Bimetallic nanoadjuvants for cancer vaccines

Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–S...

Full description

Saved in:
Bibliographic Details
Published inTrends in pharmacological sciences (Regular ed.) Vol. 46; no. 10; pp. 958 - 974
Main Authors Luo, Jiangqi, Wang, Yue, Yu, Chengzhong, Yang, Yannan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN0165-6147
1873-3735
1873-3735
DOI10.1016/j.tips.2025.08.007

Cover

Abstract Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) and NLR family pyrin domain containing 3 (NLRP3), overcoming limitations of single-metal adjuvants for enhanced T cell responses in cancer vaccines.Strategic selection of metal pairings in BMNAs can lead to controlled ion release, optimized pharmacokinetics and biosafety, enhanced antigen cross-presentation, and promoted immune activation, yielding superior antitumor efficacy in preclinical models.Aluminum salts (alum) and calcium phosphate were clinically approved as adjuvants in the last century, and an increasing number of metal ions, such as manganese, are now entering clinical trials, highlighting the strong potential of BMNAs for clinical translation. Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation. Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.
AbstractList Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) and NLR family pyrin domain containing 3 (NLRP3), overcoming limitations of single-metal adjuvants for enhanced T cell responses in cancer vaccines.Strategic selection of metal pairings in BMNAs can lead to controlled ion release, optimized pharmacokinetics and biosafety, enhanced antigen cross-presentation, and promoted immune activation, yielding superior antitumor efficacy in preclinical models.Aluminum salts (alum) and calcium phosphate were clinically approved as adjuvants in the last century, and an increasing number of metal ions, such as manganese, are now entering clinical trials, highlighting the strong potential of BMNAs for clinical translation. Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation. Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.
Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.
Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use. Unfortunately, they mainly induce antibody responses and are ineffective at eliciting strong T cell immunity, limiting their use in cancer vaccines. Recent advances reveal the mechanisms of various metal ions in modulating immune signaling. By integrating the synergistic immunomodulation of metal ion pairings with nanotechnology, bimetallic nanoadjuvants (BMNAs) are revolutionizing cancer vaccine. This approach overcomes the limitation of conventional single metal adjuvants by enabling multiplexed immune activation, leading to robust T cell responses for tumor control. This review highlights the immunological mechanisms of metal ions, the rationale behind their pairing in BMNAs, and current challenges for clinical translation.
HighlightsMetal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities. Bimetallic nanoadjuvants (BMNAs) synergistically activate multiple immune signaling pathways, such as GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) and NLR family pyrin domain containing 3 (NLRP3), overcoming limitations of single-metal adjuvants for enhanced T cell responses in cancer vaccines. Strategic selection of metal pairings in BMNAs can lead to controlled ion release, optimized pharmacokinetics and biosafety, enhanced antigen cross-presentation, and promoted immune activation, yielding superior antitumor efficacy in preclinical models. Aluminum salts (alum) and calcium phosphate were clinically approved as adjuvants in the last century, and an increasing number of metal ions, such as manganese, are now entering clinical trials, highlighting the strong potential of BMNAs for clinical translation.
Author Yu, Chengzhong
Wang, Yue
Yang, Yannan
Luo, Jiangqi
Author_xml – sequence: 1
  givenname: Jiangqi
  surname: Luo
  fullname: Luo, Jiangqi
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
– sequence: 2
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
– sequence: 3
  givenname: Chengzhong
  surname: Yu
  fullname: Yu, Chengzhong
  email: c.yu@uq.edu.au
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
– sequence: 4
  givenname: Yannan
  orcidid: 0000-0001-6696-3879
  surname: Yang
  fullname: Yang, Yannan
  email: yannan.yang@adelaide.edu.au
  organization: South Australian ImmunoGENomics Cancer Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40973570$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrFDEUx4O0tNvaL9BD2aMHZ_qSNJOsiKBF20KhUD14C8mbt5BxNrMmMwv99mbY6kHQXhIIv_8_vN87YQdxiMTYOYeaA28uu3oM21wLEKoGUwPoV2zBjZaV1FIdsEWBVNXwK33MTnLuAEBKwY_Y8RWsCqFhwd5-ChsaXd8HXEYXB9d2087FMS_XQ1qii0hpuXOIIVJ-zQ7Xrs909nyfsscvn79d31b3Dzd31x_vK5RNw6sVGemFbBVXHp1Tkhs0XpAvR3k3HpBaoVvjtXC6MR5XDTjPdaNQyFP2Zl-6TcPPifJoNyEj9b2LNEzZSqGEkorLVUEvntHJb6i12xQ2Lj3Z3-MVQOwBTEPOidZ_EA52dmg7Ozu0s0MLxhaHJfR-H6Iy4i5QshkDFRFtSISjbYfw__iHv-LYhxjQ9T_oiXI3TCkWeZbbLCzYr_OS5h0JBcCN_F4K3v274KXffwFUiqE6
Cites_doi 10.3389/fphar.2014.00115
10.1126/science.1076514
10.1038/s41392-023-01654-7
10.1177/0748233717712409
10.1002/VIW.20220067
10.3390/pharmaceutics15051346
10.1080/21645515.2021.1964316
10.1038/s43018-023-00600-4
10.4049/jimmunol.181.1.17
10.1155/2024/7502110
10.3390/jcm12031098
10.1038/s41467-020-17749-6
10.2147/ITT.S202006
10.1021/acsnano.3c09968
10.1016/j.cell.2022.06.035
10.3390/pharmaceutics15061756
10.1021/acsnano.4c17491
10.1016/j.toxlet.2014.08.008
10.1186/s12943-024-02130-8
10.1016/j.nantod.2024.102446
10.1186/s12989-024-00571-z
10.15252/embr.202051280
10.3390/cancers14246091
10.1016/j.biomaterials.2021.121261
10.1126/scisignal.aat9900
10.1016/j.jconrel.2023.04.036
10.1021/acsnano.5c04365
10.1002/advs.202405729
10.4049/jimmunol.1700712
10.1016/j.tibs.2022.05.005
10.1016/j.colsurfa.2017.09.043
10.1038/s41568-025-00820-z
10.1016/j.semcdb.2020.12.008
10.1016/j.tplants.2016.08.002
10.1038/s41578-021-00358-0
10.1021/acsnano.3c11374
10.1038/ni.1919
10.1038/s42003-021-02532-0
10.1038/s41423-021-00669-w
10.1126/sciadv.adu3919
10.1186/s12951-023-01782-w
10.1002/eji.200526124
10.1084/jem.20181218
10.1002/smll.202203952
10.1186/s12951-024-02999-z
10.1038/s41420-021-00579-w
10.1084/jem.20011672
10.1016/j.bioactmat.2023.11.017
10.1021/acs.nanolett.3c01963
10.1111/imm.12276
10.1016/j.nantod.2024.102352
10.1039/D1SC05319A
10.1002/adma.202202168
10.1002/adhm.202402358
10.1021/acsnano.4c02685
10.1016/j.biomaterials.2022.121533
10.1016/j.biomaterials.2021.120739
10.1002/adfm.202209291
10.3390/vaccines11061030
10.3390/pharmaceutics11100493
10.1186/s13045-022-01282-8
10.3390/cancers17142295
10.1016/j.ygyno.2014.08.013
10.3389/fimmu.2020.577823
10.1016/j.celrep.2020.108053
10.1002/adma.202407914
10.1080/14760584.2017.1244484
10.1186/s13045-024-01589-8
10.1158/2159-8290.CD-18-0280
10.1002/adhm.202401675
10.1542/peds.113.2.259
10.1016/j.jconrel.2022.10.053
10.1128/CVI.00286-10
10.1155/2018/6872621
10.1073/pnas.1213868109
10.1016/j.smim.2021.101544
10.1126/sciadv.abf4468
10.3390/ijms20133328
10.1016/j.celrep.2013.01.009
10.1002/advs.202302895
10.1016/j.heliyon.2024.e38900
10.1038/s41467-024-54469-7
10.7326/ANNALS-25-00997
10.1002/adma.202007910
10.1021/acsnano.3c07123
10.1016/j.cell.2021.09.020
10.1016/j.nantod.2024.102445
10.3390/vaccines9050527
10.1002/med.22016
10.1016/j.matt.2023.08.001
10.1016/j.ejpn.2021.12.011
10.1021/acsnano.4c09902
10.1186/s13045-024-01544-7
10.3389/fphys.2014.00352
10.1007/s12325-022-02085-6
10.1038/nri2510
10.1016/j.bioadv.2022.212752
10.1038/s41551-024-01221-7
10.1038/s43018-022-00418-6
10.1021/acsnano.3c00901
10.1186/s12964-020-0530-4
10.1016/j.jconrel.2016.02.035
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.tips.2025.08.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3735
EndPage 974
ExternalDocumentID 40973570
10_1016_j_tips_2025_08_007
S016561472500183X
1_s2_0_S016561472500183X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1CY
1KJ
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
8WZ
9JM
A6W
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABOCM
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HMT
HVGLF
HZ~
IH2
IHE
J1W
KOM
M2V
M34
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
O9.
OAUVE
OGGZJ
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SPT
SSN
SSP
SSZ
T5K
TAE
WUQ
X7M
XJT
Z5R
ZGI
ZKB
ZXP
~02
~G-
~HD
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3661-9e83b23d515bcaa5318c8b2eb8b2b238b0ced27d8b72a768bc960ab1765c23
IEDL.DBID .~1
ISSN 0165-6147
1873-3735
IngestDate Sun Sep 28 08:50:03 EDT 2025
Mon Oct 06 01:43:17 EDT 2025
Thu Oct 09 00:18:14 EDT 2025
Sat Oct 25 17:19:00 EDT 2025
Sat Oct 25 09:10:08 EDT 2025
Sat Oct 25 11:11:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords metal-based nanoparticle
cancer vaccine
adjuvant
immunotherapy
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3661-9e83b23d515bcaa5318c8b2eb8b2b238b0ced27d8b72a768bc960ab1765c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6696-3879
PMID 40973570
PQID 3252535139
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3252535139
pubmed_primary_40973570
crossref_primary_10_1016_j_tips_2025_08_007
elsevier_sciencedirect_doi_10_1016_j_tips_2025_08_007
elsevier_clinicalkeyesjournals_1_s2_0_S016561472500183X
elsevier_clinicalkey_doi_10_1016_j_tips_2025_08_007
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in pharmacological sciences (Regular ed.)
PublicationTitleAlternate Trends Pharmacol Sci
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Naletova (bb0100) 2023; 15
Huang (bb0315) 2022; 136
Li (bb0170) 2024; 18
Mittler (bb0275) 2017; 22
Meng (bb0465) 2022; 34
Xiao (bb0390) 2023; 33
Masson (bb0460) 2017; 16
Dalod (bb0270) 2002; 195
Howlett (bb0365) 2024
Lu (bb0510) 2022; 18
Dudley (bb0025) 2002; 298
Deng (bb0395) 2024; 33
Hou (bb0435) 2021; 6
Guo (bb0105) 2024; 36
Huang (bb0355) 2025; 19
Gao (bb0210) 2018; 2018
Ren (bb0340) 2024; 11
Liu (bb0375) 2022; 352
Zheng (bb0360) 2025; 19
Zhang (bb0525) 2023; 12
Huang (bb0540) 2024; 36
Lee (bb0145) 2019; 216
Ribas (bb0500) 2018; 8
Zhang (bb0515) 2024; 58
Sarkar (bb0115) 2019; 12
Li (bb0330) 2008; 181
Furuta (bb0295) 2012; 109
Cen (bb0415) 2021; 33
Shi (bb0300) 2023; 23
Dong (bb0310) 2024; 57
Zhang (bb0165) 2024; 23
Bajoria (bb0320) 2023; 11
Zhang (bb0150) 2023; 15
Sun (bb0070) 2024; 8
Buonaguro (bb0020) 2011; 18
Sellars (bb0015) 2022; 185
Roy (bb0090) 2014; 230
Hildenbrand (bb0180) 2022; 47
Li (bb0125) 2024; 58
Kelley (bb0230) 2019; 20
Tao (bb0250) 2023; 10
Clemen, Bekeschus (bb0280) 2021; 9
Tie (bb0030) 2022; 15
Raponi (bb0325) 2021; 56
Liang (bb0120) 2017; 33
Guallar-Garrido, Julian (bb0520) 2020; 9
Baghban (bb0040) 2020; 18
Wang (bb0065) 2020; 11
Wang (bb0155) 2024; 21
Zhang (bb0385) 2024; 17
Xie (bb0480) 2024; 18
Lin (bb0005) 2022; 3
Stillman (bb0110) 2023; 21
Deigendesch (bb0130) 2018; 200
Zhao (bb0255) 2020; 32
Zhu (bb0505) 2023; 4
Babolmorad (bb0200) 2021; 22
Ling (bb0470) 2024; 18
Goga (bb0485) 2025
Zhang (bb0260) 2021; 18
Danielsson, Eriksson (bb0075) 2021; 115
Roy (bb0135) 2014; 142
Angelova, Yordanov (bb0140) 2017; 535
Dutra, Bozza (bb0205) 2014; 5
Husseinzadeh, Davenport (bb0185) 2014; 135
Morad (bb0490) 2021; 184
Dai (bb0405) 2022; 280
Luo (bb0425) 2024; 18
Zaidi (bb0010) 2025; 25
Marrack (bb0080) 2009; 9
Lerner (bb0290) 2023; 4
DeStefano (bb0450) 2004; 113
Sharma (bb0220) 2019; 11
Xu (bb0245) 2024; 22
Cen (bb0345) 2024; 2024
Zachou (bb0495) 2025; 17
von Beust (bb0055) 2005; 35
Gabis (bb0455) 2022; 36
Shi (bb0475) 2023; 17
Andersson (bb0445) 2025
Tapia-Abellán (bb0225) 2021; 7
Tian (bb0240) 2024; 44
Tang (bb0370) 2022; 13
Xu (bb0430) 2023; 8
Zhao (bb0350) 2024; 11
Guan (bb0400) 2024; 15
Schmidt (bb0190) 2010; 11
Hu (bb0095) 2025; 11
Yang (bb0410) 2021; 271
Bhatnagar (bb0050) 2022; 14
Sun (bb0175) 2024; 18
Zhuang (bb0440) 2016; 228
Qiao (bb0305) 2023; 358
Lin (bb0035) 2024; 17
Jäger (bb0235) 2020; 11
Sun (bb0060) 2021; 33
Cao (bb0265) 2023; 6
Lushpa (bb0215) 2021; 4
Hafron (bb0530) 2022; 39
Li (bb0335) 2024; 13
Liu (bb0085) 2013; 3
Harijith (bb0285) 2014; 5
Yu (bb0380) 2021; 7
Sun (bb0045) 2021; 17
Xu (bb0160) 2024; 10
Li (bb0535) 2024; 10
Dai (bb0420) 2022; 284
Lawrence (bb0195) 2016; 7
Hou (10.1016/j.tips.2025.08.007_bb0435) 2021; 6
Clemen (10.1016/j.tips.2025.08.007_bb0280) 2021; 9
Dai (10.1016/j.tips.2025.08.007_bb0420) 2022; 284
Lushpa (10.1016/j.tips.2025.08.007_bb0215) 2021; 4
Qiao (10.1016/j.tips.2025.08.007_bb0305) 2023; 358
Ribas (10.1016/j.tips.2025.08.007_bb0500) 2018; 8
Schmidt (10.1016/j.tips.2025.08.007_bb0190) 2010; 11
Danielsson (10.1016/j.tips.2025.08.007_bb0075) 2021; 115
Sun (10.1016/j.tips.2025.08.007_bb0045) 2021; 17
Gao (10.1016/j.tips.2025.08.007_bb0210) 2018; 2018
Shi (10.1016/j.tips.2025.08.007_bb0300) 2023; 23
Guo (10.1016/j.tips.2025.08.007_bb0105) 2024; 36
Howlett (10.1016/j.tips.2025.08.007_bb0365) 2024
Lin (10.1016/j.tips.2025.08.007_bb0005) 2022; 3
Roy (10.1016/j.tips.2025.08.007_bb0090) 2014; 230
Zhang (10.1016/j.tips.2025.08.007_bb0165) 2024; 23
Dutra (10.1016/j.tips.2025.08.007_bb0205) 2014; 5
Dong (10.1016/j.tips.2025.08.007_bb0310) 2024; 57
Li (10.1016/j.tips.2025.08.007_bb0330) 2008; 181
Xu (10.1016/j.tips.2025.08.007_bb0430) 2023; 8
Bhatnagar (10.1016/j.tips.2025.08.007_bb0050) 2022; 14
Liu (10.1016/j.tips.2025.08.007_bb0085) 2013; 3
Masson (10.1016/j.tips.2025.08.007_bb0460) 2017; 16
Dalod (10.1016/j.tips.2025.08.007_bb0270) 2002; 195
Sun (10.1016/j.tips.2025.08.007_bb0070) 2024; 8
Yu (10.1016/j.tips.2025.08.007_bb0380) 2021; 7
Yang (10.1016/j.tips.2025.08.007_bb0410) 2021; 271
Morad (10.1016/j.tips.2025.08.007_bb0490) 2021; 184
Raponi (10.1016/j.tips.2025.08.007_bb0325) 2021; 56
Babolmorad (10.1016/j.tips.2025.08.007_bb0200) 2021; 22
Shi (10.1016/j.tips.2025.08.007_bb0475) 2023; 17
Zhang (10.1016/j.tips.2025.08.007_bb0515) 2024; 58
Zhang (10.1016/j.tips.2025.08.007_bb0525) 2023; 12
Lin (10.1016/j.tips.2025.08.007_bb0035) 2024; 17
Lawrence (10.1016/j.tips.2025.08.007_bb0195) 2016; 7
Lerner (10.1016/j.tips.2025.08.007_bb0290) 2023; 4
Xu (10.1016/j.tips.2025.08.007_bb0160) 2024; 10
Tian (10.1016/j.tips.2025.08.007_bb0240) 2024; 44
Sun (10.1016/j.tips.2025.08.007_bb0060) 2021; 33
Marrack (10.1016/j.tips.2025.08.007_bb0080) 2009; 9
Cen (10.1016/j.tips.2025.08.007_bb0345) 2024; 2024
Naletova (10.1016/j.tips.2025.08.007_bb0100) 2023; 15
DeStefano (10.1016/j.tips.2025.08.007_bb0450) 2004; 113
Tie (10.1016/j.tips.2025.08.007_bb0030) 2022; 15
Zhang (10.1016/j.tips.2025.08.007_bb0260) 2021; 18
Li (10.1016/j.tips.2025.08.007_bb0335) 2024; 13
Huang (10.1016/j.tips.2025.08.007_bb0540) 2024; 36
Tao (10.1016/j.tips.2025.08.007_bb0250) 2023; 10
Guallar-Garrido (10.1016/j.tips.2025.08.007_bb0520) 2020; 9
Tapia-Abellán (10.1016/j.tips.2025.08.007_bb0225) 2021; 7
Xu (10.1016/j.tips.2025.08.007_bb0245) 2024; 22
Mittler (10.1016/j.tips.2025.08.007_bb0275) 2017; 22
Hu (10.1016/j.tips.2025.08.007_bb0095) 2025; 11
Li (10.1016/j.tips.2025.08.007_bb0535) 2024; 10
Xiao (10.1016/j.tips.2025.08.007_bb0390) 2023; 33
Li (10.1016/j.tips.2025.08.007_bb0170) 2024; 18
Cao (10.1016/j.tips.2025.08.007_bb0265) 2023; 6
Zachou (10.1016/j.tips.2025.08.007_bb0495) 2025; 17
Buonaguro (10.1016/j.tips.2025.08.007_bb0020) 2011; 18
Wang (10.1016/j.tips.2025.08.007_bb0065) 2020; 11
Deigendesch (10.1016/j.tips.2025.08.007_bb0130) 2018; 200
Harijith (10.1016/j.tips.2025.08.007_bb0285) 2014; 5
Zheng (10.1016/j.tips.2025.08.007_bb0360) 2025; 19
Kelley (10.1016/j.tips.2025.08.007_bb0230) 2019; 20
Cen (10.1016/j.tips.2025.08.007_bb0415) 2021; 33
Sharma (10.1016/j.tips.2025.08.007_bb0220) 2019; 11
Ren (10.1016/j.tips.2025.08.007_bb0340) 2024; 11
Guan (10.1016/j.tips.2025.08.007_bb0400) 2024; 15
Zhang (10.1016/j.tips.2025.08.007_bb0150) 2023; 15
Deng (10.1016/j.tips.2025.08.007_bb0395) 2024; 33
Dai (10.1016/j.tips.2025.08.007_bb0405) 2022; 280
Luo (10.1016/j.tips.2025.08.007_bb0425) 2024; 18
Xie (10.1016/j.tips.2025.08.007_bb0480) 2024; 18
Hafron (10.1016/j.tips.2025.08.007_bb0530) 2022; 39
Goga (10.1016/j.tips.2025.08.007_bb0485) 2025
Sun (10.1016/j.tips.2025.08.007_bb0175) 2024; 18
Sarkar (10.1016/j.tips.2025.08.007_bb0115) 2019; 12
Zhao (10.1016/j.tips.2025.08.007_bb0255) 2020; 32
Furuta (10.1016/j.tips.2025.08.007_bb0295) 2012; 109
Zhang (10.1016/j.tips.2025.08.007_bb0385) 2024; 17
Roy (10.1016/j.tips.2025.08.007_bb0135) 2014; 142
Liu (10.1016/j.tips.2025.08.007_bb0375) 2022; 352
Angelova (10.1016/j.tips.2025.08.007_bb0140) 2017; 535
Dudley (10.1016/j.tips.2025.08.007_bb0025) 2002; 298
Liang (10.1016/j.tips.2025.08.007_bb0120) 2017; 33
Li (10.1016/j.tips.2025.08.007_bb0125) 2024; 58
Meng (10.1016/j.tips.2025.08.007_bb0465) 2022; 34
Zhu (10.1016/j.tips.2025.08.007_bb0505) 2023; 4
Bajoria (10.1016/j.tips.2025.08.007_bb0320) 2023; 11
Wang (10.1016/j.tips.2025.08.007_bb0155) 2024; 21
Stillman (10.1016/j.tips.2025.08.007_bb0110) 2023; 21
Lu (10.1016/j.tips.2025.08.007_bb0510) 2022; 18
Lee (10.1016/j.tips.2025.08.007_bb0145) 2019; 216
Andersson (10.1016/j.tips.2025.08.007_bb0445) 2025
Husseinzadeh (10.1016/j.tips.2025.08.007_bb0185) 2014; 135
Tang (10.1016/j.tips.2025.08.007_bb0370) 2022; 13
Zhuang (10.1016/j.tips.2025.08.007_bb0440) 2016; 228
von Beust (10.1016/j.tips.2025.08.007_bb0055) 2005; 35
Sellars (10.1016/j.tips.2025.08.007_bb0015) 2022; 185
Huang (10.1016/j.tips.2025.08.007_bb0315) 2022; 136
Zhao (10.1016/j.tips.2025.08.007_bb0350) 2024; 11
Baghban (10.1016/j.tips.2025.08.007_bb0040) 2020; 18
Jäger (10.1016/j.tips.2025.08.007_bb0235) 2020; 11
Zaidi (10.1016/j.tips.2025.08.007_bb0010) 2025; 25
Ling (10.1016/j.tips.2025.08.007_bb0470) 2024; 18
Hildenbrand (10.1016/j.tips.2025.08.007_bb0180) 2022; 47
Huang (10.1016/j.tips.2025.08.007_bb0355) 2025; 19
Gabis (10.1016/j.tips.2025.08.007_bb0455) 2022; 36
References_xml – volume: 2018
  year: 2018
  ident: bb0210
  article-title: The role of zinc and zinc homeostasis in macrophage function
  publication-title: J Immunol Res
– volume: 184
  start-page: 5309
  year: 2021
  end-page: 5337
  ident: bb0490
  article-title: Hallmarks of response, resistance, and toxicity to immune checkpoint blockade
  publication-title: Cell
– volume: 21
  start-page: 39
  year: 2023
  ident: bb0110
  article-title: Aluminum-based metal–organic framework nanoparticles as pulmonary vaccine adjuvants
  publication-title: J. Nanobiotechnol.
– volume: 11
  year: 2024
  ident: bb0350
  article-title: An immunomodulatory zinc-alum/ovalbumin nanovaccine boosts cancer metalloimmunotherapy through erythrocyte-assisted cascade immune activation
  publication-title: Adv. Sci. (Weinh)
– volume: 33
  start-page: 737
  year: 2017
  end-page: 745
  ident: bb0120
  article-title: Reactive oxygen species trigger NF-kappaB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells
  publication-title: Toxicol. Ind. Health
– volume: 18
  start-page: 30701
  year: 2024
  end-page: 30715
  ident: bb0425
  article-title: Spleen-targeted mRNA vaccine doped with manganese adjuvant for robust anticancer immunity in vivo
  publication-title: ACS Nano
– volume: 9
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb0520
  article-title: Bacillus Calmette-Guerin (BCG) therapy for bladder cancer: an update
  publication-title: Immunotargets Ther.
– volume: 32
  year: 2020
  ident: bb0255
  article-title: Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP
  publication-title: Cell Rep.
– volume: 9
  start-page: 287
  year: 2009
  end-page: 293
  ident: bb0080
  article-title: Towards an understanding of the adjuvant action of aluminium
  publication-title: Nat. Rev. Immunol.
– volume: 19
  start-page: 13906
  year: 2025
  end-page: 13926
  ident: bb0355
  article-title: Zinc ion-coordinated sericin calcium phosphate nanovaccines induce hyperactive dendritic cells and synergistic activation of T cells for cancer immunotherapy
  publication-title: ACS Nano
– volume: 36
  start-page: 330
  year: 2024
  end-page: 357
  ident: bb0105
  article-title: Engineering customized nanovaccines for enhanced cancer immunotherapy
  publication-title: Bioact. Mater.
– volume: 7
  start-page: 374
  year: 2016
  end-page: 378
  ident: bb0195
  article-title: Cobalt ions recruit inflammatory cells in vitro through human Toll-like receptor 4
  publication-title: Biochem. Biophys. Rep.
– volume: 109
  start-page: 19380
  year: 2012
  end-page: 19385
  ident: bb0295
  article-title: Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  year: 2021
  ident: bb0225
  article-title: Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation
  publication-title: Sci. Adv.
– volume: 195
  start-page: 517
  year: 2002
  end-page: 528
  ident: bb0270
  article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression
  publication-title: J. Exp. Med.
– volume: 136
  year: 2022
  ident: bb0315
  article-title: Multifunctional manganese-containing vaccine delivery system Ca@MnCO(3)/LLO for tumor immunotherapy
  publication-title: Biomater. Adv.
– volume: 56
  year: 2021
  ident: bb0325
  article-title: Nanoalum adjuvanted vaccines: small details make a big difference
  publication-title: Semin. Immunol.
– volume: 284
  year: 2022
  ident: bb0420
  article-title: A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy
  publication-title: Biomaterials
– volume: 16
  start-page: 289
  year: 2017
  end-page: 299
  ident: bb0460
  article-title: Calcium phosphate: a substitute for aluminum adjuvants?
  publication-title: Expert Rev. Vaccines
– volume: 4
  start-page: 1258
  year: 2023
  end-page: 1272
  ident: bb0290
  article-title: CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis
  publication-title: Nat. Cancer
– volume: 113
  start-page: 259
  year: 2004
  end-page: 266
  ident: bb0450
  article-title: Age at first measles-mumps-rubella vaccination in children with autism and school-matched control subjects: a population-based study in metropolitan atlanta
  publication-title: Pediatrics
– volume: 14
  start-page: 6091
  year: 2022
  ident: bb0050
  article-title: Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy
  publication-title: Cancers
– volume: 58
  year: 2024
  ident: bb0125
  article-title: Metal-based nanoparticles promote the activation of cGAS-STING pathway for enhanced cancer immunotherapy
  publication-title: Nano Today
– volume: 3
  start-page: 911
  year: 2022
  end-page: 926
  ident: bb0005
  article-title: Cancer vaccines: the next immunotherapy frontier
  publication-title: Nat. Cancer
– volume: 7
  start-page: 193
  year: 2021
  ident: bb0380
  article-title: Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases
  publication-title: Cell Death Discov.
– volume: 230
  start-page: 421
  year: 2014
  end-page: 433
  ident: bb0090
  article-title: ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice
  publication-title: Toxicol. Lett.
– year: 2025
  ident: bb0445
  article-title: Aluminum-adsorbed vaccines and chronic diseases in childhood
  publication-title: Ann. Internal Med.
– volume: 33
  year: 2021
  ident: bb0060
  article-title: ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity
  publication-title: Adv. Mater.
– volume: 39
  start-page: 2515
  year: 2022
  end-page: 2532
  ident: bb0530
  article-title: Real-world effectiveness of sipuleucel-T on overall survival in men with advanced prostate cancer treated with androgen receptor-targeting agents
  publication-title: Adv. Ther.
– volume: 17
  start-page: 5546
  year: 2021
  end-page: 5557
  ident: bb0045
  article-title: Using PAMPs and DAMPs as adjuvants in cancer vaccines
  publication-title: Hum. Vaccin. Immunother.
– volume: 18
  year: 2022
  ident: bb0510
  article-title: Amplifying dendritic cell activation by bioinspired nanometal organic frameworks for synergistic sonoimmunotherapy
  publication-title: Small
– volume: 18
  start-page: 1222
  year: 2021
  end-page: 1234
  ident: bb0260
  article-title: Manganese salts function as potent adjuvants
  publication-title: Cell. Mol. Immunol.
– volume: 15
  start-page: 1756
  year: 2023
  ident: bb0150
  article-title: Research progress of aluminum phosphate adjuvants and their action mechanisms
  publication-title: Pharmaceutics
– volume: 10
  year: 2023
  ident: bb0250
  article-title: cGAS-STING pathway activation and systemic anti-tumor immunity induction via photodynamic nanoparticles with potent toxic platinum DNA intercalator against uveal melanoma
  publication-title: Adv. Sci.
– volume: 135
  start-page: 359
  year: 2014
  end-page: 363
  ident: bb0185
  article-title: Role of Toll-like receptors in cervical, endometrial and ovarian cancers: a review
  publication-title: Gynecol. Oncol.
– volume: 185
  start-page: 2770
  year: 2022
  end-page: 2788
  ident: bb0015
  article-title: Cancer vaccines: building a bridge over troubled waters
  publication-title: Cell
– volume: 8
  start-page: 1073
  year: 2024
  end-page: 1091
  ident: bb0070
  article-title: Strategies for the development of metalloimmunotherapies
  publication-title: Nat. Biomed. Eng.
– volume: 47
  start-page: 936
  year: 2022
  end-page: 949
  ident: bb0180
  article-title: Biogenesis and engineering of interleukin 12 family cytokines
  publication-title: Trends Biochem. Sci.
– volume: 5
  start-page: 115
  year: 2014
  ident: bb0205
  article-title: Heme on innate immunity and inflammation
  publication-title: Front. Pharmacol.
– volume: 18
  start-page: 2841
  year: 2024
  end-page: 2860
  ident: bb0470
  article-title: Mn2+/CpG oligodeoxynucleotides codecorated black phosphorus nanosheet platform for enhanced antitumor potency in multimodal therapy
  publication-title: ACS Nano
– volume: 15
  start-page: 61
  year: 2022
  ident: bb0030
  article-title: Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets
  publication-title: J. Hematol. Oncol.
– volume: 22
  start-page: 11
  year: 2017
  end-page: 19
  ident: bb0275
  article-title: ROS are good
  publication-title: Trends Plant Sci.
– volume: 57
  year: 2024
  ident: bb0310
  article-title: DNA programmed Mg-Al layered double hydroxide-based bi-adjuvant nanovaccines
  publication-title: Nano Today
– volume: 352
  start-page: 497
  year: 2022
  end-page: 506
  ident: bb0375
  article-title: Nanoadjuvants actively targeting lymph node conduits and blocking tumor invasion in lymphatic vessels
  publication-title: J. Control. Release
– volume: 216
  start-page: 2619
  year: 2019
  end-page: 2634
  ident: bb0145
  article-title: Host conditioning with IL-1beta improves the antitumor function of adoptively transferred T cells
  publication-title: J. Exp. Med.
– volume: 11
  start-page: 814
  year: 2010
  end-page: 819
  ident: bb0190
  article-title: Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel
  publication-title: Nat. Immunol.
– volume: 11
  year: 2024
  ident: bb0340
  article-title: 2D differential metallic immunopotentiators drive high diversity and capability of antigen-specific immunity against tumor
  publication-title: Adv. Sci.
– volume: 19
  start-page: 17900
  year: 2025
  end-page: 17916
  ident: bb0360
  article-title: Yeast-derived manganese and zinc metal-organic framework composite as a vaccine adjuvant for enhanced humoral and cellular immune responses
  publication-title: ACS Nano
– volume: 200
  start-page: 1607
  year: 2018
  end-page: 1617
  ident: bb0130
  article-title: Copper regulates the canonical NLRP3 inflammasome
  publication-title: J. Immunol.
– volume: 23
  start-page: 10657
  year: 2023
  end-page: 10666
  ident: bb0300
  article-title: Engineering crystallinity gradients for tailored CaO2 nanostructures: enabling alkalinity-reinforced anticancer activity with minimized Ca2+/H2O2 production
  publication-title: Nano Lett.
– volume: 18
  start-page: 16878
  year: 2024
  end-page: 16894
  ident: bb0170
  article-title: Silicon or calcium doping coordinates the immunostimulatory effects of aluminum oxyhydroxide nanoadjuvants in prophylactic vaccines
  publication-title: ACS Nano
– volume: 10
  year: 2024
  ident: bb0160
  article-title: Recent advances in nanoadjuvant-triggered STING activation for enhanced cancer immunotherapy
  publication-title: Heliyon
– volume: 4
  year: 2023
  ident: bb0505
  article-title: Tumor-targeted nano-adjuvants to synergize photomediated immunotherapy enhanced antitumor immunity
  publication-title: VIEW
– volume: 5
  start-page: 352
  year: 2014
  ident: bb0285
  article-title: Reactive oxygen species at the crossroads of inflammasome and inflammation
  publication-title: Front. Physiol.
– volume: 6
  start-page: 3574
  year: 2023
  end-page: 3597
  ident: bb0265
  article-title: A coordinative dendrimer-based nanovaccine for cancer treatment
  publication-title: Matter
– volume: 11
  start-page: 493
  year: 2019
  ident: bb0220
  article-title: Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy
  publication-title: Pharmaceutics
– volume: 12
  year: 2019
  ident: bb0115
  article-title: Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells
  publication-title: Sci. Signal.
– volume: 11
  start-page: 1030
  year: 2023
  ident: bb0320
  article-title: Nanoalum formulations containing aluminum hydroxide and CpG 1018(TM) adjuvants: the effect on stability and immunogenicity of a recombinant SARS-CoV-2 RBD antigen
  publication-title: Vaccines (Basel)
– volume: 18
  start-page: 1690
  year: 2024
  end-page: 1701
  ident: bb0480
  article-title: Designing peptide-based nanoinhibitors of programmed cell death ligand 1 (PD-L1) for enhanced chemo-immunotherapy
  publication-title: ACS Nano
– volume: 36
  year: 2024
  ident: bb0540
  article-title: Sulfate radical based in situ vaccine boosts systemic antitumor immunity via concurrent activation of necroptosis and STING pathway
  publication-title: Adv. Mater.
– volume: 228
  start-page: 26
  year: 2016
  end-page: 37
  ident: bb0440
  article-title: Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma
  publication-title: J. Control. Release
– volume: 18
  start-page: 23
  year: 2011
  end-page: 34
  ident: bb0020
  article-title: Translating tumor antigens into cancer vaccines
  publication-title: Clin. Vaccine Immunol.
– volume: 10
  year: 2024
  ident: bb0535
  article-title: Hybrid nanoparticle-mediated simultaneous ROS scavenging and STING activation improve the antitumor immunity of in situ vaccines
  publication-title: Sci. Adv.
– volume: 22
  year: 2021
  ident: bb0200
  article-title: Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity
  publication-title: EMBO Rep.
– volume: 535
  start-page: 184
  year: 2017
  end-page: 193
  ident: bb0140
  article-title: Iron(III) and aluminium(III) based mixed nanostructured hydroxyphosphates as potential vaccine adjuvants: preparation and physicochemical characterization
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 271
  year: 2021
  ident: bb0410
  article-title: Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy
  publication-title: Biomaterials
– volume: 11
  year: 2025
  ident: bb0095
  article-title: Lysosomal zinc nanomodulation blocks macrophage pyroptosis for counteracting atherosclerosis progression
  publication-title: Sci. Adv.
– volume: 280
  year: 2022
  ident: bb0405
  article-title: Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy
  publication-title: Biomaterials
– volume: 25
  start-page: 517
  year: 2025
  end-page: 533
  ident: bb0010
  article-title: Recent advances in therapeutic cancer vaccines
  publication-title: Nat. Rev. Cancer
– volume: 8
  start-page: 435
  year: 2023
  ident: bb0430
  article-title: Multifunctional mesoporous silica nanoparticles for biomedical applications
  publication-title: Signal Transduct. Target. Ther.
– volume: 23
  start-page: 255
  year: 2024
  ident: bb0165
  article-title: Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope
  publication-title: Mol. Cancer
– volume: 18
  start-page: 59
  year: 2020
  ident: bb0040
  article-title: Tumor microenvironment complexity and therapeutic implications at a glance
  publication-title: Cell Commun. Signal.
– volume: 9
  start-page: 527
  year: 2021
  ident: bb0280
  article-title: ROS cocktails as an adjuvant for personalized antitumor vaccination?
  publication-title: Vaccines (Basel)
– volume: 15
  year: 2024
  ident: bb0400
  article-title: Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy
  publication-title: Nat. Commun.
– volume: 21
  start-page: 9
  year: 2024
  ident: bb0155
  article-title: Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury
  publication-title: Part Fibre Toxicol.
– volume: 3
  start-page: 386
  year: 2013
  end-page: 400
  ident: bb0085
  article-title: ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB
  publication-title: Cell Rep.
– volume: 44
  start-page: 1768
  year: 2024
  end-page: 1799
  ident: bb0240
  article-title: cGAS-STING pathway agonists are promising vaccine adjuvants
  publication-title: Med. Res. Rev.
– volume: 11
  start-page: 4243
  year: 2020
  ident: bb0235
  article-title: Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis
  publication-title: Nat. Commun.
– year: 2025
  ident: bb0485
  article-title: Integrating artificial intelligence in nanomaterials science: pathways to revolutionary materials discovery and design. Ethics and risks
  publication-title: Selected Papers from the International Conference on Innovative Research
– volume: 17
  start-page: 31
  year: 2024
  ident: bb0035
  article-title: Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives
  publication-title: J. Hematol. Oncol.
– volume: 181
  start-page: 17
  year: 2008
  end-page: 21
  ident: bb0330
  article-title: Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP31
  publication-title: J. Immunol.
– volume: 20
  start-page: 3328
  year: 2019
  ident: bb0230
  article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation
  publication-title: Int. J. Mol. Sci.
– volume: 33
  start-page: 483
  year: 2024
  end-page: 496
  ident: bb0395
  article-title: Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening
  publication-title: Bioactive Mater.
– volume: 18
  start-page: 10439
  year: 2024
  end-page: 10453
  ident: bb0175
  article-title: Self-assembled STING-activating coordination nanoparticles for cancer immunotherapy and vaccine applications
  publication-title: ACS Nano
– volume: 17
  start-page: 2295
  year: 2025
  ident: bb0495
  article-title: Recent progress of nanomedicine for the synergetic treatment of radiotherapy (RT) and photothermal treatment (PTT)
  publication-title: Cancers
– volume: 115
  start-page: 3
  year: 2021
  end-page: 9
  ident: bb0075
  article-title: Aluminium adjuvants in vaccines - a way to modulate the immune response
  publication-title: Semin. Cell Dev. Biol.
– volume: 15
  start-page: 1346
  year: 2023
  ident: bb0100
  article-title: Prospects for the use of metal-based nanoparticles as adjuvants for local cancer immunotherapy
  publication-title: Pharmaceutics
– volume: 8
  start-page: 1250
  year: 2018
  end-page: 1257
  ident: bb0500
  article-title: SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study
  publication-title: Cancer Discov.
– volume: 35
  start-page: 1869
  year: 2005
  end-page: 1876
  ident: bb0055
  article-title: Improving the therapeutic index of CpG oligodeoxynucleotides by intralymphatic administration
  publication-title: Eur. J. Immunol.
– volume: 6
  start-page: 1078
  year: 2021
  end-page: 1094
  ident: bb0435
  article-title: Lipid nanoparticles for mRNA delivery
  publication-title: Nat. Rev. Mater.
– volume: 33
  year: 2023
  ident: bb0390
  article-title: Recent advances in calcium-based anticancer nanomaterials exploiting calcium overload to trigger cell apoptosis
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1003
  year: 2021
  ident: bb0215
  article-title: Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn2+ ions
  publication-title: Commun. Biol.
– volume: 12
  start-page: 1098
  year: 2023
  ident: bb0525
  article-title: Talimogene laherparepvec (T-VEC): a review of the recent advances in cancer therapy
  publication-title: J. Clin. Med.
– volume: 36
  start-page: 151
  year: 2022
  end-page: 158
  ident: bb0455
  article-title: The myth of vaccination and autism spectrum
  publication-title: Eur. J. Paediatr. Neurol.
– volume: 298
  start-page: 850
  year: 2002
  end-page: 854
  ident: bb0025
  article-title: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes
  publication-title: Science
– volume: 358
  start-page: 190
  year: 2023
  end-page: 203
  ident: bb0305
  article-title: A MnAl double adjuvant nanovaccine to induce strong humoral and cellular immune responses
  publication-title: J. Control. Release
– volume: 2024
  year: 2024
  ident: bb0345
  article-title: A unique combination of Mn(2+) and aluminum adjuvant acted the synergistic effect
  publication-title: Can. J. Infect. Dis. Med. Microbiol.
– volume: 33
  year: 2021
  ident: bb0415
  article-title: ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy
  publication-title: Adv. Mater.
– year: 2024
  ident: bb0365
  article-title: Mn and Zn-doped multivariate metal-organic framework as a metalloimmunological adjuvant to promote protection against tuberculosis infection
  publication-title: Adv. Healthc. Mater.
– volume: 22
  start-page: 782
  year: 2024
  ident: bb0245
  article-title: Zinc-based radioenhancers to activate tumor radioimmunotherapy by PD-L1 and cGAS-STING pathway
  publication-title: J. Nanobiotechnol.
– volume: 13
  start-page: 8507
  year: 2022
  end-page: 8517
  ident: bb0370
  article-title: Mesoporous sodium four-coordinate aluminosilicate nanoparticles modulate dendritic cell pyroptosis and activate innate and adaptive immunity
  publication-title: Chem. Sci.
– volume: 58
  year: 2024
  ident: bb0515
  article-title: Iron consumption strengthens anti-tumoral STING activation mediated by manganese-based nanoparticles
  publication-title: Nano Today
– volume: 142
  start-page: 453
  year: 2014
  end-page: 464
  ident: bb0135
  article-title: Toll-like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages
  publication-title: Immunology
– volume: 11
  year: 2020
  ident: bb0065
  article-title: MPL adjuvant contains competitive antagonists of human TLR4
  publication-title: Front. Immunol.
– volume: 13
  year: 2024
  ident: bb0335
  article-title: Manganese-modified aluminum adjuvant enhances both humoral and cellular immune responses
  publication-title: Adv. Healthc. Mater.
– volume: 34
  year: 2022
  ident: bb0465
  article-title: Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic cancer immunotherapy
  publication-title: Adv. Mater.
– volume: 17
  start-page: 68
  year: 2024
  ident: bb0385
  article-title: Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives
  publication-title: J. Hematol. Oncol.
– volume: 17
  start-page: 14475
  year: 2023
  end-page: 14493
  ident: bb0475
  article-title: Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity
  publication-title: ACS Nano
– volume: 5
  start-page: 115
  year: 2014
  ident: 10.1016/j.tips.2025.08.007_bb0205
  article-title: Heme on innate immunity and inflammation
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2014.00115
– volume: 298
  start-page: 850
  year: 2002
  ident: 10.1016/j.tips.2025.08.007_bb0025
  article-title: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes
  publication-title: Science
  doi: 10.1126/science.1076514
– volume: 8
  start-page: 435
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0430
  article-title: Multifunctional mesoporous silica nanoparticles for biomedical applications
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-023-01654-7
– volume: 33
  start-page: 737
  year: 2017
  ident: 10.1016/j.tips.2025.08.007_bb0120
  article-title: Reactive oxygen species trigger NF-kappaB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells
  publication-title: Toxicol. Ind. Health
  doi: 10.1177/0748233717712409
– volume: 4
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0505
  article-title: Tumor-targeted nano-adjuvants to synergize photomediated immunotherapy enhanced antitumor immunity
  publication-title: VIEW
  doi: 10.1002/VIW.20220067
– volume: 15
  start-page: 1346
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0100
  article-title: Prospects for the use of metal-based nanoparticles as adjuvants for local cancer immunotherapy
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics15051346
– volume: 17
  start-page: 5546
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0045
  article-title: Using PAMPs and DAMPs as adjuvants in cancer vaccines
  publication-title: Hum. Vaccin. Immunother.
  doi: 10.1080/21645515.2021.1964316
– volume: 4
  start-page: 1258
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0290
  article-title: CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-023-00600-4
– volume: 181
  start-page: 17
  year: 2008
  ident: 10.1016/j.tips.2025.08.007_bb0330
  article-title: Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP31
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.1.17
– volume: 2024
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0345
  article-title: A unique combination of Mn(2+) and aluminum adjuvant acted the synergistic effect
  publication-title: Can. J. Infect. Dis. Med. Microbiol.
  doi: 10.1155/2024/7502110
– volume: 12
  start-page: 1098
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0525
  article-title: Talimogene laherparepvec (T-VEC): a review of the recent advances in cancer therapy
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm12031098
– volume: 11
  start-page: 4243
  year: 2020
  ident: 10.1016/j.tips.2025.08.007_bb0235
  article-title: Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17749-6
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.tips.2025.08.007_bb0520
  article-title: Bacillus Calmette-Guerin (BCG) therapy for bladder cancer: an update
  publication-title: Immunotargets Ther.
  doi: 10.2147/ITT.S202006
– volume: 18
  start-page: 1690
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0480
  article-title: Designing peptide-based nanoinhibitors of programmed cell death ligand 1 (PD-L1) for enhanced chemo-immunotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c09968
– volume: 185
  start-page: 2770
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0015
  article-title: Cancer vaccines: building a bridge over troubled waters
  publication-title: Cell
  doi: 10.1016/j.cell.2022.06.035
– volume: 15
  start-page: 1756
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0150
  article-title: Research progress of aluminum phosphate adjuvants and their action mechanisms
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics15061756
– volume: 19
  start-page: 13906
  year: 2025
  ident: 10.1016/j.tips.2025.08.007_bb0355
  article-title: Zinc ion-coordinated sericin calcium phosphate nanovaccines induce hyperactive dendritic cells and synergistic activation of T cells for cancer immunotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c17491
– volume: 10
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0535
  article-title: Hybrid nanoparticle-mediated simultaneous ROS scavenging and STING activation improve the antitumor immunity of in situ vaccines
  publication-title: Sci. Adv.
– volume: 230
  start-page: 421
  year: 2014
  ident: 10.1016/j.tips.2025.08.007_bb0090
  article-title: ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2014.08.008
– volume: 23
  start-page: 255
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0165
  article-title: Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-024-02130-8
– volume: 58
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0515
  article-title: Iron consumption strengthens anti-tumoral STING activation mediated by manganese-based nanoparticles
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2024.102446
– volume: 21
  start-page: 9
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0155
  article-title: Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury
  publication-title: Part Fibre Toxicol.
  doi: 10.1186/s12989-024-00571-z
– volume: 22
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0200
  article-title: Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051280
– volume: 14
  start-page: 6091
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0050
  article-title: Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy
  publication-title: Cancers
  doi: 10.3390/cancers14246091
– volume: 280
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0405
  article-title: Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121261
– volume: 12
  year: 2019
  ident: 10.1016/j.tips.2025.08.007_bb0115
  article-title: Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aat9900
– volume: 358
  start-page: 190
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0305
  article-title: A MnAl double adjuvant nanovaccine to induce strong humoral and cellular immune responses
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2023.04.036
– volume: 19
  start-page: 17900
  year: 2025
  ident: 10.1016/j.tips.2025.08.007_bb0360
  article-title: Yeast-derived manganese and zinc metal-organic framework composite as a vaccine adjuvant for enhanced humoral and cellular immune responses
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5c04365
– volume: 11
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0340
  article-title: 2D differential metallic immunopotentiators drive high diversity and capability of antigen-specific immunity against tumor
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202405729
– volume: 200
  start-page: 1607
  year: 2018
  ident: 10.1016/j.tips.2025.08.007_bb0130
  article-title: Copper regulates the canonical NLRP3 inflammasome
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700712
– volume: 47
  start-page: 936
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0180
  article-title: Biogenesis and engineering of interleukin 12 family cytokines
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2022.05.005
– volume: 535
  start-page: 184
  year: 2017
  ident: 10.1016/j.tips.2025.08.007_bb0140
  article-title: Iron(III) and aluminium(III) based mixed nanostructured hydroxyphosphates as potential vaccine adjuvants: preparation and physicochemical characterization
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2017.09.043
– volume: 25
  start-page: 517
  year: 2025
  ident: 10.1016/j.tips.2025.08.007_bb0010
  article-title: Recent advances in therapeutic cancer vaccines
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-025-00820-z
– volume: 115
  start-page: 3
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0075
  article-title: Aluminium adjuvants in vaccines - a way to modulate the immune response
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2020.12.008
– volume: 22
  start-page: 11
  year: 2017
  ident: 10.1016/j.tips.2025.08.007_bb0275
  article-title: ROS are good
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 33
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0415
  article-title: ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1078
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0435
  article-title: Lipid nanoparticles for mRNA delivery
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00358-0
– volume: 18
  start-page: 10439
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0175
  article-title: Self-assembled STING-activating coordination nanoparticles for cancer immunotherapy and vaccine applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c11374
– volume: 11
  start-page: 814
  year: 2010
  ident: 10.1016/j.tips.2025.08.007_bb0190
  article-title: Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1919
– volume: 4
  start-page: 1003
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0215
  article-title: Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn2+ ions
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02532-0
– volume: 18
  start-page: 1222
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0260
  article-title: Manganese salts function as potent adjuvants
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-021-00669-w
– volume: 11
  year: 2025
  ident: 10.1016/j.tips.2025.08.007_bb0095
  article-title: Lysosomal zinc nanomodulation blocks macrophage pyroptosis for counteracting atherosclerosis progression
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adu3919
– volume: 21
  start-page: 39
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0110
  article-title: Aluminum-based metal–organic framework nanoparticles as pulmonary vaccine adjuvants
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-023-01782-w
– volume: 35
  start-page: 1869
  year: 2005
  ident: 10.1016/j.tips.2025.08.007_bb0055
  article-title: Improving the therapeutic index of CpG oligodeoxynucleotides by intralymphatic administration
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200526124
– volume: 216
  start-page: 2619
  year: 2019
  ident: 10.1016/j.tips.2025.08.007_bb0145
  article-title: Host conditioning with IL-1beta improves the antitumor function of adoptively transferred T cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20181218
– volume: 18
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0510
  article-title: Amplifying dendritic cell activation by bioinspired nanometal organic frameworks for synergistic sonoimmunotherapy
  publication-title: Small
  doi: 10.1002/smll.202203952
– volume: 22
  start-page: 782
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0245
  article-title: Zinc-based radioenhancers to activate tumor radioimmunotherapy by PD-L1 and cGAS-STING pathway
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-024-02999-z
– volume: 7
  start-page: 193
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0380
  article-title: Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-021-00579-w
– volume: 195
  start-page: 517
  year: 2002
  ident: 10.1016/j.tips.2025.08.007_bb0270
  article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20011672
– volume: 33
  start-page: 483
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0395
  article-title: Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening
  publication-title: Bioactive Mater.
  doi: 10.1016/j.bioactmat.2023.11.017
– volume: 23
  start-page: 10657
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0300
  article-title: Engineering crystallinity gradients for tailored CaO2 nanostructures: enabling alkalinity-reinforced anticancer activity with minimized Ca2+/H2O2 production
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c01963
– volume: 142
  start-page: 453
  year: 2014
  ident: 10.1016/j.tips.2025.08.007_bb0135
  article-title: Toll-like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages
  publication-title: Immunology
  doi: 10.1111/imm.12276
– volume: 57
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0310
  article-title: DNA programmed Mg-Al layered double hydroxide-based bi-adjuvant nanovaccines
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2024.102352
– volume: 13
  start-page: 8507
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0370
  article-title: Mesoporous sodium four-coordinate aluminosilicate nanoparticles modulate dendritic cell pyroptosis and activate innate and adaptive immunity
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC05319A
– volume: 34
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0465
  article-title: Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic cancer immunotherapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202168
– year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0365
  article-title: Mn and Zn-doped multivariate metal-organic framework as a metalloimmunological adjuvant to promote protection against tuberculosis infection
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202402358
– volume: 36
  start-page: 330
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0105
  article-title: Engineering customized nanovaccines for enhanced cancer immunotherapy
  publication-title: Bioact. Mater.
– volume: 18
  start-page: 16878
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0170
  article-title: Silicon or calcium doping coordinates the immunostimulatory effects of aluminum oxyhydroxide nanoadjuvants in prophylactic vaccines
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c02685
– volume: 284
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0420
  article-title: A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121533
– volume: 271
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0410
  article-title: Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120739
– volume: 33
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0390
  article-title: Recent advances in calcium-based anticancer nanomaterials exploiting calcium overload to trigger cell apoptosis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209291
– volume: 11
  start-page: 1030
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0320
  article-title: Nanoalum formulations containing aluminum hydroxide and CpG 1018(TM) adjuvants: the effect on stability and immunogenicity of a recombinant SARS-CoV-2 RBD antigen
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines11061030
– volume: 11
  start-page: 493
  year: 2019
  ident: 10.1016/j.tips.2025.08.007_bb0220
  article-title: Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11100493
– volume: 15
  start-page: 61
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0030
  article-title: Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-022-01282-8
– volume: 17
  start-page: 2295
  year: 2025
  ident: 10.1016/j.tips.2025.08.007_bb0495
  article-title: Recent progress of nanomedicine for the synergetic treatment of radiotherapy (RT) and photothermal treatment (PTT)
  publication-title: Cancers
  doi: 10.3390/cancers17142295
– volume: 135
  start-page: 359
  year: 2014
  ident: 10.1016/j.tips.2025.08.007_bb0185
  article-title: Role of Toll-like receptors in cervical, endometrial and ovarian cancers: a review
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2014.08.013
– volume: 11
  year: 2020
  ident: 10.1016/j.tips.2025.08.007_bb0065
  article-title: MPL adjuvant contains competitive antagonists of human TLR4
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.577823
– volume: 32
  year: 2020
  ident: 10.1016/j.tips.2025.08.007_bb0255
  article-title: Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108053
– year: 2025
  ident: 10.1016/j.tips.2025.08.007_bb0485
  article-title: Integrating artificial intelligence in nanomaterials science: pathways to revolutionary materials discovery and design. Ethics and risks
– volume: 36
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0540
  article-title: Sulfate radical based in situ vaccine boosts systemic antitumor immunity via concurrent activation of necroptosis and STING pathway
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202407914
– volume: 16
  start-page: 289
  year: 2017
  ident: 10.1016/j.tips.2025.08.007_bb0460
  article-title: Calcium phosphate: a substitute for aluminum adjuvants?
  publication-title: Expert Rev. Vaccines
  doi: 10.1080/14760584.2017.1244484
– volume: 17
  start-page: 68
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0385
  article-title: Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-024-01589-8
– volume: 8
  start-page: 1250
  year: 2018
  ident: 10.1016/j.tips.2025.08.007_bb0500
  article-title: SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-18-0280
– volume: 13
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0335
  article-title: Manganese-modified aluminum adjuvant enhances both humoral and cellular immune responses
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202401675
– volume: 113
  start-page: 259
  year: 2004
  ident: 10.1016/j.tips.2025.08.007_bb0450
  article-title: Age at first measles-mumps-rubella vaccination in children with autism and school-matched control subjects: a population-based study in metropolitan atlanta
  publication-title: Pediatrics
  doi: 10.1542/peds.113.2.259
– volume: 352
  start-page: 497
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0375
  article-title: Nanoadjuvants actively targeting lymph node conduits and blocking tumor invasion in lymphatic vessels
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2022.10.053
– volume: 18
  start-page: 23
  year: 2011
  ident: 10.1016/j.tips.2025.08.007_bb0020
  article-title: Translating tumor antigens into cancer vaccines
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.00286-10
– volume: 2018
  year: 2018
  ident: 10.1016/j.tips.2025.08.007_bb0210
  article-title: The role of zinc and zinc homeostasis in macrophage function
  publication-title: J Immunol Res
  doi: 10.1155/2018/6872621
– volume: 109
  start-page: 19380
  year: 2012
  ident: 10.1016/j.tips.2025.08.007_bb0295
  article-title: Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1213868109
– volume: 7
  start-page: 374
  year: 2016
  ident: 10.1016/j.tips.2025.08.007_bb0195
  article-title: Cobalt ions recruit inflammatory cells in vitro through human Toll-like receptor 4
  publication-title: Biochem. Biophys. Rep.
– volume: 56
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0325
  article-title: Nanoalum adjuvanted vaccines: small details make a big difference
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2021.101544
– volume: 7
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0225
  article-title: Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4468
– volume: 20
  start-page: 3328
  year: 2019
  ident: 10.1016/j.tips.2025.08.007_bb0230
  article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20133328
– volume: 3
  start-page: 386
  year: 2013
  ident: 10.1016/j.tips.2025.08.007_bb0085
  article-title: ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.01.009
– volume: 10
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0250
  article-title: cGAS-STING pathway activation and systemic anti-tumor immunity induction via photodynamic nanoparticles with potent toxic platinum DNA intercalator against uveal melanoma
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202302895
– volume: 10
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0160
  article-title: Recent advances in nanoadjuvant-triggered STING activation for enhanced cancer immunotherapy
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e38900
– volume: 15
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0400
  article-title: Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-54469-7
– year: 2025
  ident: 10.1016/j.tips.2025.08.007_bb0445
  article-title: Aluminum-adsorbed vaccines and chronic diseases in childhood
  publication-title: Ann. Internal Med.
  doi: 10.7326/ANNALS-25-00997
– volume: 33
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0060
  article-title: ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007910
– volume: 11
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0350
  article-title: An immunomodulatory zinc-alum/ovalbumin nanovaccine boosts cancer metalloimmunotherapy through erythrocyte-assisted cascade immune activation
  publication-title: Adv. Sci. (Weinh)
– volume: 18
  start-page: 2841
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0470
  article-title: Mn2+/CpG oligodeoxynucleotides codecorated black phosphorus nanosheet platform for enhanced antitumor potency in multimodal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c07123
– volume: 184
  start-page: 5309
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0490
  article-title: Hallmarks of response, resistance, and toxicity to immune checkpoint blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2021.09.020
– volume: 58
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0125
  article-title: Metal-based nanoparticles promote the activation of cGAS-STING pathway for enhanced cancer immunotherapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2024.102445
– volume: 9
  start-page: 527
  year: 2021
  ident: 10.1016/j.tips.2025.08.007_bb0280
  article-title: ROS cocktails as an adjuvant for personalized antitumor vaccination?
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines9050527
– volume: 44
  start-page: 1768
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0240
  article-title: cGAS-STING pathway agonists are promising vaccine adjuvants
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.22016
– volume: 6
  start-page: 3574
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0265
  article-title: A coordinative dendrimer-based nanovaccine for cancer treatment
  publication-title: Matter
  doi: 10.1016/j.matt.2023.08.001
– volume: 36
  start-page: 151
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0455
  article-title: The myth of vaccination and autism spectrum
  publication-title: Eur. J. Paediatr. Neurol.
  doi: 10.1016/j.ejpn.2021.12.011
– volume: 18
  start-page: 30701
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0425
  article-title: Spleen-targeted mRNA vaccine doped with manganese adjuvant for robust anticancer immunity in vivo
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c09902
– volume: 17
  start-page: 31
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0035
  article-title: Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-024-01544-7
– volume: 5
  start-page: 352
  year: 2014
  ident: 10.1016/j.tips.2025.08.007_bb0285
  article-title: Reactive oxygen species at the crossroads of inflammasome and inflammation
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00352
– volume: 39
  start-page: 2515
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0530
  article-title: Real-world effectiveness of sipuleucel-T on overall survival in men with advanced prostate cancer treated with androgen receptor-targeting agents
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-022-02085-6
– volume: 9
  start-page: 287
  year: 2009
  ident: 10.1016/j.tips.2025.08.007_bb0080
  article-title: Towards an understanding of the adjuvant action of aluminium
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2510
– volume: 136
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0315
  article-title: Multifunctional manganese-containing vaccine delivery system Ca@MnCO(3)/LLO for tumor immunotherapy
  publication-title: Biomater. Adv.
  doi: 10.1016/j.bioadv.2022.212752
– volume: 8
  start-page: 1073
  year: 2024
  ident: 10.1016/j.tips.2025.08.007_bb0070
  article-title: Strategies for the development of metalloimmunotherapies
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-024-01221-7
– volume: 3
  start-page: 911
  year: 2022
  ident: 10.1016/j.tips.2025.08.007_bb0005
  article-title: Cancer vaccines: the next immunotherapy frontier
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-022-00418-6
– volume: 17
  start-page: 14475
  year: 2023
  ident: 10.1016/j.tips.2025.08.007_bb0475
  article-title: Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c00901
– volume: 18
  start-page: 59
  year: 2020
  ident: 10.1016/j.tips.2025.08.007_bb0040
  article-title: Tumor microenvironment complexity and therapeutic implications at a glance
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-020-0530-4
– volume: 228
  start-page: 26
  year: 2016
  ident: 10.1016/j.tips.2025.08.007_bb0440
  article-title: Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.02.035
SSID ssj0003321
Score 2.4882903
SecondaryResourceType review_article
Snippet Metal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities.Bimetallic...
HighlightsMetal ions have emerged as promising candidates for constructing adjuvants for cancer vaccine due to their unique immune modulation activities....
Adjuvants are substances used in vaccines to boost antigen-specific immune responses. Aluminum salts (alum) were the first adjuvant approved for human use....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 958
SubjectTerms adjuvant
Adjuvants, Immunologic - administration & dosage
Adjuvants, Immunologic - chemistry
Adjuvants, Immunologic - pharmacology
Advanced Basic Science
Animals
cancer vaccine
Cancer Vaccines - administration & dosage
Cancer Vaccines - immunology
Humans
immunotherapy
metal-based nanoparticle
Neoplasms - immunology
Neoplasms - therapy
Title Bimetallic nanoadjuvants for cancer vaccines
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016561472500183X
https://www.clinicalkey.es/playcontent/1-s2.0-S016561472500183X
https://dx.doi.org/10.1016/j.tips.2025.08.007
https://www.ncbi.nlm.nih.gov/pubmed/40973570
https://www.proquest.com/docview/3252535139
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321
  issn: 0165-6147
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321
  issn: 0165-6147
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-3735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321
  issn: 0165-6147
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321
  issn: 0165-6147
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321
  issn: 0165-6147
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6Ivvgi3p2XEUF8cXVd0qzt4xTHVBziBfYWkiaDDu3Gug324m_3pBeHeANfCgkNaU9OzveFnAvAiYeU1e1z6SA8hI5HdeBI5ikHoU-5ge43ZXaje9dtdp69mx7vLcFlGQtj3SoL25_b9MxaFz31Qpr1URzXH20gDoKLjyDuomL2bAQ7tlCnz98Wbh6M0bwmYZM79u0icCb38ZrEI5uym_IsjactKfs9OP1EPjMQaq_DWsEeSSv_wA1YMskmnN7n6afnNfK0iKZKa-SU3C8SU8-3oHYRvxok2y9xRBKZDKUeTGfWD4YgcyWRXf8xmcnI3rWn2_DQvnq67DhFtQQnYgiyTmgCpijTSFBUJCXurSAKFDUKH9gfKBdFSn0dKJ9KPGSoCA8vUjX8Jo8o24HlZJiYPSBa8zBoGE9zW4qEy1DrsI-sTPkhl6zfqMBZKSMxyjNiiNJVbCCsRIWVqLDVLV2_AqwUoyhjPdE6CTTYv47yvxtl0mKDpaIhUipc8UUJKsA_Rn7Soz9nPC7XWOAGs7cmMjHDaSoY5ZQzjky5Arv54n_8t00Wxrjv7v9z1gNYta3cOfAQlifjqTlCkjNR1UyLq7DSur7tdN8B9ej5rA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4VOCyXFQsLFHbBSCsuNDS14zo57iKq8qoQFKk3y45dKRWbVqRF4sJv33EeVGgLSFxycGI5Ho_n-yzPA-BXgJTVH3LlITxEXkBN6CkWaA-hT_uhGbZVfqN71Wt374LzAR_U4KSKhXFulaXtL2x6bq3LlmYpzeYkSZq3LhAHwUUgiPuomIMlWAk4Fe4Edvw89_NgjBZFCdvcc5-XkTOFk9c0mbic3ZTneTxdTdnF6PQW-8xRqLMGX0v6SH4Xf_gNajZdh8PrIv_0U4P05-FUWYMckut5ZuqnDWj8Sf5aZNv3SUxSlY6VGc0enSMMQepKYqcAD-RRxe6yPfsON53T_knXK8sleDFDlPUiGzJNmUGGomOlcHOFcaip1fjA9lD7KFMqTKgFVXjK0DGeXpRuiTaPKduE5XSc2m0gxvAobNnAcFeLhKvImGiItEyLiCs2bNXhqJKRnBQpMWTlKzaSTqLSSVS68pa-qAOrxCirYE80TxIt9ru9xKJeNit3WCZbMqPSl_9pQR34S89XivThiAfVGkvcYe7aRKV2PMsko5xyxpEq12GrWPyXebtsYYwLf-eTo-7Dl27_6lJenvUudmHVvSk8BX_A8vRhZn8i45nqvVyj_wG4WPtB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+nanoadjuvants+for+cancer+vaccines&rft.jtitle=Trends+in+pharmacological+sciences+%28Regular+ed.%29&rft.au=Luo%2C+Jiangqi&rft.au=Wang%2C+Yue&rft.au=Yu%2C+Chengzhong&rft.au=Yang%2C+Yannan&rft.date=2025-10-01&rft.eissn=1873-3735&rft.volume=46&rft.issue=10&rft.spage=958&rft_id=info:doi/10.1016%2Fj.tips.2025.08.007&rft_id=info%3Apmid%2F40973570&rft.externalDocID=40973570
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01656147%2FS0165614725X00109%2Fcov150h.gif