Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity

This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 87; no. 1-5; pp. 96 - 114
Main Authors Saksono, P. H., Nithiarasu, P., Sazonov, I., Yeo, S. Y.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 08.07.2011
Wiley
Subjects
Online AccessGet full text
ISSN0029-5981
1097-0207
1097-0207
DOI10.1002/nme.2986

Cover

Abstract This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic‐based split scheme along with the one‐equation Spalart–Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic-based split scheme along with the one-equation Spalart-Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea.
This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic‐based split scheme along with the one‐equation Spalart–Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea. Copyright © 2010 John Wiley & Sons, Ltd.
Author Sazonov, I.
Nithiarasu, P.
Saksono, P. H.
Yeo, S. Y.
Author_xml – sequence: 1
  givenname: P. H.
  surname: Saksono
  fullname: Saksono, P. H.
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K
– sequence: 2
  givenname: P.
  surname: Nithiarasu
  fullname: Nithiarasu, P.
  email: P.Nithiarasu@swansea.ac.uk
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K
– sequence: 3
  givenname: I.
  surname: Sazonov
  fullname: Sazonov, I.
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K
– sequence: 4
  givenname: S. Y.
  surname: Yeo
  fullname: Yeo, S. Y.
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24260850$$DView record in Pascal Francis
BookMark eNp1kdtqFEEQhhuJ4CYKPkLfCN7M2oedntlLWWIMJNELD-BNU9NTbTr29Ez6kHXfwMd2kg0Lil4VVH31V_H_x-QojAEJecnZkjMm3oQBl2Ldqidkwdm6qZhgzRFZzKN1Va9b_owcp3TDGOc1kwvyazMOU8mQ3RjAU-vHLU259A4TdYECTaW7QZOrNKFx1hl6XQYItEwTRgoubmFHS3Lh-8zOn1R4Wx7EaC6xKx6DQTqMPfolPQ_Wl4fGaGm-RhogzTcN3Lm8e06eWvAJXzzWE_L53emnzfvq4sPZ-ebtRWWkUqrqjQClWqE67JUEXgvem050TNV1y5iRuALbdL3tOzBWYt9bIVuw0BlplVjJE_J6rzvF8bZgynpwyaD3EHAsSXMmRNsIztSMvnpEIRnwNkIwLukpugHiTouVUKydXTxImjimFNEeEM70fSh6DkXfhzKjy79Q4_bm5wjO_2uh2i9sncfdf4X11eXpn7xLGX8eeIg_tGpkU-uvV2e6_SLX3z5eKr2RvwEM-LHH
CODEN IJNMBH
CitedBy_id crossref_primary_10_1115_1_4005158
crossref_primary_10_4193_RHINOL_21_053
crossref_primary_10_1016_j_compbiomed_2015_12_003
crossref_primary_10_1016_j_jaerosci_2020_105649
crossref_primary_10_1002_cnm_3144
crossref_primary_10_1002_cnm_3112
crossref_primary_10_1002_cnm_1446
crossref_primary_10_1002_cnm_2854
crossref_primary_10_1016_j_resp_2016_09_002
crossref_primary_10_1016_j_cmpb_2019_105036
crossref_primary_10_1007_s11427_013_4448_6
crossref_primary_10_1016_j_jaerosci_2018_05_008
Cites_doi 10.1090/S0025-5718-1968-0242392-2
10.1152/japplphysiol.00364.2005
10.1002/cnm.1205
10.1002/nme.1698
10.1016/j.medengphy.2006.08.017
10.1016/j.jaerosci.2008.11.007
10.1016/j.jaerosci.2006.09.008
10.1016/j.jaerosci.2007.03.003
10.1002/fld.682
10.1016/0021-8502(92)90008-J
10.1016/j.compbiomed.2008.01.014
10.1002/nme.712
10.1002/fld.987
10.1007/s10439-010-9951-3
10.1002/cnm.939
10.1115/1.2838041
10.1016/j.compfluid.2007.05.001
10.1093/oxfordjournals.rpd.a081072
10.1002/cnm.1117
10.1016/j.jaerosci.2007.11.007
10.1115/1.2133762
10.1016/j.cma.2005.11.004
10.1002/fld.1802
10.2514/6.1992-439
10.1108/09615539810201839
10.1016/j.medengphy.2004.02.008
10.1016/j.smrv.2008.09.008
10.1016/j.resp.2007.02.006
10.1145/218380.218473
10.1098/rsif.2009.0306
10.1002/nme.1620310607
10.1016/j.resp.2008.07.027
10.1016/S0021-8502(99)00547-9
10.1016/j.resp.2008.07.002
10.1152/japplphysiol.90376.2008
10.1002/cnm.894
10.1002/(SICI)1097-0207(19960229)39:4<549::AID-NME868>3.0.CO;2-O
10.1002/fld.1805
10.1016/j.jbiomech.2008.04.013
10.1002/fld.544
10.1080/08958370701271704
10.1007/s10439-006-9184-7
10.1007/s10439-006-9094-8
10.1007/s00348-004-0857-4
10.1016/j.cma.2005.05.037
10.1098/rsta.2008.0295
10.1016/j.jbiomech.2009.03.035
10.1016/j.cma.2005.10.028
10.1016/j.jaerosci.2007.02.002
10.1016/j.cma.2004.09.017
10.1016/j.jbiomech.2005.06.021
10.1089/jam.1996.9.409
10.1152/japplphysiol.01118.2006
10.1002/nme.1620371203
10.1089/jamp.2007.0651
10.1002/cnm.1290
10.1016/j.jbiomech.2005.10.009
10.1243/09544119JEIM330
10.1007/s10439-008-9620-y
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.2986
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 114
ExternalDocumentID 24260850
10_1002_nme_2986
NME2986
ark_67375_WNG_8V39ZPM6_C
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3666-dc2a66826bed63a1521dcb2b0655800c3e4af7bdfdbacf3eddf238afabc3f6243
IEDL.DBID DR2
ISSN 0029-5981
1097-0207
IngestDate Fri Sep 05 10:38:48 EDT 2025
Mon Jul 21 09:14:50 EDT 2025
Wed Oct 01 05:10:29 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Wed Aug 20 07:26:44 EDT 2025
Sun Sep 21 06:22:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-5
Keywords Turbulent flow
Upper respiratory tract
Steady flow
Inlet flow
Respiratory system
Automatic mesh generation
Modeling
Finite element method
CBS
subject-specific
Larynx
Localization
Steady state solution
Trachea
Mesh generation
Human
Method of characteristics
nose
Unstructured mesh
Flow rate
Fluid dynamics
one-equation turbulence
Bifurcation
Fractional step method
Computerized tomography
Air flow
human upper airway
Recirculating flow
Truncated shape
Nasal fossa
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3666-dc2a66826bed63a1521dcb2b0655800c3e4af7bdfdbacf3eddf238afabc3f6243
Notes istex:314587F182D751453D56E13B89A2F0C6D1D520B8
ArticleID:NME2986
ark:/67375/WNG-8V39ZPM6-C
Professor.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1022872106
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1022872106
pascalfrancis_primary_24260850
crossref_primary_10_1002_nme_2986
crossref_citationtrail_10_1002_nme_2986
wiley_primary_10_1002_nme_2986_NME2986
istex_primary_ark_67375_WNG_8V39ZPM6_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-08
PublicationDateYYYYMMDD 2011-07-08
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-08
  day: 08
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Shi H, Kleinstreuer C, Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. Journal of Aerosol Science 2007; 38(4):398-419.
Hassan O, Morgan K, Probert EJ, Peraire J. Unstructured tetrahedral mesh generation for three-dimensional viscous flows. International Journal for Numerical Methods in Engineering 1996; 39(4):549-567.
Mansour KF, Rowley JA, Badr MS. Measurement of pharyngeal cross-sectional area by finite element analysis. Journal of Applied Physiology 2006; 100(1):294-303.
Mihaescu M, Murugappan S, Kalra M, Khosla S, Gutmark E. Large eddy simulation and Reynolds-averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. Journal of Biomechanics 2008; 41(10):2279-2288.
Aittokallio T, Virkki A, Polo O. Understanding sleep-disordered breathing through mathematical modelling. Sleep Medicine Reviews 2009; 13(5):333-343.
Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respiratory Physiology and Neurobiology 2007; 157(2-3):295-309.
Soni B, Lindley C, Thompson D. The combined effects of non-planarity and asymmetry on primary and secondary flows in the small bronchial tubes. International Journal for Numerical Methods in Fluids 2009; 59(2):117-146.
Nithiarasu P, liu C-B, Massarotti N. Laminar and turbulent flow through a model human upper airway. Communications in Numerical Methods in Engineering 2007; 23:1057-1069.
Croce C, Fodil R, Durand M, Sbirlea-Apiou G, Caillibotte G, Papon JF, Blondeau JR, Coste A, Isabey D, Louis B. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Annals of Biomedical Engineering 2006; 34(6):997-1007.
Nithiarasu P, Zienkiewicz OC. Analysis of an explicit and matrix free fractional step method for incompressible flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:5537-5551.
Nithiarasu P. An efficient artificial compressibility (ac) scheme based on the characteristic based split (cbs) method for incompressible flows. International Journal for Numerical Methods in Fluids 2003; 56:1815-1845.
Ma B, Lutchen KR. CFD Simulation of aerosol deposition in an anatomically based human large-medium airway model. Annals of Biomedical Engineering 2009; 37(2):271-285.
Jayaraju ST, Brouns M, Verbanck S, Lacor C. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. Journal of Aerosol Science 2007; 38:494-508.
Longest PW, Vinchurkar S. Inertial deposition of aerosols in bifurcating models during steady expiratory flow. Journal of Aerosol Science 2009; 40(4):370-378.
Sazonov I, Saksono PH, Nithiarasu P, Luckraz H, van Loon R. Patient-specific modelling of heamodynamics in aorta with an aneurysm. International Journal for Numerical Methods in Biomedical Engineering 2010; under review.
Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (cbs) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546.
Garcia GJM, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. Journal of Applied Physiology 2007; 103(3):1082-1092.
Chitra K, Vengadesan S, Sundararajan T, Nithiarasu P. An investigation of pulsatile flow in a model cavo-pulmonary vascular system. Communications in Numerical Methods in Engineering 2009; 25:1061-1083.
Wang DS, Hassan O, Morgan K, Weatherill NP. Eqsm: an efficient high quality surface grid generation method based on remeshing. Computer Methods in Applied Mechanics and Engineering 2006; 195:5621-5633.
Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH. On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Journal of Aerosol Science 2000; 31(6):739-749.
Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Computers and Fluids 2008; 37(3):317-331.
Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respiratory Physiology and Neurobiology 2008; 163(1-3):100-110.
Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417.
Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Journal of Biomechanics 2009; 42(10):1553-1559.
Löhner R, Cebral J, Soto O, Yim P, Burgess JE. Applications of patient-specific cfd in medicine and life sciences. International Journal for Numerical Methods in Fluids 2003; 43:637-650.
Yeo SY, Xie X, Sazonov I, Nithiarasu P. Geometrically induced force interaction for three-dimensional deformable modeling. IEEE Transactions on Image Processing 2010; submitted.
Madasu S, Ullman JS, Borhan A. Comparison of axisymmetric and three-dimensional models for gas uptake in a single bifurcation during steady expiration. Journal of Biomechanical Engineering-Transactions of the ASME 2008; 130(1). Fourteenth Annual Conference of the CFD-Society-of-Canada, Kingston, Canada, 16-18 July 2006.
Nithiarasu P, Liu C-B. An explicit characteristic based split (cbs) scheme for incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:2961-2982.
Jeong S-J, Kim W-S, Sung S-J. Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Medical Engineering and Physics 2007; 29(6):637-651.
Jin HH, Fan JR, Zeng MJ, Cen KF. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. Journal of Aerosol Science 2007; 38(3):257-268.
Inthavong K, Wen H, Tian Z, Tu J. Numerical study of fibre deposition in a human nasal cavity. Journal of Aerosol Science 2008; 39(3):253-265.
Madasu S, Borhan A, Ultman J. Gas uptake in a three-generation model geometry with a flat inlet velocity during steady inspiration: comparison of axisymmetric and three-dimensional models. Inhalation Toxicology 2007; 19(6-7):495-503.
Malve M, del Palomar AP, Lopez-Villalobos JL, Ginel A, Doblare M. FSI analysis of the coughing mechanism in a human trachea. Annals of Biomedical Engineering 2010; 38:1556-1565.
Frey WH, Field DA. Mesh relaxation: a new technique for improving triangulation. International Journal for Numerical Methods in Engineering 1991; 31:1121-1133.
Nithiarasu P, Seetharamu KN, Sundararajan T. Finite element analysis of transient natural convection in an odd-shapped enclosure. International Journal of Numerical Methods for Heat and Fluid Flow 1998; 8:199-216.
Darquenne C, Harrington L, Prisk GK. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Physiological Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences 2009; 367(1896):2333-2346.
Nithiarasu P. An arbitrary lagrangian Eulerian (ale) method for free surface flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2005; 48:1415-1428.
Farkas A, Balashazy I. Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Computers in Biology and Medicine 2008; 38(4):508-518.
Sung S-J, Jeong S-J, Yu Y-S, Hwang C-J, Pae E-K. Customized three-dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea. Angle Orthodontist 2006; 76(5):791-799.
Peterson JB, Prisk GK, Darquenne C. Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2008; 21(2):159-168.
Madasu S, Borhan A, Ultman JS. An axisymmetric single-path model for gas transport in the conducting airways. Journal of Biomechanical Engineering-Transactions of the ASME 2006; 128(1):69-75.
Wang DS, Hassan O, Morgan K, Weatherill NP. Enhanced remeshing from stl files with applications to surface grid generation. Communications in Numerical Methods in Engineering 2007; 23:227-239.
Nithiarasu P, Mathur JS, Weatherill NP, Morgan K. Three-dimensional incompressible flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2004; 44:1207-1229.
Radaelli AG, Peiró J. On the segmentation of vascular geometries from medical images. International Journal for Numerical Methods in Biomedical Engineering 2010; 26:3-34.
Weatherill NP, Hassan O. Efficient 3-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37(12):2005-2039.
Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden P, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57(5):631-651.
Hofmann W, Balashazy I. Particle deposition patterns within airway bifurcations-solution of the 3d Navier Stokes equation. Radiation Protection Dosimetry 1991; 38:57-63.
Xu C, Sin S, McDonough JM, Udupa JK, Guez A, Arens R, Wootton DM. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. Journal of Biomechanics 2006; 39(11):2043-2054.
Luo XY, Hinton JS, Liew TT, Tan KK. LES modelling of flow in a simple airway model. Medical Engineering and Physics 2004; 26(5):403-413.
Johnstone A, Uddin M, Pollard A, Heenan A, Finlay WH. The flow inside an idealised form of the human extra-thoracic airway. Experiments in Fluids 2004; 37(5):673-689.
Doorly D, Taylor DJ
2007; 103
2009; 40
1996; 39
2009; 42
2006; 34
2006; 76
2006; 39
2004; 26
2008; 38
2008; 39
2008; 37
2008; 222
1968; 22
2007; 38
2003; 56
2007; 29
2009; 13
2010; 26
2006; 66
2004; 37
2008; 24
2008; 21
1994; 37
2006; 128
2007; 23
2009; 367
2010; 7
2009; 59
1996; 9
2003; 43
2004; 44
2007; 19
2009; 25
1991; 38
2010; 38
2010
1991; 31
2006; 195
2008; 57
1995
1992
2005; 48
2008; 163
2007; 157
2000; 31
2008; 41
1992; 23
2008; 130
2009; 37
2006; 100
2009; 106
1998; 8
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_64_2
e_1_2_8_62_2
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_34_2
e_1_2_8_59_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
Sazonov I (e_1_2_8_54_2) 2010
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
Yeo SY (e_1_2_8_43_2) 2010
e_1_2_8_6_2
e_1_2_8_8_2
Sung S‐J (e_1_2_8_13_2) 2006; 76
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_61_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_50_2
References_xml – reference: Nithiarasu P, Seetharamu KN, Sundararajan T. Finite element analysis of transient natural convection in an odd-shapped enclosure. International Journal of Numerical Methods for Heat and Fluid Flow 1998; 8:199-216.
– reference: Inthavong K, Wen H, Tian Z, Tu J. Numerical study of fibre deposition in a human nasal cavity. Journal of Aerosol Science 2008; 39(3):253-265.
– reference: Mihaescu M, Murugappan S, Kalra M, Khosla S, Gutmark E. Large eddy simulation and Reynolds-averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. Journal of Biomechanics 2008; 41(10):2279-2288.
– reference: Aittokallio T, Virkki A, Polo O. Understanding sleep-disordered breathing through mathematical modelling. Sleep Medicine Reviews 2009; 13(5):333-343.
– reference: Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respiratory Physiology and Neurobiology 2007; 157(2-3):295-309.
– reference: Löhner R, Cebral J, Soto O, Yim P, Burgess JE. Applications of patient-specific cfd in medicine and life sciences. International Journal for Numerical Methods in Fluids 2003; 43:637-650.
– reference: Radaelli AG, Peiró J. On the segmentation of vascular geometries from medical images. International Journal for Numerical Methods in Biomedical Engineering 2010; 26:3-34.
– reference: Weatherill NP, Hassan O. Efficient 3-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37(12):2005-2039.
– reference: Mansour KF, Rowley JA, Badr MS. Measurement of pharyngeal cross-sectional area by finite element analysis. Journal of Applied Physiology 2006; 100(1):294-303.
– reference: Croce C, Fodil R, Durand M, Sbirlea-Apiou G, Caillibotte G, Papon JF, Blondeau JR, Coste A, Isabey D, Louis B. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Annals of Biomedical Engineering 2006; 34(6):997-1007.
– reference: Nithiarasu P. An efficient artificial compressibility (ac) scheme based on the characteristic based split (cbs) method for incompressible flows. International Journal for Numerical Methods in Fluids 2003; 56:1815-1845.
– reference: Sazonov I, Hassan D, Wang D, Morgan KK, Weatherill N. A stitching method for the generation of unstructured meshes for use with co-volume solution techniques. Computer Methods in Applied Mechanics and Engineering 2006; 195:1826-1845.
– reference: Jeong S-J, Kim W-S, Sung S-J. Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Medical Engineering and Physics 2007; 29(6):637-651.
– reference: Soni B, Lindley C, Thompson D. The combined effects of non-planarity and asymmetry on primary and secondary flows in the small bronchial tubes. International Journal for Numerical Methods in Fluids 2009; 59(2):117-146.
– reference: Yeo SY, Xie X, Sazonov I, Nithiarasu P. Geometrically induced force interaction for three-dimensional deformable modeling. IEEE Transactions on Image Processing 2010; submitted.
– reference: Sazonov I, Saksono PH, Nithiarasu P, Luckraz H, van Loon R. Patient-specific modelling of heamodynamics in aorta with an aneurysm. International Journal for Numerical Methods in Biomedical Engineering 2010; under review.
– reference: Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417.
– reference: Wang DS, Hassan O, Morgan K, Weatherill NP. Enhanced remeshing from stl files with applications to surface grid generation. Communications in Numerical Methods in Engineering 2007; 23:227-239.
– reference: Madasu S, Ullman JS, Borhan A. Comparison of axisymmetric and three-dimensional models for gas uptake in a single bifurcation during steady expiration. Journal of Biomechanical Engineering-Transactions of the ASME 2008; 130(1). Fourteenth Annual Conference of the CFD-Society-of-Canada, Kingston, Canada, 16-18 July 2006.
– reference: Yang XL, Liu Y, Luo HY. Respiratory flow in obstructed airways. Journal of Biomechanics 2006; 39(15):2743-2751.
– reference: Nithiarasu P, liu C-B, Massarotti N. Laminar and turbulent flow through a model human upper airway. Communications in Numerical Methods in Engineering 2007; 23:1057-1069.
– reference: Chitra K, Vengadesan S, Sundararajan T, Nithiarasu P. An investigation of pulsatile flow in a model cavo-pulmonary vascular system. Communications in Numerical Methods in Engineering 2009; 25:1061-1083.
– reference: Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respiratory Physiology and Neurobiology 2008; 163(1-3):100-110.
– reference: Madasu S, Borhan A, Ultman JS. An axisymmetric single-path model for gas transport in the conducting airways. Journal of Biomechanical Engineering-Transactions of the ASME 2006; 128(1):69-75.
– reference: Hofmann W, Balashazy I. Particle deposition patterns within airway bifurcations-solution of the 3d Navier Stokes equation. Radiation Protection Dosimetry 1991; 38:57-63.
– reference: Shi H, Kleinstreuer C, Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. Journal of Aerosol Science 2007; 38(4):398-419.
– reference: Nithiarasu P, Liu C-B. An explicit characteristic based split (cbs) scheme for incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:2961-2982.
– reference: Nithiarasu P, Zienkiewicz OC. Analysis of an explicit and matrix free fractional step method for incompressible flows. Computer Methods in Applied Mechanics and Engineering 2006; 195:5537-5551.
– reference: Wang DS, Hassan O, Morgan K, Weatherill NP. Eqsm: an efficient high quality surface grid generation method based on remeshing. Computer Methods in Applied Mechanics and Engineering 2006; 195:5621-5633.
– reference: Darquenne C, Harrington L, Prisk GK. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Physiological Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences 2009; 367(1896):2333-2346.
– reference: Frey WH, Field DA. Mesh relaxation: a new technique for improving triangulation. International Journal for Numerical Methods in Engineering 1991; 31:1121-1133.
– reference: Jin HH, Fan JR, Zeng MJ, Cen KF. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. Journal of Aerosol Science 2007; 38(3):257-268.
– reference: Garcia GJM, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. Journal of Applied Physiology 2007; 103(3):1082-1092.
– reference: Farkas A, Balashazy I. Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Computers in Biology and Medicine 2008; 38(4):508-518.
– reference: Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH. On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Journal of Aerosol Science 2000; 31(6):739-749.
– reference: Longest PW, Vinchurkar S. Inertial deposition of aerosols in bifurcating models during steady expiratory flow. Journal of Aerosol Science 2009; 40(4):370-378.
– reference: Sung S-J, Jeong S-J, Yu Y-S, Hwang C-J, Pae E-K. Customized three-dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea. Angle Orthodontist 2006; 76(5):791-799.
– reference: Taylor DJ, Doorly DJ, Schroter RC. Inflow boundary profile prescription for numerical simulation of nasal airflow. Journal of the Royal Society Interface 2010; 7:515-527.
– reference: Martonen TB, Zhang Z, Yang Y. Interspecies modeling of inhaled particle deposition patterns. Journal of Aerosol Science 1992; 23(4):389-406.
– reference: Nithiarasu P, Mathur JS, Weatherill NP, Morgan K. Three-dimensional incompressible flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2004; 44:1207-1229.
– reference: Xu C, Sin S, McDonough JM, Udupa JK, Guez A, Arens R, Wootton DM. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. Journal of Biomechanics 2006; 39(11):2043-2054.
– reference: Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Computers and Fluids 2008; 37(3):317-331.
– reference: Madasu S, Borhan A, Ultman J. Gas uptake in a three-generation model geometry with a flat inlet velocity during steady inspiration: comparison of axisymmetric and three-dimensional models. Inhalation Toxicology 2007; 19(6-7):495-503.
– reference: Ma B, Lutchen KR. CFD Simulation of aerosol deposition in an anatomically based human large-medium airway model. Annals of Biomedical Engineering 2009; 37(2):271-285.
– reference: Ma B, Lutchen KR. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Annals of Biomedical Engineering 2006; 34(11):1691-1704.
– reference: Perzl MA, Schulz H, Paretzke HG, Englmeier KH, Heyder J. Reconstruction of the lung geometry for the simulation of aerosol transport. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung 1996; 9(3):409-418. Symposium on Frontiers in Aerosol Deposition Modeling, at the 10th International Congress of the International-Society-for-Aeorsols-in-Medicine, Hamilton, Canada, 15 May 1995.
– reference: Liu Y, Johnson MR, Matida EA, Kherani S, Marsan J. Creation of a standardized geometry of the human nasal cavity. Journal of Applied Physiology 2009; 106(3):784-795.
– reference: Luo XY, Hinton JS, Liew TT, Tan KK. LES modelling of flow in a simple airway model. Medical Engineering and Physics 2004; 26(5):403-413.
– reference: Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (cbs) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546.
– reference: Peterson JB, Prisk GK, Darquenne C. Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2008; 21(2):159-168.
– reference: Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden P, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57(5):631-651.
– reference: Nithiarasu P. An arbitrary lagrangian Eulerian (ale) method for free surface flow calculations using the characteristic based split (cbs) scheme. International Journal for Numerical Methods in Fluids 2005; 48:1415-1428.
– reference: Johnstone A, Uddin M, Pollard A, Heenan A, Finlay WH. The flow inside an idealised form of the human extra-thoracic airway. Experiments in Fluids 2004; 37(5):673-689.
– reference: Doorly D, Taylor DJ, Franke P, Schroter RC. Experimental investigation of nasal airflow. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 2008; 222(H4):439-453.
– reference: Jayaraju ST, Brouns M, Verbanck S, Lacor C. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. Journal of Aerosol Science 2007; 38:494-508.
– reference: Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Journal of Biomechanics 2009; 42(10):1553-1559.
– reference: Hassan O, Morgan K, Probert EJ, Peraire J. Unstructured tetrahedral mesh generation for three-dimensional viscous flows. International Journal for Numerical Methods in Engineering 1996; 39(4):549-567.
– reference: Malve M, del Palomar AP, Lopez-Villalobos JL, Ginel A, Doblare M. FSI analysis of the coughing mechanism in a human trachea. Annals of Biomedical Engineering 2010; 38:1556-1565.
– reference: Kleinstreuer C, Zhang Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respiratory Physiology and Neurobiology 2008; 163(1-3):128-138.
– reference: Chorin AJ. Numerical solution of Navier-Stokes equations. Mathematical Computation 1968; 22:745-762.
– volume: 42
  start-page: 1553
  issue: 10
  year: 2009
  end-page: 1559
  article-title: Validation of computational fluid dynamics methodology used for human upper airway flow simulations
  publication-title: Journal of Biomechanics
– year: 2010
  article-title: Patient‐specific modelling of heamodynamics in aorta with an aneurysm
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– volume: 38
  start-page: 508
  issue: 4
  year: 2008
  end-page: 518
  article-title: Quantification of particle deposition in asymmetrical tracheobronchial model geometry
  publication-title: Computers in Biology and Medicine
– volume: 37
  start-page: 271
  issue: 2
  year: 2009
  end-page: 285
  article-title: CFD Simulation of aerosol deposition in an anatomically based human large‐medium airway model
  publication-title: Annals of Biomedical Engineering
– volume: 57
  start-page: 631
  issue: 5
  year: 2008
  end-page: 651
  article-title: Steady flow through a realistic human upper airway geometry
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 39
  start-page: 2043
  issue: 11
  year: 2006
  end-page: 2054
  article-title: Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow
  publication-title: Journal of Biomechanics
– volume: 34
  start-page: 997
  issue: 6
  year: 2006
  end-page: 1007
  article-title: In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry
  publication-title: Annals of Biomedical Engineering
– volume: 76
  start-page: 791
  issue: 5
  year: 2006
  end-page: 799
  article-title: Customized three‐dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea
  publication-title: Angle Orthodontist
– volume: 38
  start-page: 1556
  year: 2010
  end-page: 1565
  article-title: FSI analysis of the coughing mechanism in a human trachea
  publication-title: Annals of Biomedical Engineering
– volume: 25
  start-page: 1061
  year: 2009
  end-page: 1083
  article-title: An investigation of pulsatile flow in a model cavo‐pulmonary vascular system
  publication-title: Communications in Numerical Methods in Engineering
– volume: 7
  start-page: 515
  year: 2010
  end-page: 527
  article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow
  publication-title: Journal of the Royal Society Interface
– volume: 195
  start-page: 2961
  year: 2006
  end-page: 2982
  article-title: An explicit characteristic based split (cbs) scheme for incompressible turbulent flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 24
  start-page: 367
  year: 2008
  end-page: 417
  article-title: A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (lcg) method
  publication-title: Communications in Numerical Methods in Engineering
– volume: 66
  start-page: 1514
  year: 2006
  end-page: 1546
  article-title: The characteristic based split (cbs) scheme—a unified approach to fluid dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 13
  start-page: 333
  issue: 5
  year: 2009
  end-page: 343
  article-title: Understanding sleep‐disordered breathing through mathematical modelling
  publication-title: Sleep Medicine Reviews
– volume: 31
  start-page: 1121
  year: 1991
  end-page: 1133
  article-title: Mesh relaxation: a new technique for improving triangulation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 367
  start-page: 2333
  issue: 1896
  year: 2009
  end-page: 2346
  article-title: Alveolar duct expansion greatly enhances aerosol deposition: a three‐dimensional computational fluid dynamics study
  publication-title: Physiological Transactions of the Royal Society A—Mathematical, Physical and Engineering Sciences
– volume: 38
  start-page: 398
  issue: 4
  year: 2007
  end-page: 419
  article-title: Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness
  publication-title: Journal of Aerosol Science
– volume: 40
  start-page: 370
  issue: 4
  year: 2009
  end-page: 378
  article-title: Inertial deposition of aerosols in bifurcating models during steady expiratory flow
  publication-title: Journal of Aerosol Science
– volume: 23
  start-page: 227
  year: 2007
  end-page: 239
  article-title: Enhanced remeshing from stl files with applications to surface grid generation
  publication-title: Communications in Numerical Methods in Engineering
– volume: 26
  start-page: 403
  issue: 5
  year: 2004
  end-page: 413
  article-title: LES modelling of flow in a simple airway model
  publication-title: Medical Engineering and Physics
– volume: 23
  start-page: 1057
  year: 2007
  end-page: 1069
  article-title: Laminar and turbulent flow through a model human upper airway
  publication-title: Communications in Numerical Methods in Engineering
– volume: 8
  start-page: 199
  year: 1998
  end-page: 216
  article-title: Finite element analysis of transient natural convection in an odd‐shapped enclosure
  publication-title: International Journal of Numerical Methods for Heat and Fluid Flow
– year: 2010
  article-title: Geometrically induced force interaction for three‐dimensional deformable modeling
  publication-title: IEEE Transactions on Image Processing
– volume: 38
  start-page: 257
  issue: 3
  year: 2007
  end-page: 268
  article-title: Large eddy simulation of inhaled particle deposition within the human upper respiratory tract
  publication-title: Journal of Aerosol Science
– volume: 100
  start-page: 294
  issue: 1
  year: 2006
  end-page: 303
  article-title: Measurement of pharyngeal cross‐sectional area by finite element analysis
  publication-title: Journal of Applied Physiology
– volume: 39
  start-page: 2743
  issue: 15
  year: 2006
  end-page: 2751
  article-title: Respiratory flow in obstructed airways
  publication-title: Journal of Biomechanics
– volume: 38
  start-page: 494
  year: 2007
  end-page: 508
  article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids
  publication-title: Journal of Aerosol Science
– volume: 44
  start-page: 1207
  year: 2004
  end-page: 1229
  article-title: Three‐dimensional incompressible flow calculations using the characteristic based split (cbs) scheme
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 38
  start-page: 57
  year: 1991
  end-page: 63
  article-title: Particle deposition patterns within airway bifurcations—solution of the 3d Navier Stokes equation
  publication-title: Radiation Protection Dosimetry
– volume: 195
  start-page: 1826
  year: 2006
  end-page: 1845
  article-title: A stitching method for the generation of unstructured meshes for use with co‐volume solution techniques
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 23
  start-page: 389
  issue: 4
  year: 1992
  end-page: 406
  article-title: Interspecies modeling of inhaled particle deposition patterns
  publication-title: Journal of Aerosol Science
– volume: 130
  issue: 1
  year: 2008
  article-title: Comparison of axisymmetric and three‐dimensional models for gas uptake in a single bifurcation during steady expiration
  publication-title: Journal of Biomechanical Engineering—Transactions of the ASME
– volume: 56
  start-page: 1815
  year: 2003
  end-page: 1845
  article-title: An efficient artificial compressibility (ac) scheme based on the characteristic based split (cbs) method for incompressible flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 103
  start-page: 1082
  issue: 3
  year: 2007
  end-page: 1092
  article-title: Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity
  publication-title: Journal of Applied Physiology
– volume: 157
  start-page: 295
  issue: 2–3
  year: 2007
  end-page: 309
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra‐thoracic airways
  publication-title: Respiratory Physiology and Neurobiology
– volume: 31
  start-page: 739
  issue: 6
  year: 2000
  end-page: 749
  article-title: On the suitability of k‐epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment
  publication-title: Journal of Aerosol Science
– volume: 34
  start-page: 1691
  issue: 11
  year: 2006
  end-page: 1704
  article-title: An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics
  publication-title: Annals of Biomedical Engineering
– volume: 195
  start-page: 5621
  year: 2006
  end-page: 5633
  article-title: Eqsm: an efficient high quality surface grid generation method based on remeshing
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 222
  start-page: 439
  issue: H4
  year: 2008
  end-page: 453
  article-title: Experimental investigation of nasal airflow
  publication-title: Proceedings of the Institution of Mechanical Engineers Part H—Journal of Engineering in Medicine
– volume: 195
  start-page: 5537
  year: 2006
  end-page: 5551
  article-title: Analysis of an explicit and matrix free fractional step method for incompressible flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1992
– volume: 59
  start-page: 117
  issue: 2
  year: 2009
  end-page: 146
  article-title: The combined effects of non‐planarity and asymmetry on primary and secondary flows in the small bronchial tubes
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 21
  start-page: 159
  issue: 2
  year: 2008
  end-page: 168
  article-title: Aerosol deposition in the human lung periphery is increased by reduced‐density gas breathing
  publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery
– volume: 39
  start-page: 253
  issue: 3
  year: 2008
  end-page: 265
  article-title: Numerical study of fibre deposition in a human nasal cavity
  publication-title: Journal of Aerosol Science
– volume: 9
  start-page: 409
  issue: 3
  year: 1996
  end-page: 418
  article-title: Reconstruction of the lung geometry for the simulation of aerosol transport
  publication-title: Journal of Aerosol Medicine‐Deposition Clearance and Effects in the Lung
– volume: 39
  start-page: 549
  issue: 4
  year: 1996
  end-page: 567
  article-title: Unstructured tetrahedral mesh generation for three‐dimensional viscous flows
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 26
  start-page: 3
  year: 2010
  end-page: 34
  article-title: On the segmentation of vascular geometries from medical images
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– volume: 48
  start-page: 1415
  year: 2005
  end-page: 1428
  article-title: An arbitrary lagrangian Eulerian (ale) method for free surface flow calculations using the characteristic based split (cbs) scheme
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 19
  start-page: 495
  issue: 6–7
  year: 2007
  end-page: 503
  article-title: Gas uptake in a three‐generation model geometry with a flat inlet velocity during steady inspiration: comparison of axisymmetric and three‐dimensional models
  publication-title: Inhalation Toxicology
– volume: 37
  start-page: 673
  issue: 5
  year: 2004
  end-page: 689
  article-title: The flow inside an idealised form of the human extra‐thoracic airway
  publication-title: Experiments in Fluids
– volume: 41
  start-page: 2279
  issue: 10
  year: 2008
  end-page: 2288
  article-title: Large eddy simulation and Reynolds‐averaged Navier–Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea
  publication-title: Journal of Biomechanics
– volume: 128
  start-page: 69
  issue: 1
  year: 2006
  end-page: 75
  article-title: An axisymmetric single‐path model for gas transport in the conducting airways
  publication-title: Journal of Biomechanical Engineering—Transactions of the ASME
– volume: 106
  start-page: 784
  issue: 3
  year: 2009
  end-page: 795
  article-title: Creation of a standardized geometry of the human nasal cavity
  publication-title: Journal of Applied Physiology
– volume: 37
  start-page: 317
  issue: 3
  year: 2008
  end-page: 331
  article-title: Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics
  publication-title: Computers and Fluids
– start-page: 351
  end-page: 358
– volume: 22
  start-page: 745
  year: 1968
  end-page: 762
  article-title: Numerical solution of Navier–Stokes equations
  publication-title: Mathematical Computation
– volume: 43
  start-page: 637
  year: 2003
  end-page: 650
  article-title: Applications of patient‐specific cfd in medicine and life sciences
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 37
  start-page: 2005
  issue: 12
  year: 1994
  end-page: 2039
  article-title: Efficient 3‐dimensional delaunay triangulation with automatic point creation and imposed boundary constraints
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1995
– volume: 163
  start-page: 100
  issue: 1–3
  year: 2008
  end-page: 110
  article-title: Mechanics of airflow in the human nasal airways
  publication-title: Respiratory Physiology and Neurobiology
– volume: 29
  start-page: 637
  issue: 6
  year: 2007
  end-page: 651
  article-title: Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics
  publication-title: Medical Engineering and Physics
– volume: 163
  start-page: 128
  issue: 1–3
  year: 2008
  end-page: 138
  article-title: Modeling airflow and particle transport/deposition in pulmonary airways
  publication-title: Respiratory Physiology and Neurobiology
– ident: e_1_2_8_62_2
  doi: 10.1090/S0025-5718-1968-0242392-2
– ident: e_1_2_8_24_2
  doi: 10.1152/japplphysiol.00364.2005
– ident: e_1_2_8_61_2
  doi: 10.1002/cnm.1205
– ident: e_1_2_8_58_2
  doi: 10.1002/nme.1698
– ident: e_1_2_8_14_2
  doi: 10.1016/j.medengphy.2006.08.017
– ident: e_1_2_8_9_2
  doi: 10.1016/j.jaerosci.2008.11.007
– ident: e_1_2_8_38_2
  doi: 10.1016/j.jaerosci.2006.09.008
– ident: e_1_2_8_29_2
  doi: 10.1016/j.jaerosci.2007.03.003
– ident: e_1_2_8_56_2
  doi: 10.1002/fld.682
– ident: e_1_2_8_3_2
  doi: 10.1016/0021-8502(92)90008-J
– ident: e_1_2_8_6_2
  doi: 10.1016/j.compbiomed.2008.01.014
– ident: e_1_2_8_55_2
  doi: 10.1002/nme.712
– ident: e_1_2_8_57_2
  doi: 10.1002/fld.987
– ident: e_1_2_8_64_2
  doi: 10.1007/s10439-010-9951-3
– ident: e_1_2_8_20_2
  doi: 10.1002/cnm.939
– ident: e_1_2_8_21_2
  doi: 10.1115/1.2838041
– ident: e_1_2_8_25_2
  doi: 10.1016/j.compfluid.2007.05.001
– ident: e_1_2_8_2_2
  doi: 10.1093/oxfordjournals.rpd.a081072
– ident: e_1_2_8_60_2
  doi: 10.1002/cnm.1117
– ident: e_1_2_8_7_2
  doi: 10.1016/j.jaerosci.2007.11.007
– ident: e_1_2_8_18_2
  doi: 10.1115/1.2133762
– ident: e_1_2_8_59_2
  doi: 10.1016/j.cma.2005.11.004
– ident: e_1_2_8_22_2
  doi: 10.1002/fld.1802
– ident: e_1_2_8_39_2
  doi: 10.2514/6.1992-439
– ident: e_1_2_8_63_2
  doi: 10.1108/09615539810201839
– ident: e_1_2_8_37_2
  doi: 10.1016/j.medengphy.2004.02.008
– ident: e_1_2_8_16_2
  doi: 10.1016/j.smrv.2008.09.008
– ident: e_1_2_8_28_2
  doi: 10.1016/j.resp.2007.02.006
– ident: e_1_2_8_50_2
  doi: 10.1145/218380.218473
– ident: e_1_2_8_35_2
  doi: 10.1098/rsif.2009.0306
– ident: e_1_2_8_49_2
  doi: 10.1002/nme.1620310607
– ident: e_1_2_8_34_2
  doi: 10.1016/j.resp.2008.07.027
– ident: e_1_2_8_41_2
  doi: 10.1016/S0021-8502(99)00547-9
– ident: e_1_2_8_4_2
  doi: 10.1016/j.resp.2008.07.002
– ident: e_1_2_8_26_2
  doi: 10.1152/japplphysiol.90376.2008
– ident: e_1_2_8_48_2
  doi: 10.1002/cnm.894
– ident: e_1_2_8_52_2
  doi: 10.1002/(SICI)1097-0207(19960229)39:4<549::AID-NME868>3.0.CO;2-O
– ident: e_1_2_8_40_2
  doi: 10.1002/fld.1805
– ident: e_1_2_8_15_2
  doi: 10.1016/j.jbiomech.2008.04.013
– ident: e_1_2_8_53_2
  doi: 10.1002/fld.544
– ident: e_1_2_8_19_2
  doi: 10.1080/08958370701271704
– ident: e_1_2_8_27_2
  doi: 10.1007/s10439-006-9184-7
– ident: e_1_2_8_30_2
  doi: 10.1007/s10439-006-9094-8
– ident: e_1_2_8_17_2
  doi: 10.1007/s00348-004-0857-4
– ident: e_1_2_8_46_2
  doi: 10.1016/j.cma.2005.05.037
– ident: e_1_2_8_8_2
  doi: 10.1098/rsta.2008.0295
– ident: e_1_2_8_36_2
  doi: 10.1016/j.jbiomech.2009.03.035
– ident: e_1_2_8_45_2
– volume: 76
  start-page: 791
  issue: 5
  year: 2006
  ident: e_1_2_8_13_2
  article-title: Customized three‐dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea
  publication-title: Angle Orthodontist
– ident: e_1_2_8_47_2
  doi: 10.1016/j.cma.2005.10.028
– ident: e_1_2_8_32_2
  doi: 10.1016/j.jaerosci.2007.02.002
– ident: e_1_2_8_42_2
  doi: 10.1016/j.cma.2004.09.017
– ident: e_1_2_8_11_2
  doi: 10.1016/j.jbiomech.2005.06.021
– ident: e_1_2_8_23_2
  doi: 10.1089/jam.1996.9.409
– ident: e_1_2_8_31_2
  doi: 10.1152/japplphysiol.01118.2006
– ident: e_1_2_8_51_2
  doi: 10.1002/nme.1620371203
– year: 2010
  ident: e_1_2_8_54_2
  article-title: Patient‐specific modelling of heamodynamics in aorta with an aneurysm
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– ident: e_1_2_8_5_2
  doi: 10.1089/jamp.2007.0651
– ident: e_1_2_8_44_2
  doi: 10.1002/cnm.1290
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jbiomech.2005.10.009
– ident: e_1_2_8_33_2
  doi: 10.1243/09544119JEIM330
– year: 2010
  ident: e_1_2_8_43_2
  article-title: Geometrically induced force interaction for three‐dimensional deformable modeling
  publication-title: IEEE Transactions on Image Processing
– ident: e_1_2_8_10_2
  doi: 10.1007/s10439-008-9620-y
SSID ssj0011503
Score 2.076916
Snippet This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms Air breathing
Airways
Biological and medical sciences
CBS
Computation
Computational methods in fluid dynamics
Exact sciences and technology
finite element method
Fluid dynamics
Fundamental and applied biological sciences. Psychology
Fundamental areas of phenomenology (including applications)
Holes
Human
human upper airway
Inlets
larynx
Mathematical models
Mathematics
Mesh generation
Methods of scientific computing (including symbolic computation, algebraic computation)
nose
Numerical analysis. Scientific computation
one-equation turbulence
Physics
Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics
Sciences and techniques of general use
subject-specific
Trachea
Vertebrates: respiratory system
Title Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity
URI https://api.istex.fr/ark:/67375/WNG-8V39ZPM6-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.2986
https://www.proquest.com/docview/1022872106
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0029-5981
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQe4EDLQXEFqgGCcEp202cONkjqloK0q4QolDBwfIvqlqy281GBU48AAeekSdhJk6iXQQS4hRFGsuOPWN_Mxl_w9hjhNSxzTIe8cS6KM1GJioKLaJcZ6lyCEi8p9vIk6k4PklfnmanbVYl3YUJ_BB9wI0so9mvycCVrvZXSEM_uWEyLohtO-ai8aZe98xRhHN4l92RjYu4450dJftdw7WTaJMm9TNlRqoKJ8eHqhZrsHMVvDanz9EW-9CNOySdnA_rpR6ar79ROv7fh22zmy0ohWdBi26xa67cYVstQIXW_KsddmOFvRDfJj3la3WbfQ_1IdrYIviL2RVUIUkRzkpQUNWaYj4_v_2g252UoQRNgUCo53O3AHW2uFJfgPLwP6L0rHQo6S4DEzngwajr5n4UNLV7hvCiq64CMw84DihVhf0aRcUw7rCTo8M3B8dRW-ohMhwdqMiaRAmBro52VnBFoMIanWgESBlCWsNdqnyurbdaGc-dtR6xhvJKG-5FkvK7bKPEkd1jIJLcWZfixoJYcUwOoDZx6mPr8LDGfgbsabfs0rQ86FSO40IGBudE4gJIWoABe9RLzgP3xx9knjSa0wuoxTnlyuWZfDd9Lou3fPz-1UTIgwHbW1OtvgFhJOINxN46XZNo4vTfRpVuVleSnPICPfUR9dZozl-HI6eTQ3ru_qvgfXY9RMnzaFQ8YBvLRe0eIsxa6r3GoH4BB90png
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKewAOFAqILaU1EoJTtrtx4mTFCVVtt9CsEGqhQpUs_6KqbXbZbFToiQfgwDPyJMzESbSLQEKcokhj2bHH9jeTmW8IeQaQum_imAUsNDaI4p4O0lTxIFFxJC0AEucwGzkb8eFx9PokPlkiL5tcGM8P0TrccGdU5zVucHRIb8-xhl7abjhI-Q2yEnEwUxARvWu5oxDpsCa-Ix6k_YZ5thduNy0X7qIVnNYvGBspC5ge5-taLADPefha3T97q-S0GbkPOznvljPV1de_kTr-56fdJXdqXEpfeUW6R5ZsvkZWa4xK6xOgWCO35wgM4S1rWV-L--S7LxFRuxepuxhf0cLHKdKznEpalArdPj-__cAETwxSolWNQFpOJnZK5dn0Sn6lGIr_CaTHuQVJ-9mTkVO4G1VZpUjRqnxPlx40BVbo2FEYB81lAf1qifUwHpDjvd2jnWFQV3sINAMbKjA6lJyDtaOs4UwirjBahQowUgyoVjMbSZco44yS2jFrjAO4IZ1UmjkeRuwhWc5hZI8I5WFijY3gbAG4OEAbUOl-5PrGwn0N_XTIi2bdha6p0LEix4XwJM6hgAUQuAAd8rSVnHj6jz_IPK9UpxWQ03MMl0ti8WG0L9L3bPDxbcbFTodsLuhW2wBhElIHQm-NsgnY5fjrRuZ2XBYC7fIUjPUe9lapzl-HI0bZLj7X_1Vwi9wcHmWH4vBg9OYxueWd5knQSzfI8mxa2ieAumZqs9pdvwB_0y2_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9qC6IPVqviVa0riD7lepfNv8MnaXu26h1FrBYRlv0rpW3uvFyo-uQH8MHP6CdxJpuEO1EQn0LIhNnszuz-ZjP7G4BHCKn7Jo55wENjgyju6SDLVBKkKo6kRUDiHJ1GHo2T_aPoxXF8vAJPm7Mwnh-i3XAjz6jma3JwOzVue4E19Nx2w0GWXIK1KB5klM-3-7rljiKkw5v8Dnzcb5hne-F28-bSWrRG3fqZciNlgd3jfF2LJeC5CF-r9We4Dh-alvu0k9NuOVdd_fU3Usf__LTrcK3GpeyZN6QbsGLzDVivMSqrZ4BiA64uEBji3ahlfS1uwndfIqLeXmTubHLBCp-nyE5yJllRKtr2-fntBx3wpCQlVtUIZOV0amdMnswu5BdGqfgfUXqSW5S0nzwZOcO1UZXVESlWle_psoOmwAqbOIbtYLksUK-WVA_jFhwN997s7Ad1tYdAc4yhAqNDmSQY7ShrEi4JVxitQoUYKUZUq7mNpEuVcUZJ7bg1xiHckE4qzV0SRvw2rObYsjvAkjC1xkY4tyBcHFAMqHQ_cn1jcb1GPR140oy70DUVOlXkOBOexDkUOACCBqADD1vJqaf_-IPM48p0WgE5O6V0uTQW78bPRfaWD94fjhKx04GtJdtqXyCYRNSBqK0xNoFeTr9uZG4nZSEoLs8wWO-Rtsp0_tocMR7t0XXzXwUfwOXD3aF4dTB-eReu-D3zNOhl92B1PivtfQRdc7VVOdcv7MItQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+flow+studies+in+a+subject%E2%80%90specific+human+upper+airway+using+a+one%E2%80%90equation+turbulence+model.+Influence+of+the+nasal+cavity&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Saksono%2C+P.+H.&rft.au=Nithiarasu%2C+P.&rft.au=Sazonov%2C+I.&rft.au=Yeo%2C+S.+Y.&rft.date=2011-07-08&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=87&rft.issue=1-5&rft.spage=96&rft.epage=114&rft_id=info:doi/10.1002%2Fnme.2986&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_2986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon