doi: 10.1002/nme.1620310607 – ident: e_1_2_8_34_2 doi: 10.1016/j.resp.2008.07.027 – ident: e_1_2_8_41_2 doi: 10.1016/S0021-8502(99)00547-9 – ident: e_1_2_8_4_2 doi: 10.1016/j.resp.2008.07.002 – ident: e_1_2_8_26_2 doi: 10.1152/japplphysiol.90376.2008 – ident: e_1_2_8_48_2 doi: 10.1002/cnm.894 – ident: e_1_2_8_52_2 doi: 10.1002/(SICI)1097-0207(19960229)39:4<549::AID-NME868>3.0.CO;2-O – ident: e_1_2_8_40_2 doi: 10.1002/fld.1805 – ident: e_1_2_8_15_2 doi: 10.1016/j.jbiomech.2008.04.013 – ident: e_1_2_8_53_2 doi: 10.1002/fld.544 – ident: e_1_2_8_19_2 doi: 10.1080/08958370701271704 – ident: e_1_2_8_27_2 doi: 10.1007/s10439-006-9184-7 – ident: e_1_2_8_30_2 doi: 10.1007/s10439-006-9094-8 – ident: e_1_2_8_17_2 doi: 10.1007/s00348-004-0857-4 – ident: e_1_2_8_46_2 doi: 10.1016/j.cma.2005.05.037 – ident: e_1_2_8_8_2 doi: 10.1098/rsta.2008.0295 – ident: e_1_2_8_36_2 doi: 10.1016/j.jbiomech.2009.03.035 – ident: e_1_2_8_45_2 – volume: 76 start-page: 791 issue: 5 year: 2006 ident: e_1_2_8_13_2 article-title: Customized three‐dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea publication-title: Angle Orthodontist – ident: e_1_2_8_47_2 doi: 10.1016/j.cma.2005.10.028 – ident: e_1_2_8_32_2 doi: 10.1016/j.jaerosci.2007.02.002 – ident: e_1_2_8_42_2 doi: 10.1016/j.cma.2004.09.017 – ident: e_1_2_8_11_2 doi: 10.1016/j.jbiomech.2005.06.021 – ident: e_1_2_8_23_2 doi: 10.1089/jam.1996.9.409 – ident: e_1_2_8_31_2 doi: 10.1152/japplphysiol.01118.2006 – ident: e_1_2_8_51_2 doi: 10.1002/nme.1620371203 – year: 2010 ident: e_1_2_8_54_2 article-title: Patient‐specific modelling of heamodynamics in aorta with an aneurysm publication-title: International Journal for Numerical Methods in Biomedical Engineering – ident: e_1_2_8_5_2 doi: 10.1089/jamp.2007.0651 – ident: e_1_2_8_44_2 doi: 10.1002/cnm.1290 – ident: e_1_2_8_12_2 doi: 10.1016/j.jbiomech.2005.10.009 – ident: e_1_2_8_33_2 doi: 10.1243/09544119JEIM330 – year: 2010 ident: e_1_2_8_43_2 article-title: Geometrically induced force interaction for three‐dimensional deformable modeling publication-title: IEEE Transactions on Image Processing – ident: e_1_2_8_10_2 doi: 10.1007/s10439-008-9620-y  | 
    
| SSID | ssj0011503 | 
    
| Score | 2.076916 | 
    
| Snippet | This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a... | 
    
| SourceID | proquest pascalfrancis crossref wiley istex  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 96 | 
    
| SubjectTerms | Air breathing Airways Biological and medical sciences CBS Computation Computational methods in fluid dynamics Exact sciences and technology finite element method Fluid dynamics Fundamental and applied biological sciences. Psychology Fundamental areas of phenomenology (including applications) Holes Human human upper airway Inlets larynx Mathematical models Mathematics Mesh generation Methods of scientific computing (including symbolic computation, algebraic computation) nose Numerical analysis. Scientific computation one-equation turbulence Physics Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics Sciences and techniques of general use subject-specific Trachea Vertebrates: respiratory system  | 
    
| Title | Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-8V39ZPM6-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.2986 https://www.proquest.com/docview/1022872106  | 
    
| Volume | 87 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0029-5981 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQe4EDLQXEFqgGCcEp202cONkjqloK0q4QolDBwfIvqlqy281GBU48AAeekSdhJk6iXQQS4hRFGsuOPWN_Mxl_w9hjhNSxzTIe8cS6KM1GJioKLaJcZ6lyCEi8p9vIk6k4PklfnmanbVYl3YUJ_BB9wI0so9mvycCVrvZXSEM_uWEyLohtO-ai8aZe98xRhHN4l92RjYu4450dJftdw7WTaJMm9TNlRqoKJ8eHqhZrsHMVvDanz9EW-9CNOySdnA_rpR6ar79ROv7fh22zmy0ohWdBi26xa67cYVstQIXW_KsddmOFvRDfJj3la3WbfQ_1IdrYIviL2RVUIUkRzkpQUNWaYj4_v_2g252UoQRNgUCo53O3AHW2uFJfgPLwP6L0rHQo6S4DEzngwajr5n4UNLV7hvCiq64CMw84DihVhf0aRcUw7rCTo8M3B8dRW-ohMhwdqMiaRAmBro52VnBFoMIanWgESBlCWsNdqnyurbdaGc-dtR6xhvJKG-5FkvK7bKPEkd1jIJLcWZfixoJYcUwOoDZx6mPr8LDGfgbsabfs0rQ86FSO40IGBudE4gJIWoABe9RLzgP3xx9knjSa0wuoxTnlyuWZfDd9Lou3fPz-1UTIgwHbW1OtvgFhJOINxN46XZNo4vTfRpVuVleSnPICPfUR9dZozl-HI6eTQ3ru_qvgfXY9RMnzaFQ8YBvLRe0eIsxa6r3GoH4BB90png | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKewAOFAqILaU1EoJTtrtx4mTFCVVtt9CsEGqhQpUs_6KqbXbZbFToiQfgwDPyJMzESbSLQEKcokhj2bHH9jeTmW8IeQaQum_imAUsNDaI4p4O0lTxIFFxJC0AEucwGzkb8eFx9PokPlkiL5tcGM8P0TrccGdU5zVucHRIb8-xhl7abjhI-Q2yEnEwUxARvWu5oxDpsCa-Ix6k_YZ5thduNy0X7qIVnNYvGBspC5ge5-taLADPefha3T97q-S0GbkPOznvljPV1de_kTr-56fdJXdqXEpfeUW6R5ZsvkZWa4xK6xOgWCO35wgM4S1rWV-L--S7LxFRuxepuxhf0cLHKdKznEpalArdPj-__cAETwxSolWNQFpOJnZK5dn0Sn6lGIr_CaTHuQVJ-9mTkVO4G1VZpUjRqnxPlx40BVbo2FEYB81lAf1qifUwHpDjvd2jnWFQV3sINAMbKjA6lJyDtaOs4UwirjBahQowUgyoVjMbSZco44yS2jFrjAO4IZ1UmjkeRuwhWc5hZI8I5WFijY3gbAG4OEAbUOl-5PrGwn0N_XTIi2bdha6p0LEix4XwJM6hgAUQuAAd8rSVnHj6jz_IPK9UpxWQ03MMl0ti8WG0L9L3bPDxbcbFTodsLuhW2wBhElIHQm-NsgnY5fjrRuZ2XBYC7fIUjPUe9lapzl-HI0bZLj7X_1Vwi9wcHmWH4vBg9OYxueWd5knQSzfI8mxa2ieAumZqs9pdvwB_0y2_ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9qC6IPVqviVa0riD7lepfNv8MnaXu26h1FrBYRlv0rpW3uvFyo-uQH8MHP6CdxJpuEO1EQn0LIhNnszuz-ZjP7G4BHCKn7Jo55wENjgyju6SDLVBKkKo6kRUDiHJ1GHo2T_aPoxXF8vAJPm7Mwnh-i3XAjz6jma3JwOzVue4E19Nx2w0GWXIK1KB5klM-3-7rljiKkw5v8Dnzcb5hne-F28-bSWrRG3fqZciNlgd3jfF2LJeC5CF-r9We4Dh-alvu0k9NuOVdd_fU3Usf__LTrcK3GpeyZN6QbsGLzDVivMSqrZ4BiA64uEBji3ahlfS1uwndfIqLeXmTubHLBCp-nyE5yJllRKtr2-fntBx3wpCQlVtUIZOV0amdMnswu5BdGqfgfUXqSW5S0nzwZOcO1UZXVESlWle_psoOmwAqbOIbtYLksUK-WVA_jFhwN997s7Ad1tYdAc4yhAqNDmSQY7ShrEi4JVxitQoUYKUZUq7mNpEuVcUZJ7bg1xiHckE4qzV0SRvw2rObYsjvAkjC1xkY4tyBcHFAMqHQ_cn1jcb1GPR140oy70DUVOlXkOBOexDkUOACCBqADD1vJqaf_-IPM48p0WgE5O6V0uTQW78bPRfaWD94fjhKx04GtJdtqXyCYRNSBqK0xNoFeTr9uZG4nZSEoLs8wWO-Rtsp0_tocMR7t0XXzXwUfwOXD3aF4dTB-eReu-D3zNOhl92B1PivtfQRdc7VVOdcv7MItQw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+flow+studies+in+a+subject%E2%80%90specific+human+upper+airway+using+a+one%E2%80%90equation+turbulence+model.+Influence+of+the+nasal+cavity&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Saksono%2C+P.+H.&rft.au=Nithiarasu%2C+P.&rft.au=Sazonov%2C+I.&rft.au=Yeo%2C+S.+Y.&rft.date=2011-07-08&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=87&rft.issue=1-5&rft.spage=96&rft.epage=114&rft_id=info:doi/10.1002%2Fnme.2986&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_2986 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |