Bimetallic nanoadjuvants for cancer vaccines
Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–S...
Saved in:
| Published in | Trends in pharmacological sciences (Regular ed.) Vol. 46; no. 10; pp. 958 - 974 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-6147 1873-3735 1873-3735 |
| DOI | 10.1016/j.tips.2025.08.007 |
Cover
| Abstract | Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) and NLR family pyrin domain containing 3 (NLRP3), overcoming limitations of single-metal adjuvants for enhanced T cell responses in cancer vaccines.Strategic selection of metal pairings in BMNAs can lead to controlled ion release, optimized pharmacokinetics and biosafety, enhanced antigen cross-presentation, and promoted immune activation, yielding superior antitumor efficacy in preclinical models.Aluminum salts (alum) and calcium phosphate were clinically approved as adjuvants in the last century, and an increasing number of metal ions, such as manganese, are now entering clinical trials, highlighting the strong potential of BMNAs for clinical translation.
Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.
Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation. |
|---|---|
| AbstractList | Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) and NLR family pyrin domain containing 3 (NLRP3), overcoming limitations of single-metal adjuvants for enhanced T cell responses in cancer vaccines.Strategic selection of metal pairings in BMNAs can lead to controlled ion release, optimized pharmacokinetics and biosafety, enhanced antigen cross-presentation, and promoted immune activation, yielding superior antitumor efficacy in preclinical models.Aluminum salts (alum) and calcium phosphate were clinically approved as adjuvants in the last century, and an increasing number of metal ions, such as manganese, are now entering clinical trials, highlighting the strong potential of BMNAs for clinical translation.
Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.
Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation. Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation. Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation. HighlightsMetal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities. Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) and NLR family pyrin domain containing 3 (NLRP3), overcoming limitations of single-metal adjuvants for enhanced T cell responses in cancer vaccines. Strategic selection of metal pairings in BMNAs can lead to controlled ion release, optimized pharmacokinetics and biosafety, enhanced antigen cross-presentation, and promoted immune activation, yielding superior antitumor efficacy in preclinical models. Aluminum salts (alum) and calcium phosphate were clinically approved as adjuvants in the last century, and an increasing number of metal ions, such as manganese, are now entering clinical trials, highlighting the strong potential of BMNAs for clinical translation. |
| Author | Yu, Chengzhong Wang, Yue Yang, Yannan Luo, Jiangqi |
| Author_xml | – sequence: 1 givenname: Jiangqi surname: Luo fullname: Luo, Jiangqi organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia – sequence: 2 givenname: Yue surname: Wang fullname: Wang, Yue organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia – sequence: 3 givenname: Chengzhong surname: Yu fullname: Yu, Chengzhong email: c.yu@uq.edu.au organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia – sequence: 4 givenname: Yannan orcidid: 0000-0001-6696-3879 surname: Yang fullname: Yang, Yannan email: yannan.yang@adelaide.edu.au organization: South Australian ImmunoGENomics Cancer Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40973570$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFrFDEUx4O0tNvaL9BD2aMHZ_qSNJOsiKBF20KhUD14C8mbt5BxNrMmMwv99mbY6kHQXhIIv_8_vN87YQdxiMTYOYeaA28uu3oM21wLEKoGUwPoV2zBjZaV1FIdsEWBVNXwK33MTnLuAEBKwY_Y8RWsCqFhwd5-ChsaXd8HXEYXB9d2087FMS_XQ1qii0hpuXOIIVJ-zQ7Xrs909nyfsscvn79d31b3Dzd31x_vK5RNw6sVGemFbBVXHp1Tkhs0XpAvR3k3HpBaoVvjtXC6MR5XDTjPdaNQyFP2Zl-6TcPPifJoNyEj9b2LNEzZSqGEkorLVUEvntHJb6i12xQ2Lj3Z3-MVQOwBTEPOidZ_EA52dmg7Ozu0s0MLxhaHJfR-H6Iy4i5QshkDFRFtSISjbYfw__iHv-LYhxjQ9T_oiXI3TCkWeZbbLCzYr_OS5h0JBcCN_F4K3v274KXffwFUiqE6 |
| Cites_doi | 10.3389/fphar.2014.00115 10.1126/science.1076514 10.1038/s41392-023-01654-7 10.1177/0748233717712409 10.1002/VIW.20220067 10.3390/pharmaceutics15051346 10.1080/21645515.2021.1964316 10.1038/s43018-023-00600-4 10.4049/jimmunol.181.1.17 10.1155/2024/7502110 10.3390/jcm12031098 10.1038/s41467-020-17749-6 10.2147/ITT.S202006 10.1021/acsnano.3c09968 10.1016/j.cell.2022.06.035 10.3390/pharmaceutics15061756 10.1021/acsnano.4c17491 10.1016/j.toxlet.2014.08.008 10.1186/s12943-024-02130-8 10.1016/j.nantod.2024.102446 10.1186/s12989-024-00571-z 10.15252/embr.202051280 10.3390/cancers14246091 10.1016/j.biomaterials.2021.121261 10.1126/scisignal.aat9900 10.1016/j.jconrel.2023.04.036 10.1021/acsnano.5c04365 10.1002/advs.202405729 10.4049/jimmunol.1700712 10.1016/j.tibs.2022.05.005 10.1016/j.colsurfa.2017.09.043 10.1038/s41568-025-00820-z 10.1016/j.semcdb.2020.12.008 10.1016/j.tplants.2016.08.002 10.1038/s41578-021-00358-0 10.1021/acsnano.3c11374 10.1038/ni.1919 10.1038/s42003-021-02532-0 10.1038/s41423-021-00669-w 10.1126/sciadv.adu3919 10.1186/s12951-023-01782-w 10.1002/eji.200526124 10.1084/jem.20181218 10.1002/smll.202203952 10.1186/s12951-024-02999-z 10.1038/s41420-021-00579-w 10.1084/jem.20011672 10.1016/j.bioactmat.2023.11.017 10.1021/acs.nanolett.3c01963 10.1111/imm.12276 10.1016/j.nantod.2024.102352 10.1039/D1SC05319A 10.1002/adma.202202168 10.1002/adhm.202402358 10.1021/acsnano.4c02685 10.1016/j.biomaterials.2022.121533 10.1016/j.biomaterials.2021.120739 10.1002/adfm.202209291 10.3390/vaccines11061030 10.3390/pharmaceutics11100493 10.1186/s13045-022-01282-8 10.3390/cancers17142295 10.1016/j.ygyno.2014.08.013 10.3389/fimmu.2020.577823 10.1016/j.celrep.2020.108053 10.1002/adma.202407914 10.1080/14760584.2017.1244484 10.1186/s13045-024-01589-8 10.1158/2159-8290.CD-18-0280 10.1002/adhm.202401675 10.1542/peds.113.2.259 10.1016/j.jconrel.2022.10.053 10.1128/CVI.00286-10 10.1155/2018/6872621 10.1073/pnas.1213868109 10.1016/j.smim.2021.101544 10.1126/sciadv.abf4468 10.3390/ijms20133328 10.1016/j.celrep.2013.01.009 10.1002/advs.202302895 10.1016/j.heliyon.2024.e38900 10.1038/s41467-024-54469-7 10.7326/ANNALS-25-00997 10.1002/adma.202007910 10.1021/acsnano.3c07123 10.1016/j.cell.2021.09.020 10.1016/j.nantod.2024.102445 10.3390/vaccines9050527 10.1002/med.22016 10.1016/j.matt.2023.08.001 10.1016/j.ejpn.2021.12.011 10.1021/acsnano.4c09902 10.1186/s13045-024-01544-7 10.3389/fphys.2014.00352 10.1007/s12325-022-02085-6 10.1038/nri2510 10.1016/j.bioadv.2022.212752 10.1038/s41551-024-01221-7 10.1038/s43018-022-00418-6 10.1021/acsnano.3c00901 10.1186/s12964-020-0530-4 10.1016/j.jconrel.2016.02.035 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.tips.2025.08.007 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1873-3735 |
| EndPage | 974 |
| ExternalDocumentID | 40973570 10_1016_j_tips_2025_08_007 S016561472500183X 1_s2_0_S016561472500183X |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1CY 1KJ 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 8WZ 9JM A6W AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABOCM ABXDB ABZDS ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HMT HVGLF HZ~ IH2 IHE J1W KOM M2V M34 M41 MO0 MOBAO MVM N9A O-L O9- O9. OAUVE OGGZJ OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ RXW SCC SDF SDG SDP SES SEW SNS SPCBC SPT SSN SSP SSZ T5K TAE WUQ X7M XJT Z5R ZGI ZKB ZXP ~02 ~G- ~HD AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3661-9e83b23d515bcaa5318c8b2eb8b2b238b0ced27d8b72a768bc960ab1765c23 |
| IEDL.DBID | .~1 |
| ISSN | 0165-6147 1873-3735 |
| IngestDate | Sun Sep 28 08:50:03 EDT 2025 Mon Oct 06 01:43:17 EDT 2025 Thu Oct 09 00:18:14 EDT 2025 Sat Oct 25 17:19:00 EDT 2025 Sat Oct 25 09:10:08 EDT 2025 Sat Oct 25 11:11:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | metal-based nanoparticle cancer vaccine adjuvant immunotherapy |
| Language | English |
| License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3661-9e83b23d515bcaa5318c8b2eb8b2b238b0ced27d8b72a768bc960ab1765c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6696-3879 |
| PMID | 40973570 |
| PQID | 3252535139 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3252535139 pubmed_primary_40973570 crossref_primary_10_1016_j_tips_2025_08_007 elsevier_sciencedirect_doi_10_1016_j_tips_2025_08_007 elsevier_clinicalkeyesjournals_1_s2_0_S016561472500183X elsevier_clinicalkey_doi_10_1016_j_tips_2025_08_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Trends in pharmacological sciences (Regular ed.) |
| PublicationTitleAlternate | Trends Pharmacol Sci |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Naletova (bb0100) 2023; 15 Huang (bb0315) 2022; 136 Li (bb0170) 2024; 18 Mittler (bb0275) 2017; 22 Meng (bb0465) 2022; 34 Xiao (bb0390) 2023; 33 Masson (bb0460) 2017; 16 Dalod (bb0270) 2002; 195 Howlett (bb0365) 2024 Lu (bb0510) 2022; 18 Dudley (bb0025) 2002; 298 Deng (bb0395) 2024; 33 Hou (bb0435) 2021; 6 Guo (bb0105) 2024; 36 Huang (bb0355) 2025; 19 Gao (bb0210) 2018; 2018 Ren (bb0340) 2024; 11 Liu (bb0375) 2022; 352 Zheng (bb0360) 2025; 19 Zhang (bb0525) 2023; 12 Huang (bb0540) 2024; 36 Lee (bb0145) 2019; 216 Ribas (bb0500) 2018; 8 Zhang (bb0515) 2024; 58 Sarkar (bb0115) 2019; 12 Li (bb0330) 2008; 181 Furuta (bb0295) 2012; 109 Cen (bb0415) 2021; 33 Shi (bb0300) 2023; 23 Dong (bb0310) 2024; 57 Zhang (bb0165) 2024; 23 Bajoria (bb0320) 2023; 11 Zhang (bb0150) 2023; 15 Sun (bb0070) 2024; 8 Buonaguro (bb0020) 2011; 18 Sellars (bb0015) 2022; 185 Roy (bb0090) 2014; 230 Hildenbrand (bb0180) 2022; 47 Li (bb0125) 2024; 58 Kelley (bb0230) 2019; 20 Tao (bb0250) 2023; 10 Clemen, Bekeschus (bb0280) 2021; 9 Tie (bb0030) 2022; 15 Raponi (bb0325) 2021; 56 Liang (bb0120) 2017; 33 Guallar-Garrido, Julian (bb0520) 2020; 9 Baghban (bb0040) 2020; 18 Wang (bb0065) 2020; 11 Wang (bb0155) 2024; 21 Zhang (bb0385) 2024; 17 Xie (bb0480) 2024; 18 Lin (bb0005) 2022; 3 Stillman (bb0110) 2023; 21 Deigendesch (bb0130) 2018; 200 Zhao (bb0255) 2020; 32 Zhu (bb0505) 2023; 4 Babolmorad (bb0200) 2021; 22 Ling (bb0470) 2024; 18 Goga (bb0485) 2025 Zhang (bb0260) 2021; 18 Danielsson, Eriksson (bb0075) 2021; 115 Roy (bb0135) 2014; 142 Angelova, Yordanov (bb0140) 2017; 535 Dutra, Bozza (bb0205) 2014; 5 Husseinzadeh, Davenport (bb0185) 2014; 135 Morad (bb0490) 2021; 184 Dai (bb0405) 2022; 280 Luo (bb0425) 2024; 18 Zaidi (bb0010) 2025; 25 Marrack (bb0080) 2009; 9 Lerner (bb0290) 2023; 4 DeStefano (bb0450) 2004; 113 Sharma (bb0220) 2019; 11 Xu (bb0245) 2024; 22 Cen (bb0345) 2024; 2024 Zachou (bb0495) 2025; 17 von Beust (bb0055) 2005; 35 Gabis (bb0455) 2022; 36 Shi (bb0475) 2023; 17 Andersson (bb0445) 2025 Tapia-Abellán (bb0225) 2021; 7 Tian (bb0240) 2024; 44 Tang (bb0370) 2022; 13 Xu (bb0430) 2023; 8 Zhao (bb0350) 2024; 11 Guan (bb0400) 2024; 15 Schmidt (bb0190) 2010; 11 Hu (bb0095) 2025; 11 Yang (bb0410) 2021; 271 Bhatnagar (bb0050) 2022; 14 Sun (bb0175) 2024; 18 Zhuang (bb0440) 2016; 228 Qiao (bb0305) 2023; 358 Lin (bb0035) 2024; 17 Jäger (bb0235) 2020; 11 Sun (bb0060) 2021; 33 Cao (bb0265) 2023; 6 Lushpa (bb0215) 2021; 4 Hafron (bb0530) 2022; 39 Li (bb0335) 2024; 13 Liu (bb0085) 2013; 3 Harijith (bb0285) 2014; 5 Yu (bb0380) 2021; 7 Sun (bb0045) 2021; 17 Xu (bb0160) 2024; 10 Li (bb0535) 2024; 10 Dai (bb0420) 2022; 284 Lawrence (bb0195) 2016; 7 Hou (10.1016/j.tips.2025.08.007_bb0435) 2021; 6 Clemen (10.1016/j.tips.2025.08.007_bb0280) 2021; 9 Dai (10.1016/j.tips.2025.08.007_bb0420) 2022; 284 Lushpa (10.1016/j.tips.2025.08.007_bb0215) 2021; 4 Qiao (10.1016/j.tips.2025.08.007_bb0305) 2023; 358 Ribas (10.1016/j.tips.2025.08.007_bb0500) 2018; 8 Schmidt (10.1016/j.tips.2025.08.007_bb0190) 2010; 11 Danielsson (10.1016/j.tips.2025.08.007_bb0075) 2021; 115 Sun (10.1016/j.tips.2025.08.007_bb0045) 2021; 17 Gao (10.1016/j.tips.2025.08.007_bb0210) 2018; 2018 Shi (10.1016/j.tips.2025.08.007_bb0300) 2023; 23 Guo (10.1016/j.tips.2025.08.007_bb0105) 2024; 36 Howlett (10.1016/j.tips.2025.08.007_bb0365) 2024 Lin (10.1016/j.tips.2025.08.007_bb0005) 2022; 3 Roy (10.1016/j.tips.2025.08.007_bb0090) 2014; 230 Zhang (10.1016/j.tips.2025.08.007_bb0165) 2024; 23 Dutra (10.1016/j.tips.2025.08.007_bb0205) 2014; 5 Dong (10.1016/j.tips.2025.08.007_bb0310) 2024; 57 Li (10.1016/j.tips.2025.08.007_bb0330) 2008; 181 Xu (10.1016/j.tips.2025.08.007_bb0430) 2023; 8 Bhatnagar (10.1016/j.tips.2025.08.007_bb0050) 2022; 14 Liu (10.1016/j.tips.2025.08.007_bb0085) 2013; 3 Masson (10.1016/j.tips.2025.08.007_bb0460) 2017; 16 Dalod (10.1016/j.tips.2025.08.007_bb0270) 2002; 195 Sun (10.1016/j.tips.2025.08.007_bb0070) 2024; 8 Yu (10.1016/j.tips.2025.08.007_bb0380) 2021; 7 Yang (10.1016/j.tips.2025.08.007_bb0410) 2021; 271 Morad (10.1016/j.tips.2025.08.007_bb0490) 2021; 184 Raponi (10.1016/j.tips.2025.08.007_bb0325) 2021; 56 Babolmorad (10.1016/j.tips.2025.08.007_bb0200) 2021; 22 Shi (10.1016/j.tips.2025.08.007_bb0475) 2023; 17 Zhang (10.1016/j.tips.2025.08.007_bb0515) 2024; 58 Zhang (10.1016/j.tips.2025.08.007_bb0525) 2023; 12 Lin (10.1016/j.tips.2025.08.007_bb0035) 2024; 17 Lawrence (10.1016/j.tips.2025.08.007_bb0195) 2016; 7 Lerner (10.1016/j.tips.2025.08.007_bb0290) 2023; 4 Xu (10.1016/j.tips.2025.08.007_bb0160) 2024; 10 Tian (10.1016/j.tips.2025.08.007_bb0240) 2024; 44 Sun (10.1016/j.tips.2025.08.007_bb0060) 2021; 33 Marrack (10.1016/j.tips.2025.08.007_bb0080) 2009; 9 Cen (10.1016/j.tips.2025.08.007_bb0345) 2024; 2024 Naletova (10.1016/j.tips.2025.08.007_bb0100) 2023; 15 DeStefano (10.1016/j.tips.2025.08.007_bb0450) 2004; 113 Tie (10.1016/j.tips.2025.08.007_bb0030) 2022; 15 Zhang (10.1016/j.tips.2025.08.007_bb0260) 2021; 18 Li (10.1016/j.tips.2025.08.007_bb0335) 2024; 13 Huang (10.1016/j.tips.2025.08.007_bb0540) 2024; 36 Tao (10.1016/j.tips.2025.08.007_bb0250) 2023; 10 Guallar-Garrido (10.1016/j.tips.2025.08.007_bb0520) 2020; 9 Tapia-Abellán (10.1016/j.tips.2025.08.007_bb0225) 2021; 7 Xu (10.1016/j.tips.2025.08.007_bb0245) 2024; 22 Mittler (10.1016/j.tips.2025.08.007_bb0275) 2017; 22 Hu (10.1016/j.tips.2025.08.007_bb0095) 2025; 11 Li (10.1016/j.tips.2025.08.007_bb0535) 2024; 10 Xiao (10.1016/j.tips.2025.08.007_bb0390) 2023; 33 Li (10.1016/j.tips.2025.08.007_bb0170) 2024; 18 Cao (10.1016/j.tips.2025.08.007_bb0265) 2023; 6 Zachou (10.1016/j.tips.2025.08.007_bb0495) 2025; 17 Buonaguro (10.1016/j.tips.2025.08.007_bb0020) 2011; 18 Wang (10.1016/j.tips.2025.08.007_bb0065) 2020; 11 Deigendesch (10.1016/j.tips.2025.08.007_bb0130) 2018; 200 Harijith (10.1016/j.tips.2025.08.007_bb0285) 2014; 5 Zheng (10.1016/j.tips.2025.08.007_bb0360) 2025; 19 Kelley (10.1016/j.tips.2025.08.007_bb0230) 2019; 20 Cen (10.1016/j.tips.2025.08.007_bb0415) 2021; 33 Sharma (10.1016/j.tips.2025.08.007_bb0220) 2019; 11 Ren (10.1016/j.tips.2025.08.007_bb0340) 2024; 11 Guan (10.1016/j.tips.2025.08.007_bb0400) 2024; 15 Zhang (10.1016/j.tips.2025.08.007_bb0150) 2023; 15 Deng (10.1016/j.tips.2025.08.007_bb0395) 2024; 33 Dai (10.1016/j.tips.2025.08.007_bb0405) 2022; 280 Luo (10.1016/j.tips.2025.08.007_bb0425) 2024; 18 Xie (10.1016/j.tips.2025.08.007_bb0480) 2024; 18 Hafron (10.1016/j.tips.2025.08.007_bb0530) 2022; 39 Goga (10.1016/j.tips.2025.08.007_bb0485) 2025 Sun (10.1016/j.tips.2025.08.007_bb0175) 2024; 18 Sarkar (10.1016/j.tips.2025.08.007_bb0115) 2019; 12 Zhao (10.1016/j.tips.2025.08.007_bb0255) 2020; 32 Furuta (10.1016/j.tips.2025.08.007_bb0295) 2012; 109 Zhang (10.1016/j.tips.2025.08.007_bb0385) 2024; 17 Roy (10.1016/j.tips.2025.08.007_bb0135) 2014; 142 Liu (10.1016/j.tips.2025.08.007_bb0375) 2022; 352 Angelova (10.1016/j.tips.2025.08.007_bb0140) 2017; 535 Dudley (10.1016/j.tips.2025.08.007_bb0025) 2002; 298 Liang (10.1016/j.tips.2025.08.007_bb0120) 2017; 33 Li (10.1016/j.tips.2025.08.007_bb0125) 2024; 58 Meng (10.1016/j.tips.2025.08.007_bb0465) 2022; 34 Zhu (10.1016/j.tips.2025.08.007_bb0505) 2023; 4 Bajoria (10.1016/j.tips.2025.08.007_bb0320) 2023; 11 Wang (10.1016/j.tips.2025.08.007_bb0155) 2024; 21 Stillman (10.1016/j.tips.2025.08.007_bb0110) 2023; 21 Lu (10.1016/j.tips.2025.08.007_bb0510) 2022; 18 Lee (10.1016/j.tips.2025.08.007_bb0145) 2019; 216 Andersson (10.1016/j.tips.2025.08.007_bb0445) 2025 Husseinzadeh (10.1016/j.tips.2025.08.007_bb0185) 2014; 135 Tang (10.1016/j.tips.2025.08.007_bb0370) 2022; 13 Zhuang (10.1016/j.tips.2025.08.007_bb0440) 2016; 228 von Beust (10.1016/j.tips.2025.08.007_bb0055) 2005; 35 Sellars (10.1016/j.tips.2025.08.007_bb0015) 2022; 185 Huang (10.1016/j.tips.2025.08.007_bb0315) 2022; 136 Zhao (10.1016/j.tips.2025.08.007_bb0350) 2024; 11 Baghban (10.1016/j.tips.2025.08.007_bb0040) 2020; 18 Jäger (10.1016/j.tips.2025.08.007_bb0235) 2020; 11 Zaidi (10.1016/j.tips.2025.08.007_bb0010) 2025; 25 Ling (10.1016/j.tips.2025.08.007_bb0470) 2024; 18 Hildenbrand (10.1016/j.tips.2025.08.007_bb0180) 2022; 47 Huang (10.1016/j.tips.2025.08.007_bb0355) 2025; 19 Gabis (10.1016/j.tips.2025.08.007_bb0455) 2022; 36 |
| References_xml | – volume: 2018 year: 2018 ident: bb0210 article-title: The role of zinc and zinc homeostasis in macrophage function publication-title: J Immunol Res – volume: 184 start-page: 5309 year: 2021 end-page: 5337 ident: bb0490 article-title: Hallmarks of response, resistance, and toxicity to immune checkpoint blockade publication-title: Cell – volume: 21 start-page: 39 year: 2023 ident: bb0110 article-title: Aluminum-based metal–organic framework nanoparticles as pulmonary vaccine adjuvants publication-title: J. Nanobiotechnol. – volume: 11 year: 2024 ident: bb0350 article-title: An immunomodulatory zinc-alum/ovalbumin nanovaccine boosts cancer metalloimmunotherapy through erythrocyte-assisted cascade immune activation publication-title: Adv. Sci. (Weinh) – volume: 33 start-page: 737 year: 2017 end-page: 745 ident: bb0120 article-title: Reactive oxygen species trigger NF-kappaB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells publication-title: Toxicol. Ind. Health – volume: 18 start-page: 30701 year: 2024 end-page: 30715 ident: bb0425 article-title: Spleen-targeted mRNA vaccine doped with manganese adjuvant for robust anticancer immunity in vivo publication-title: ACS Nano – volume: 9 start-page: 1 year: 2020 end-page: 11 ident: bb0520 article-title: Bacillus Calmette-Guerin (BCG) therapy for bladder cancer: an update publication-title: Immunotargets Ther. – volume: 32 year: 2020 ident: bb0255 article-title: Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP publication-title: Cell Rep. – volume: 9 start-page: 287 year: 2009 end-page: 293 ident: bb0080 article-title: Towards an understanding of the adjuvant action of aluminium publication-title: Nat. Rev. Immunol. – volume: 19 start-page: 13906 year: 2025 end-page: 13926 ident: bb0355 article-title: Zinc ion-coordinated sericin calcium phosphate nanovaccines induce hyperactive dendritic cells and synergistic activation of T cells for cancer immunotherapy publication-title: ACS Nano – volume: 36 start-page: 330 year: 2024 end-page: 357 ident: bb0105 article-title: Engineering customized nanovaccines for enhanced cancer immunotherapy publication-title: Bioact. Mater. – volume: 7 start-page: 374 year: 2016 end-page: 378 ident: bb0195 article-title: Cobalt ions recruit inflammatory cells in vitro through human Toll-like receptor 4 publication-title: Biochem. Biophys. Rep. – volume: 109 start-page: 19380 year: 2012 end-page: 19385 ident: bb0295 article-title: Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 year: 2021 ident: bb0225 article-title: Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation publication-title: Sci. Adv. – volume: 195 start-page: 517 year: 2002 end-page: 528 ident: bb0270 article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression publication-title: J. Exp. Med. – volume: 136 year: 2022 ident: bb0315 article-title: Multifunctional manganese-containing vaccine delivery system Ca@MnCO(3)/LLO for tumor immunotherapy publication-title: Biomater. Adv. – volume: 56 year: 2021 ident: bb0325 article-title: Nanoalum adjuvanted vaccines: small details make a big difference publication-title: Semin. Immunol. – volume: 284 year: 2022 ident: bb0420 article-title: A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy publication-title: Biomaterials – volume: 16 start-page: 289 year: 2017 end-page: 299 ident: bb0460 article-title: Calcium phosphate: a substitute for aluminum adjuvants? publication-title: Expert Rev. Vaccines – volume: 4 start-page: 1258 year: 2023 end-page: 1272 ident: bb0290 article-title: CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis publication-title: Nat. Cancer – volume: 113 start-page: 259 year: 2004 end-page: 266 ident: bb0450 article-title: Age at first measles-mumps-rubella vaccination in children with autism and school-matched control subjects: a population-based study in metropolitan atlanta publication-title: Pediatrics – volume: 14 start-page: 6091 year: 2022 ident: bb0050 article-title: Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy publication-title: Cancers – volume: 58 year: 2024 ident: bb0125 article-title: Metal-based nanoparticles promote the activation of cGAS-STING pathway for enhanced cancer immunotherapy publication-title: Nano Today – volume: 3 start-page: 911 year: 2022 end-page: 926 ident: bb0005 article-title: Cancer vaccines: the next immunotherapy frontier publication-title: Nat. Cancer – volume: 7 start-page: 193 year: 2021 ident: bb0380 article-title: Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases publication-title: Cell Death Discov. – volume: 230 start-page: 421 year: 2014 end-page: 433 ident: bb0090 article-title: ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice publication-title: Toxicol. Lett. – year: 2025 ident: bb0445 article-title: Aluminum-adsorbed vaccines and chronic diseases in childhood publication-title: Ann. Internal Med. – volume: 33 year: 2021 ident: bb0060 article-title: ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity publication-title: Adv. Mater. – volume: 39 start-page: 2515 year: 2022 end-page: 2532 ident: bb0530 article-title: Real-world effectiveness of sipuleucel-T on overall survival in men with advanced prostate cancer treated with androgen receptor-targeting agents publication-title: Adv. Ther. – volume: 17 start-page: 5546 year: 2021 end-page: 5557 ident: bb0045 article-title: Using PAMPs and DAMPs as adjuvants in cancer vaccines publication-title: Hum. Vaccin. Immunother. – volume: 18 year: 2022 ident: bb0510 article-title: Amplifying dendritic cell activation by bioinspired nanometal organic frameworks for synergistic sonoimmunotherapy publication-title: Small – volume: 18 start-page: 1222 year: 2021 end-page: 1234 ident: bb0260 article-title: Manganese salts function as potent adjuvants publication-title: Cell. Mol. Immunol. – volume: 15 start-page: 1756 year: 2023 ident: bb0150 article-title: Research progress of aluminum phosphate adjuvants and their action mechanisms publication-title: Pharmaceutics – volume: 10 year: 2023 ident: bb0250 article-title: cGAS-STING pathway activation and systemic anti-tumor immunity induction via photodynamic nanoparticles with potent toxic platinum DNA intercalator against uveal melanoma publication-title: Adv. Sci. – volume: 135 start-page: 359 year: 2014 end-page: 363 ident: bb0185 article-title: Role of Toll-like receptors in cervical, endometrial and ovarian cancers: a review publication-title: Gynecol. Oncol. – volume: 185 start-page: 2770 year: 2022 end-page: 2788 ident: bb0015 article-title: Cancer vaccines: building a bridge over troubled waters publication-title: Cell – volume: 8 start-page: 1073 year: 2024 end-page: 1091 ident: bb0070 article-title: Strategies for the development of metalloimmunotherapies publication-title: Nat. Biomed. Eng. – volume: 47 start-page: 936 year: 2022 end-page: 949 ident: bb0180 article-title: Biogenesis and engineering of interleukin 12 family cytokines publication-title: Trends Biochem. Sci. – volume: 5 start-page: 115 year: 2014 ident: bb0205 article-title: Heme on innate immunity and inflammation publication-title: Front. Pharmacol. – volume: 18 start-page: 2841 year: 2024 end-page: 2860 ident: bb0470 article-title: Mn2+/CpG oligodeoxynucleotides codecorated black phosphorus nanosheet platform for enhanced antitumor potency in multimodal therapy publication-title: ACS Nano – volume: 15 start-page: 61 year: 2022 ident: bb0030 article-title: Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets publication-title: J. Hematol. Oncol. – volume: 22 start-page: 11 year: 2017 end-page: 19 ident: bb0275 article-title: ROS are good publication-title: Trends Plant Sci. – volume: 57 year: 2024 ident: bb0310 article-title: DNA programmed Mg-Al layered double hydroxide-based bi-adjuvant nanovaccines publication-title: Nano Today – volume: 352 start-page: 497 year: 2022 end-page: 506 ident: bb0375 article-title: Nanoadjuvants actively targeting lymph node conduits and blocking tumor invasion in lymphatic vessels publication-title: J. Control. Release – volume: 216 start-page: 2619 year: 2019 end-page: 2634 ident: bb0145 article-title: Host conditioning with IL-1beta improves the antitumor function of adoptively transferred T cells publication-title: J. Exp. Med. – volume: 11 start-page: 814 year: 2010 end-page: 819 ident: bb0190 article-title: Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel publication-title: Nat. Immunol. – volume: 11 year: 2024 ident: bb0340 article-title: 2D differential metallic immunopotentiators drive high diversity and capability of antigen-specific immunity against tumor publication-title: Adv. Sci. – volume: 19 start-page: 17900 year: 2025 end-page: 17916 ident: bb0360 article-title: Yeast-derived manganese and zinc metal-organic framework composite as a vaccine adjuvant for enhanced humoral and cellular immune responses publication-title: ACS Nano – volume: 200 start-page: 1607 year: 2018 end-page: 1617 ident: bb0130 article-title: Copper regulates the canonical NLRP3 inflammasome publication-title: J. Immunol. – volume: 23 start-page: 10657 year: 2023 end-page: 10666 ident: bb0300 article-title: Engineering crystallinity gradients for tailored CaO2 nanostructures: enabling alkalinity-reinforced anticancer activity with minimized Ca2+/H2O2 production publication-title: Nano Lett. – volume: 18 start-page: 16878 year: 2024 end-page: 16894 ident: bb0170 article-title: Silicon or calcium doping coordinates the immunostimulatory effects of aluminum oxyhydroxide nanoadjuvants in prophylactic vaccines publication-title: ACS Nano – volume: 10 year: 2024 ident: bb0160 article-title: Recent advances in nanoadjuvant-triggered STING activation for enhanced cancer immunotherapy publication-title: Heliyon – volume: 4 year: 2023 ident: bb0505 article-title: Tumor-targeted nano-adjuvants to synergize photomediated immunotherapy enhanced antitumor immunity publication-title: VIEW – volume: 5 start-page: 352 year: 2014 ident: bb0285 article-title: Reactive oxygen species at the crossroads of inflammasome and inflammation publication-title: Front. Physiol. – volume: 6 start-page: 3574 year: 2023 end-page: 3597 ident: bb0265 article-title: A coordinative dendrimer-based nanovaccine for cancer treatment publication-title: Matter – volume: 11 start-page: 493 year: 2019 ident: bb0220 article-title: Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy publication-title: Pharmaceutics – volume: 12 year: 2019 ident: bb0115 article-title: Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells publication-title: Sci. Signal. – volume: 11 start-page: 1030 year: 2023 ident: bb0320 article-title: Nanoalum formulations containing aluminum hydroxide and CpG 1018(TM) adjuvants: the effect on stability and immunogenicity of a recombinant SARS-CoV-2 RBD antigen publication-title: Vaccines (Basel) – volume: 18 start-page: 1690 year: 2024 end-page: 1701 ident: bb0480 article-title: Designing peptide-based nanoinhibitors of programmed cell death ligand 1 (PD-L1) for enhanced chemo-immunotherapy publication-title: ACS Nano – volume: 36 year: 2024 ident: bb0540 article-title: Sulfate radical based in situ vaccine boosts systemic antitumor immunity via concurrent activation of necroptosis and STING pathway publication-title: Adv. Mater. – volume: 228 start-page: 26 year: 2016 end-page: 37 ident: bb0440 article-title: Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma publication-title: J. Control. Release – volume: 18 start-page: 23 year: 2011 end-page: 34 ident: bb0020 article-title: Translating tumor antigens into cancer vaccines publication-title: Clin. Vaccine Immunol. – volume: 10 year: 2024 ident: bb0535 article-title: Hybrid nanoparticle-mediated simultaneous ROS scavenging and STING activation improve the antitumor immunity of in situ vaccines publication-title: Sci. Adv. – volume: 22 year: 2021 ident: bb0200 article-title: Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity publication-title: EMBO Rep. – volume: 535 start-page: 184 year: 2017 end-page: 193 ident: bb0140 article-title: Iron(III) and aluminium(III) based mixed nanostructured hydroxyphosphates as potential vaccine adjuvants: preparation and physicochemical characterization publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 271 year: 2021 ident: bb0410 article-title: Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy publication-title: Biomaterials – volume: 11 year: 2025 ident: bb0095 article-title: Lysosomal zinc nanomodulation blocks macrophage pyroptosis for counteracting atherosclerosis progression publication-title: Sci. Adv. – volume: 280 year: 2022 ident: bb0405 article-title: Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy publication-title: Biomaterials – volume: 25 start-page: 517 year: 2025 end-page: 533 ident: bb0010 article-title: Recent advances in therapeutic cancer vaccines publication-title: Nat. Rev. Cancer – volume: 8 start-page: 435 year: 2023 ident: bb0430 article-title: Multifunctional mesoporous silica nanoparticles for biomedical applications publication-title: Signal Transduct. Target. Ther. – volume: 23 start-page: 255 year: 2024 ident: bb0165 article-title: Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope publication-title: Mol. Cancer – volume: 18 start-page: 59 year: 2020 ident: bb0040 article-title: Tumor microenvironment complexity and therapeutic implications at a glance publication-title: Cell Commun. Signal. – volume: 9 start-page: 527 year: 2021 ident: bb0280 article-title: ROS cocktails as an adjuvant for personalized antitumor vaccination? publication-title: Vaccines (Basel) – volume: 15 year: 2024 ident: bb0400 article-title: Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy publication-title: Nat. Commun. – volume: 21 start-page: 9 year: 2024 ident: bb0155 article-title: Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury publication-title: Part Fibre Toxicol. – volume: 3 start-page: 386 year: 2013 end-page: 400 ident: bb0085 article-title: ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB publication-title: Cell Rep. – volume: 44 start-page: 1768 year: 2024 end-page: 1799 ident: bb0240 article-title: cGAS-STING pathway agonists are promising vaccine adjuvants publication-title: Med. Res. Rev. – volume: 11 start-page: 4243 year: 2020 ident: bb0235 article-title: Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis publication-title: Nat. Commun. – year: 2025 ident: bb0485 article-title: Integrating artificial intelligence in nanomaterials science: pathways to revolutionary materials discovery and design. Ethics and risks publication-title: Selected Papers from the International Conference on Innovative Research – volume: 17 start-page: 31 year: 2024 ident: bb0035 article-title: Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives publication-title: J. Hematol. Oncol. – volume: 181 start-page: 17 year: 2008 end-page: 21 ident: bb0330 article-title: Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP31 publication-title: J. Immunol. – volume: 20 start-page: 3328 year: 2019 ident: bb0230 article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation publication-title: Int. J. Mol. Sci. – volume: 33 start-page: 483 year: 2024 end-page: 496 ident: bb0395 article-title: Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening publication-title: Bioactive Mater. – volume: 18 start-page: 10439 year: 2024 end-page: 10453 ident: bb0175 article-title: Self-assembled STING-activating coordination nanoparticles for cancer immunotherapy and vaccine applications publication-title: ACS Nano – volume: 17 start-page: 2295 year: 2025 ident: bb0495 article-title: Recent progress of nanomedicine for the synergetic treatment of radiotherapy (RT) and photothermal treatment (PTT) publication-title: Cancers – volume: 115 start-page: 3 year: 2021 end-page: 9 ident: bb0075 article-title: Aluminium adjuvants in vaccines - a way to modulate the immune response publication-title: Semin. Cell Dev. Biol. – volume: 15 start-page: 1346 year: 2023 ident: bb0100 article-title: Prospects for the use of metal-based nanoparticles as adjuvants for local cancer immunotherapy publication-title: Pharmaceutics – volume: 8 start-page: 1250 year: 2018 end-page: 1257 ident: bb0500 article-title: SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study publication-title: Cancer Discov. – volume: 35 start-page: 1869 year: 2005 end-page: 1876 ident: bb0055 article-title: Improving the therapeutic index of CpG oligodeoxynucleotides by intralymphatic administration publication-title: Eur. J. Immunol. – volume: 6 start-page: 1078 year: 2021 end-page: 1094 ident: bb0435 article-title: Lipid nanoparticles for mRNA delivery publication-title: Nat. Rev. Mater. – volume: 33 year: 2023 ident: bb0390 article-title: Recent advances in calcium-based anticancer nanomaterials exploiting calcium overload to trigger cell apoptosis publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1003 year: 2021 ident: bb0215 article-title: Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn2+ ions publication-title: Commun. Biol. – volume: 12 start-page: 1098 year: 2023 ident: bb0525 article-title: Talimogene laherparepvec (T-VEC): a review of the recent advances in cancer therapy publication-title: J. Clin. Med. – volume: 36 start-page: 151 year: 2022 end-page: 158 ident: bb0455 article-title: The myth of vaccination and autism spectrum publication-title: Eur. J. Paediatr. Neurol. – volume: 298 start-page: 850 year: 2002 end-page: 854 ident: bb0025 article-title: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes publication-title: Science – volume: 358 start-page: 190 year: 2023 end-page: 203 ident: bb0305 article-title: A MnAl double adjuvant nanovaccine to induce strong humoral and cellular immune responses publication-title: J. Control. Release – volume: 2024 year: 2024 ident: bb0345 article-title: A unique combination of Mn(2+) and aluminum adjuvant acted the synergistic effect publication-title: Can. J. Infect. Dis. Med. Microbiol. – volume: 33 year: 2021 ident: bb0415 article-title: ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy publication-title: Adv. Mater. – year: 2024 ident: bb0365 article-title: Mn and Zn-doped multivariate metal-organic framework as a metalloimmunological adjuvant to promote protection against tuberculosis infection publication-title: Adv. Healthc. Mater. – volume: 22 start-page: 782 year: 2024 ident: bb0245 article-title: Zinc-based radioenhancers to activate tumor radioimmunotherapy by PD-L1 and cGAS-STING pathway publication-title: J. Nanobiotechnol. – volume: 13 start-page: 8507 year: 2022 end-page: 8517 ident: bb0370 article-title: Mesoporous sodium four-coordinate aluminosilicate nanoparticles modulate dendritic cell pyroptosis and activate innate and adaptive immunity publication-title: Chem. Sci. – volume: 58 year: 2024 ident: bb0515 article-title: Iron consumption strengthens anti-tumoral STING activation mediated by manganese-based nanoparticles publication-title: Nano Today – volume: 142 start-page: 453 year: 2014 end-page: 464 ident: bb0135 article-title: Toll-like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages publication-title: Immunology – volume: 11 year: 2020 ident: bb0065 article-title: MPL adjuvant contains competitive antagonists of human TLR4 publication-title: Front. Immunol. – volume: 13 year: 2024 ident: bb0335 article-title: Manganese-modified aluminum adjuvant enhances both humoral and cellular immune responses publication-title: Adv. Healthc. Mater. – volume: 34 year: 2022 ident: bb0465 article-title: Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic cancer immunotherapy publication-title: Adv. Mater. – volume: 17 start-page: 68 year: 2024 ident: bb0385 article-title: Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives publication-title: J. Hematol. Oncol. – volume: 17 start-page: 14475 year: 2023 end-page: 14493 ident: bb0475 article-title: Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity publication-title: ACS Nano – volume: 5 start-page: 115 year: 2014 ident: 10.1016/j.tips.2025.08.007_bb0205 article-title: Heme on innate immunity and inflammation publication-title: Front. Pharmacol. doi: 10.3389/fphar.2014.00115 – volume: 298 start-page: 850 year: 2002 ident: 10.1016/j.tips.2025.08.007_bb0025 article-title: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes publication-title: Science doi: 10.1126/science.1076514 – volume: 8 start-page: 435 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0430 article-title: Multifunctional mesoporous silica nanoparticles for biomedical applications publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-023-01654-7 – volume: 33 start-page: 737 year: 2017 ident: 10.1016/j.tips.2025.08.007_bb0120 article-title: Reactive oxygen species trigger NF-kappaB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells publication-title: Toxicol. Ind. Health doi: 10.1177/0748233717712409 – volume: 4 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0505 article-title: Tumor-targeted nano-adjuvants to synergize photomediated immunotherapy enhanced antitumor immunity publication-title: VIEW doi: 10.1002/VIW.20220067 – volume: 15 start-page: 1346 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0100 article-title: Prospects for the use of metal-based nanoparticles as adjuvants for local cancer immunotherapy publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15051346 – volume: 17 start-page: 5546 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0045 article-title: Using PAMPs and DAMPs as adjuvants in cancer vaccines publication-title: Hum. Vaccin. Immunother. doi: 10.1080/21645515.2021.1964316 – volume: 4 start-page: 1258 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0290 article-title: CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis publication-title: Nat. Cancer doi: 10.1038/s43018-023-00600-4 – volume: 181 start-page: 17 year: 2008 ident: 10.1016/j.tips.2025.08.007_bb0330 article-title: Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP31 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.1.17 – volume: 2024 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0345 article-title: A unique combination of Mn(2+) and aluminum adjuvant acted the synergistic effect publication-title: Can. J. Infect. Dis. Med. Microbiol. doi: 10.1155/2024/7502110 – volume: 12 start-page: 1098 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0525 article-title: Talimogene laherparepvec (T-VEC): a review of the recent advances in cancer therapy publication-title: J. Clin. Med. doi: 10.3390/jcm12031098 – volume: 11 start-page: 4243 year: 2020 ident: 10.1016/j.tips.2025.08.007_bb0235 article-title: Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis publication-title: Nat. Commun. doi: 10.1038/s41467-020-17749-6 – volume: 9 start-page: 1 year: 2020 ident: 10.1016/j.tips.2025.08.007_bb0520 article-title: Bacillus Calmette-Guerin (BCG) therapy for bladder cancer: an update publication-title: Immunotargets Ther. doi: 10.2147/ITT.S202006 – volume: 18 start-page: 1690 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0480 article-title: Designing peptide-based nanoinhibitors of programmed cell death ligand 1 (PD-L1) for enhanced chemo-immunotherapy publication-title: ACS Nano doi: 10.1021/acsnano.3c09968 – volume: 185 start-page: 2770 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0015 article-title: Cancer vaccines: building a bridge over troubled waters publication-title: Cell doi: 10.1016/j.cell.2022.06.035 – volume: 15 start-page: 1756 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0150 article-title: Research progress of aluminum phosphate adjuvants and their action mechanisms publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15061756 – volume: 19 start-page: 13906 year: 2025 ident: 10.1016/j.tips.2025.08.007_bb0355 article-title: Zinc ion-coordinated sericin calcium phosphate nanovaccines induce hyperactive dendritic cells and synergistic activation of T cells for cancer immunotherapy publication-title: ACS Nano doi: 10.1021/acsnano.4c17491 – volume: 10 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0535 article-title: Hybrid nanoparticle-mediated simultaneous ROS scavenging and STING activation improve the antitumor immunity of in situ vaccines publication-title: Sci. Adv. – volume: 230 start-page: 421 year: 2014 ident: 10.1016/j.tips.2025.08.007_bb0090 article-title: ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2014.08.008 – volume: 23 start-page: 255 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0165 article-title: Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope publication-title: Mol. Cancer doi: 10.1186/s12943-024-02130-8 – volume: 58 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0515 article-title: Iron consumption strengthens anti-tumoral STING activation mediated by manganese-based nanoparticles publication-title: Nano Today doi: 10.1016/j.nantod.2024.102446 – volume: 21 start-page: 9 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0155 article-title: Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury publication-title: Part Fibre Toxicol. doi: 10.1186/s12989-024-00571-z – volume: 22 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0200 article-title: Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity publication-title: EMBO Rep. doi: 10.15252/embr.202051280 – volume: 14 start-page: 6091 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0050 article-title: Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy publication-title: Cancers doi: 10.3390/cancers14246091 – volume: 280 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0405 article-title: Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121261 – volume: 12 year: 2019 ident: 10.1016/j.tips.2025.08.007_bb0115 article-title: Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells publication-title: Sci. Signal. doi: 10.1126/scisignal.aat9900 – volume: 358 start-page: 190 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0305 article-title: A MnAl double adjuvant nanovaccine to induce strong humoral and cellular immune responses publication-title: J. Control. Release doi: 10.1016/j.jconrel.2023.04.036 – volume: 19 start-page: 17900 year: 2025 ident: 10.1016/j.tips.2025.08.007_bb0360 article-title: Yeast-derived manganese and zinc metal-organic framework composite as a vaccine adjuvant for enhanced humoral and cellular immune responses publication-title: ACS Nano doi: 10.1021/acsnano.5c04365 – volume: 11 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0340 article-title: 2D differential metallic immunopotentiators drive high diversity and capability of antigen-specific immunity against tumor publication-title: Adv. Sci. doi: 10.1002/advs.202405729 – volume: 200 start-page: 1607 year: 2018 ident: 10.1016/j.tips.2025.08.007_bb0130 article-title: Copper regulates the canonical NLRP3 inflammasome publication-title: J. Immunol. doi: 10.4049/jimmunol.1700712 – volume: 47 start-page: 936 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0180 article-title: Biogenesis and engineering of interleukin 12 family cytokines publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2022.05.005 – volume: 535 start-page: 184 year: 2017 ident: 10.1016/j.tips.2025.08.007_bb0140 article-title: Iron(III) and aluminium(III) based mixed nanostructured hydroxyphosphates as potential vaccine adjuvants: preparation and physicochemical characterization publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2017.09.043 – volume: 25 start-page: 517 year: 2025 ident: 10.1016/j.tips.2025.08.007_bb0010 article-title: Recent advances in therapeutic cancer vaccines publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-025-00820-z – volume: 115 start-page: 3 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0075 article-title: Aluminium adjuvants in vaccines - a way to modulate the immune response publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2020.12.008 – volume: 22 start-page: 11 year: 2017 ident: 10.1016/j.tips.2025.08.007_bb0275 article-title: ROS are good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 33 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0415 article-title: ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy publication-title: Adv. Mater. – volume: 6 start-page: 1078 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0435 article-title: Lipid nanoparticles for mRNA delivery publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00358-0 – volume: 18 start-page: 10439 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0175 article-title: Self-assembled STING-activating coordination nanoparticles for cancer immunotherapy and vaccine applications publication-title: ACS Nano doi: 10.1021/acsnano.3c11374 – volume: 11 start-page: 814 year: 2010 ident: 10.1016/j.tips.2025.08.007_bb0190 article-title: Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel publication-title: Nat. Immunol. doi: 10.1038/ni.1919 – volume: 4 start-page: 1003 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0215 article-title: Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn2+ ions publication-title: Commun. Biol. doi: 10.1038/s42003-021-02532-0 – volume: 18 start-page: 1222 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0260 article-title: Manganese salts function as potent adjuvants publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-021-00669-w – volume: 11 year: 2025 ident: 10.1016/j.tips.2025.08.007_bb0095 article-title: Lysosomal zinc nanomodulation blocks macrophage pyroptosis for counteracting atherosclerosis progression publication-title: Sci. Adv. doi: 10.1126/sciadv.adu3919 – volume: 21 start-page: 39 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0110 article-title: Aluminum-based metal–organic framework nanoparticles as pulmonary vaccine adjuvants publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-023-01782-w – volume: 35 start-page: 1869 year: 2005 ident: 10.1016/j.tips.2025.08.007_bb0055 article-title: Improving the therapeutic index of CpG oligodeoxynucleotides by intralymphatic administration publication-title: Eur. J. Immunol. doi: 10.1002/eji.200526124 – volume: 216 start-page: 2619 year: 2019 ident: 10.1016/j.tips.2025.08.007_bb0145 article-title: Host conditioning with IL-1beta improves the antitumor function of adoptively transferred T cells publication-title: J. Exp. Med. doi: 10.1084/jem.20181218 – volume: 18 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0510 article-title: Amplifying dendritic cell activation by bioinspired nanometal organic frameworks for synergistic sonoimmunotherapy publication-title: Small doi: 10.1002/smll.202203952 – volume: 22 start-page: 782 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0245 article-title: Zinc-based radioenhancers to activate tumor radioimmunotherapy by PD-L1 and cGAS-STING pathway publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-024-02999-z – volume: 7 start-page: 193 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0380 article-title: Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00579-w – volume: 195 start-page: 517 year: 2002 ident: 10.1016/j.tips.2025.08.007_bb0270 article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20011672 – volume: 33 start-page: 483 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0395 article-title: Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening publication-title: Bioactive Mater. doi: 10.1016/j.bioactmat.2023.11.017 – volume: 23 start-page: 10657 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0300 article-title: Engineering crystallinity gradients for tailored CaO2 nanostructures: enabling alkalinity-reinforced anticancer activity with minimized Ca2+/H2O2 production publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c01963 – volume: 142 start-page: 453 year: 2014 ident: 10.1016/j.tips.2025.08.007_bb0135 article-title: Toll-like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages publication-title: Immunology doi: 10.1111/imm.12276 – volume: 57 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0310 article-title: DNA programmed Mg-Al layered double hydroxide-based bi-adjuvant nanovaccines publication-title: Nano Today doi: 10.1016/j.nantod.2024.102352 – volume: 13 start-page: 8507 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0370 article-title: Mesoporous sodium four-coordinate aluminosilicate nanoparticles modulate dendritic cell pyroptosis and activate innate and adaptive immunity publication-title: Chem. Sci. doi: 10.1039/D1SC05319A – volume: 34 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0465 article-title: Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic cancer immunotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202202168 – year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0365 article-title: Mn and Zn-doped multivariate metal-organic framework as a metalloimmunological adjuvant to promote protection against tuberculosis infection publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202402358 – volume: 36 start-page: 330 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0105 article-title: Engineering customized nanovaccines for enhanced cancer immunotherapy publication-title: Bioact. Mater. – volume: 18 start-page: 16878 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0170 article-title: Silicon or calcium doping coordinates the immunostimulatory effects of aluminum oxyhydroxide nanoadjuvants in prophylactic vaccines publication-title: ACS Nano doi: 10.1021/acsnano.4c02685 – volume: 284 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0420 article-title: A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121533 – volume: 271 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0410 article-title: Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120739 – volume: 33 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0390 article-title: Recent advances in calcium-based anticancer nanomaterials exploiting calcium overload to trigger cell apoptosis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209291 – volume: 11 start-page: 1030 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0320 article-title: Nanoalum formulations containing aluminum hydroxide and CpG 1018(TM) adjuvants: the effect on stability and immunogenicity of a recombinant SARS-CoV-2 RBD antigen publication-title: Vaccines (Basel) doi: 10.3390/vaccines11061030 – volume: 11 start-page: 493 year: 2019 ident: 10.1016/j.tips.2025.08.007_bb0220 article-title: Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11100493 – volume: 15 start-page: 61 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0030 article-title: Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-022-01282-8 – volume: 17 start-page: 2295 year: 2025 ident: 10.1016/j.tips.2025.08.007_bb0495 article-title: Recent progress of nanomedicine for the synergetic treatment of radiotherapy (RT) and photothermal treatment (PTT) publication-title: Cancers doi: 10.3390/cancers17142295 – volume: 135 start-page: 359 year: 2014 ident: 10.1016/j.tips.2025.08.007_bb0185 article-title: Role of Toll-like receptors in cervical, endometrial and ovarian cancers: a review publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2014.08.013 – volume: 11 year: 2020 ident: 10.1016/j.tips.2025.08.007_bb0065 article-title: MPL adjuvant contains competitive antagonists of human TLR4 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.577823 – volume: 32 year: 2020 ident: 10.1016/j.tips.2025.08.007_bb0255 article-title: Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108053 – year: 2025 ident: 10.1016/j.tips.2025.08.007_bb0485 article-title: Integrating artificial intelligence in nanomaterials science: pathways to revolutionary materials discovery and design. Ethics and risks – volume: 36 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0540 article-title: Sulfate radical based in situ vaccine boosts systemic antitumor immunity via concurrent activation of necroptosis and STING pathway publication-title: Adv. Mater. doi: 10.1002/adma.202407914 – volume: 16 start-page: 289 year: 2017 ident: 10.1016/j.tips.2025.08.007_bb0460 article-title: Calcium phosphate: a substitute for aluminum adjuvants? publication-title: Expert Rev. Vaccines doi: 10.1080/14760584.2017.1244484 – volume: 17 start-page: 68 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0385 article-title: Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-024-01589-8 – volume: 8 start-page: 1250 year: 2018 ident: 10.1016/j.tips.2025.08.007_bb0500 article-title: SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-18-0280 – volume: 13 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0335 article-title: Manganese-modified aluminum adjuvant enhances both humoral and cellular immune responses publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202401675 – volume: 113 start-page: 259 year: 2004 ident: 10.1016/j.tips.2025.08.007_bb0450 article-title: Age at first measles-mumps-rubella vaccination in children with autism and school-matched control subjects: a population-based study in metropolitan atlanta publication-title: Pediatrics doi: 10.1542/peds.113.2.259 – volume: 352 start-page: 497 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0375 article-title: Nanoadjuvants actively targeting lymph node conduits and blocking tumor invasion in lymphatic vessels publication-title: J. Control. Release doi: 10.1016/j.jconrel.2022.10.053 – volume: 18 start-page: 23 year: 2011 ident: 10.1016/j.tips.2025.08.007_bb0020 article-title: Translating tumor antigens into cancer vaccines publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.00286-10 – volume: 2018 year: 2018 ident: 10.1016/j.tips.2025.08.007_bb0210 article-title: The role of zinc and zinc homeostasis in macrophage function publication-title: J Immunol Res doi: 10.1155/2018/6872621 – volume: 109 start-page: 19380 year: 2012 ident: 10.1016/j.tips.2025.08.007_bb0295 article-title: Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1213868109 – volume: 7 start-page: 374 year: 2016 ident: 10.1016/j.tips.2025.08.007_bb0195 article-title: Cobalt ions recruit inflammatory cells in vitro through human Toll-like receptor 4 publication-title: Biochem. Biophys. Rep. – volume: 56 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0325 article-title: Nanoalum adjuvanted vaccines: small details make a big difference publication-title: Semin. Immunol. doi: 10.1016/j.smim.2021.101544 – volume: 7 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0225 article-title: Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4468 – volume: 20 start-page: 3328 year: 2019 ident: 10.1016/j.tips.2025.08.007_bb0230 article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20133328 – volume: 3 start-page: 386 year: 2013 ident: 10.1016/j.tips.2025.08.007_bb0085 article-title: ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.01.009 – volume: 10 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0250 article-title: cGAS-STING pathway activation and systemic anti-tumor immunity induction via photodynamic nanoparticles with potent toxic platinum DNA intercalator against uveal melanoma publication-title: Adv. Sci. doi: 10.1002/advs.202302895 – volume: 10 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0160 article-title: Recent advances in nanoadjuvant-triggered STING activation for enhanced cancer immunotherapy publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e38900 – volume: 15 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0400 article-title: Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/s41467-024-54469-7 – year: 2025 ident: 10.1016/j.tips.2025.08.007_bb0445 article-title: Aluminum-adsorbed vaccines and chronic diseases in childhood publication-title: Ann. Internal Med. doi: 10.7326/ANNALS-25-00997 – volume: 33 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0060 article-title: ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity publication-title: Adv. Mater. doi: 10.1002/adma.202007910 – volume: 11 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0350 article-title: An immunomodulatory zinc-alum/ovalbumin nanovaccine boosts cancer metalloimmunotherapy through erythrocyte-assisted cascade immune activation publication-title: Adv. Sci. (Weinh) – volume: 18 start-page: 2841 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0470 article-title: Mn2+/CpG oligodeoxynucleotides codecorated black phosphorus nanosheet platform for enhanced antitumor potency in multimodal therapy publication-title: ACS Nano doi: 10.1021/acsnano.3c07123 – volume: 184 start-page: 5309 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0490 article-title: Hallmarks of response, resistance, and toxicity to immune checkpoint blockade publication-title: Cell doi: 10.1016/j.cell.2021.09.020 – volume: 58 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0125 article-title: Metal-based nanoparticles promote the activation of cGAS-STING pathway for enhanced cancer immunotherapy publication-title: Nano Today doi: 10.1016/j.nantod.2024.102445 – volume: 9 start-page: 527 year: 2021 ident: 10.1016/j.tips.2025.08.007_bb0280 article-title: ROS cocktails as an adjuvant for personalized antitumor vaccination? publication-title: Vaccines (Basel) doi: 10.3390/vaccines9050527 – volume: 44 start-page: 1768 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0240 article-title: cGAS-STING pathway agonists are promising vaccine adjuvants publication-title: Med. Res. Rev. doi: 10.1002/med.22016 – volume: 6 start-page: 3574 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0265 article-title: A coordinative dendrimer-based nanovaccine for cancer treatment publication-title: Matter doi: 10.1016/j.matt.2023.08.001 – volume: 36 start-page: 151 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0455 article-title: The myth of vaccination and autism spectrum publication-title: Eur. J. Paediatr. Neurol. doi: 10.1016/j.ejpn.2021.12.011 – volume: 18 start-page: 30701 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0425 article-title: Spleen-targeted mRNA vaccine doped with manganese adjuvant for robust anticancer immunity in vivo publication-title: ACS Nano doi: 10.1021/acsnano.4c09902 – volume: 17 start-page: 31 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0035 article-title: Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-024-01544-7 – volume: 5 start-page: 352 year: 2014 ident: 10.1016/j.tips.2025.08.007_bb0285 article-title: Reactive oxygen species at the crossroads of inflammasome and inflammation publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00352 – volume: 39 start-page: 2515 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0530 article-title: Real-world effectiveness of sipuleucel-T on overall survival in men with advanced prostate cancer treated with androgen receptor-targeting agents publication-title: Adv. Ther. doi: 10.1007/s12325-022-02085-6 – volume: 9 start-page: 287 year: 2009 ident: 10.1016/j.tips.2025.08.007_bb0080 article-title: Towards an understanding of the adjuvant action of aluminium publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2510 – volume: 136 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0315 article-title: Multifunctional manganese-containing vaccine delivery system Ca@MnCO(3)/LLO for tumor immunotherapy publication-title: Biomater. Adv. doi: 10.1016/j.bioadv.2022.212752 – volume: 8 start-page: 1073 year: 2024 ident: 10.1016/j.tips.2025.08.007_bb0070 article-title: Strategies for the development of metalloimmunotherapies publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-024-01221-7 – volume: 3 start-page: 911 year: 2022 ident: 10.1016/j.tips.2025.08.007_bb0005 article-title: Cancer vaccines: the next immunotherapy frontier publication-title: Nat. Cancer doi: 10.1038/s43018-022-00418-6 – volume: 17 start-page: 14475 year: 2023 ident: 10.1016/j.tips.2025.08.007_bb0475 article-title: Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity publication-title: ACS Nano doi: 10.1021/acsnano.3c00901 – volume: 18 start-page: 59 year: 2020 ident: 10.1016/j.tips.2025.08.007_bb0040 article-title: Tumor microenvironment complexity and therapeutic implications at a glance publication-title: Cell Commun. Signal. doi: 10.1186/s12964-020-0530-4 – volume: 228 start-page: 26 year: 2016 ident: 10.1016/j.tips.2025.08.007_bb0440 article-title: Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.02.035 |
| SSID | ssj0003321 |
| Score | 2.4882903 |
| SecondaryResourceType | review_article |
| Snippet | Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic... HighlightsMetal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.... Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 958 |
| SubjectTerms | adjuvant Adjuvants, Immunologic - administration & dosage Adjuvants, Immunologic - chemistry Adjuvants, Immunologic - pharmacology Advanced Basic Science Animals cancer vaccine Cancer Vaccines - administration & dosage Cancer Vaccines - immunology Humans immunotherapy metal-based nanoparticle Neoplasms - immunology Neoplasms - therapy |
| Title | Bimetallic nanoadjuvants for cancer vaccines |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S016561472500183X https://www.clinicalkey.es/playcontent/1-s2.0-S016561472500183X https://dx.doi.org/10.1016/j.tips.2025.08.007 https://www.ncbi.nlm.nih.gov/pubmed/40973570 https://www.proquest.com/docview/3252535139 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321 issn: 0165-6147 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321 issn: 0165-6147 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-3735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321 issn: 0165-6147 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321 issn: 0165-6147 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321 issn: 0165-6147 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6Ivvgi3p2XEUF8cXVd0qzt4xTHVBziBfYWkiaDDu3Gug324m_3pBeHeANfCgkNaU9OzveFnAvAiYeU1e1z6SA8hI5HdeBI5ikHoU-5ge43ZXaje9dtdp69mx7vLcFlGQtj3SoL25_b9MxaFz31Qpr1URzXH20gDoKLjyDuomL2bAQ7tlCnz98Wbh6M0bwmYZM79u0icCb38ZrEI5uym_IsjactKfs9OP1EPjMQaq_DWsEeSSv_wA1YMskmnN7n6afnNfK0iKZKa-SU3C8SU8-3oHYRvxok2y9xRBKZDKUeTGfWD4YgcyWRXf8xmcnI3rWn2_DQvnq67DhFtQQnYgiyTmgCpijTSFBUJCXurSAKFDUKH9gfKBdFSn0dKJ9KPGSoCA8vUjX8Jo8o24HlZJiYPSBa8zBoGE9zW4qEy1DrsI-sTPkhl6zfqMBZKSMxyjNiiNJVbCCsRIWVqLDVLV2_AqwUoyhjPdE6CTTYv47yvxtl0mKDpaIhUipc8UUJKsA_Rn7Soz9nPC7XWOAGs7cmMjHDaSoY5ZQzjky5Arv54n_8t00Wxrjv7v9z1gNYta3cOfAQlifjqTlCkjNR1UyLq7DSur7tdN8B9ej5rA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4VOCyXFQsLFHbBSCsuNDS14zo57iKq8qoQFKk3y45dKRWbVqRF4sJv33EeVGgLSFxycGI5Ho_n-yzPA-BXgJTVH3LlITxEXkBN6CkWaA-hT_uhGbZVfqN71Wt374LzAR_U4KSKhXFulaXtL2x6bq3LlmYpzeYkSZq3LhAHwUUgiPuomIMlWAk4Fe4Edvw89_NgjBZFCdvcc5-XkTOFk9c0mbic3ZTneTxdTdnF6PQW-8xRqLMGX0v6SH4Xf_gNajZdh8PrIv_0U4P05-FUWYMckut5ZuqnDWj8Sf5aZNv3SUxSlY6VGc0enSMMQepKYqcAD-RRxe6yPfsON53T_knXK8sleDFDlPUiGzJNmUGGomOlcHOFcaip1fjA9lD7KFMqTKgFVXjK0DGeXpRuiTaPKduE5XSc2m0gxvAobNnAcFeLhKvImGiItEyLiCs2bNXhqJKRnBQpMWTlKzaSTqLSSVS68pa-qAOrxCirYE80TxIt9ru9xKJeNit3WCZbMqPSl_9pQR34S89XivThiAfVGkvcYe7aRKV2PMsko5xyxpEq12GrWPyXebtsYYwLf-eTo-7Dl27_6lJenvUudmHVvSk8BX_A8vRhZn8i45nqvVyj_wG4WPtB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+nanoadjuvants+for+cancer+vaccines&rft.jtitle=Trends+in+pharmacological+sciences+%28Regular+ed.%29&rft.au=Luo%2C+Jiangqi&rft.au=Wang%2C+Yue&rft.au=Yu%2C+Chengzhong&rft.au=Yang%2C+Yannan&rft.date=2025-10-01&rft.eissn=1873-3735&rft.volume=46&rft.issue=10&rft.spage=958&rft_id=info:doi/10.1016%2Fj.tips.2025.08.007&rft_id=info%3Apmid%2F40973570&rft.externalDocID=40973570 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01656147%2FS0165614725X00109%2Fcov150h.gif |