An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm
In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge...
Saved in:
| Published in | Expert systems with applications Vol. 38; no. 3; pp. 1431 - 1446 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2010.07.050 |
Cover
| Abstract | In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge economic losses, environmental contamination, or human injuries. In order to ensure system intrinsic safety and increase operational performance and reliability in a long period, this study proposes an integrated safety prognosis model (ISPM) considering the randomness, complexity and uncertainty of fault propagation.
ISPM is developed based on dynamic Bayesian networks to model the propagation of faults in a complex system, integrating the priori knowledge of the interactions and dependencies among subsystems, components, and the environment of the system, as well as the relationships between fault causes and effects. So the current safety state and potential risk of system can be assessed by locating potential hazard origins and deducing corresponding possible consequences. Furthermore, ISPM is also developed to predict the future degradation trend in terms of future reliability or performance of system, and provide proper proactive maintenance plans. Ant colony algorithm is introduced in ISPM by comprehensively considering two factors as probability and severity of faults, to perform the quantitative risk estimation of the underlining system. The feasibility and benefits of ISPM are investigated with a field case study of gas turbine compressor system. According to the outputs given by ISPM in the application, proactive maintenance, safety-related actions and contingency plans are further discussed and then made to keep the system in a high reliability and safety level in the long term. |
|---|---|
| AbstractList | In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge economic losses, environmental contamination, or human injuries. In order to ensure system intrinsic safety and increase operational performance and reliability in a long period, this study proposes an integrated safety prognosis model (ISPM) considering the randomness, complexity and uncertainty of fault propagation. ISPM is developed based on dynamic Bayesian networks to model the propagation of faults in a complex system, integrating the priori knowledge of the interactions and dependencies among subsystems, components, and the environment of the system, as well as the relationships between fault causes and effects. So the current safety state and potential risk of system can be assessed by locating potential hazard origins and deducing corresponding possible consequences. Furthermore, ISPM is also developed to predict the future degradation trend in terms of future reliability or performance of system, and provide proper proactive maintenance plans. Ant colony algorithm is introduced in ISPM by comprehensively considering two factors as probability and severity of faults, to perform the quantitative risk estimation of the underlining system. The feasibility and benefits of ISPM are investigated with a field case study of gas turbine compressor system. According to the outputs given by ISPM in the application, proactive maintenance, safety-related actions and contingency plans are further discussed and then made to keep the system in a high reliability and safety level in the long term. In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge economic losses, environmental contamination, or human injuries. In order to ensure system intrinsic safety and increase operational performance and reliability in a long period, this study proposes an integrated safety prognosis model (ISPM) considering the randomness, complexity and uncertainty of fault propagation. ISPM is developed based on dynamic Bayesian networks to model the propagation of faults in a complex system, integrating the priori knowledge of the interactions and dependencies among subsystems, components, and the environment of the system, as well as the relationships between fault causes and effects. So the current safety state and potential risk of system can be assessed by locating potential hazard origins and deducing corresponding possible consequences. Furthermore, ISPM is also developed to predict the future degradation trend in terms of future reliability or performance of system, and provide proper proactive maintenance plans. Ant colony algorithm is introduced in ISPM by comprehensively considering two factors as probability and severity of faults, to perform the quantitative risk estimation of the underlining system. The feasibility and benefits of ISPM are investigated with a field case study of gas turbine compressor system. According to the outputs given by ISPM in the application, proactive maintenance, safety-related actions and contingency plans are further discussed and then made to keep the system in a high reliability and safety level in the long term. |
| Author | Ma, Lin Hu, Jinqiu Zhang, Laibin Liang, Wei |
| Author_xml | – sequence: 1 givenname: Jinqiu surname: Hu fullname: Hu, Jinqiu email: hjqcup@hotmail.com organization: College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China – sequence: 2 givenname: Laibin surname: Zhang fullname: Zhang, Laibin organization: College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China – sequence: 3 givenname: Lin surname: Ma fullname: Ma, Lin organization: Cooperative Research Centre for Integrated Engineering Asset Management, Queensland University of Technology, Brisbane, QLD 4001, Australia – sequence: 4 givenname: Wei surname: Liang fullname: Liang, Wei organization: College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China |
| BookMark | eNp9kcFu1DAQhi1UJLaFF-DkG1yydWo7TiQupSoUqRIXOFtjZ7J4SezF41Ly9ni1nDisNNZI1vdZ8v9fsouYIjL2thXbVrTd9X6L9AzbG1EvhNkKLV6wTdsb2XRmkBdsIwZtGtUa9YpdEu2FaI0QZsPybeQhFtxlKDhyggnLyg857WKiQHxJI858Spn7tBxm_MNppYILd0CVT5GPa4QleP4RVqQAkUcszyn_5BDHekoV5xRXDvMu5VB-LK_Zywlmwjf_9hX7_un-291D8_j185e728fGy06XZnLTiKC1lx6d82C8czj0U-e0A4NSG6UU9nWwU85jh6hFp3tllETdg7xi707v1t_8ekIqdgnkcZ4hYnoi26tBGamErOT7s2TNqhVGiaGvaH9CfU5EGSfrQ4ESUiwZwmxbYY-F2L09FmKPhVhhbC2kqjf_qYccFsjreenDScKa1O-A2ZIPGD2OIaMvdkzhnP4XORqqKQ |
| CitedBy_id | crossref_primary_10_1016_j_jlp_2015_08_010 crossref_primary_10_1049_iet_rpg_2017_0736 crossref_primary_10_1016_j_cirp_2015_05_011 crossref_primary_10_3390_en14206598 crossref_primary_10_1016_j_ssci_2015_10_005 crossref_primary_10_1252_jcej_14we275 crossref_primary_10_4018_IJITSA_290003 crossref_primary_10_1016_j_psep_2012_06_004 crossref_primary_10_1177_1748006X20947851 crossref_primary_10_1016_j_jngse_2016_06_054 crossref_primary_10_1109_TR_2019_2957965 crossref_primary_10_1007_s11431_017_9165_7 crossref_primary_10_1016_j_engfailanal_2017_04_015 crossref_primary_10_1016_j_psep_2015_02_003 crossref_primary_10_1016_j_ress_2018_07_002 crossref_primary_10_4028_www_scientific_net_AMR_655_657_1783 crossref_primary_10_1016_j_psep_2023_03_031 crossref_primary_10_1007_s10846_014_0153_3 crossref_primary_10_1109_TR_2017_2722471 crossref_primary_10_3390_s17092123 crossref_primary_10_1016_j_eswa_2021_116418 crossref_primary_10_1115_1_4034223 crossref_primary_10_1080_18756891_2014_853933 crossref_primary_10_1177_0954406220951209 crossref_primary_10_3390_machines9110298 crossref_primary_10_1016_j_apor_2019_101990 crossref_primary_10_1061_AJRUA6_0000920 crossref_primary_10_1007_s00170_017_0110_y crossref_primary_10_1177_1748006X231211998 crossref_primary_10_1016_j_ress_2020_107329 crossref_primary_10_1016_j_energy_2017_07_034 crossref_primary_10_1016_j_eswa_2022_119214 crossref_primary_10_1007_s12182_013_0299_9 crossref_primary_10_3390_buildings14113428 crossref_primary_10_1109_TR_2015_2419220 crossref_primary_10_1016_j_psep_2024_08_054 crossref_primary_10_1016_j_anucene_2019_107181 crossref_primary_10_1155_2022_1299434 crossref_primary_10_1016_j_ress_2014_10_021 crossref_primary_10_1016_j_ress_2014_09_002 crossref_primary_10_1109_TSMC_2016_2630800 crossref_primary_10_1016_j_ress_2017_01_025 crossref_primary_10_1016_j_ssci_2018_10_019 crossref_primary_10_1016_j_ress_2019_106505 crossref_primary_10_1016_j_renene_2021_04_102 crossref_primary_10_1109_ACCESS_2023_3242642 crossref_primary_10_1016_j_ress_2020_107194 crossref_primary_10_1109_ACCESS_2019_2961433 crossref_primary_10_18184_2079_4665_2024_15_1_96_114 crossref_primary_10_1088_1757_899X_1043_3_032011 |
| Cites_doi | 10.1016/j.ress.2007.03.023 10.1109/AERO.2003.1234156 10.1016/j.jlp.2008.08.005 10.1016/j.compind.2006.12.004 10.1016/j.eswa.2009.01.007 10.1016/j.ymssp.2003.09.003 10.1016/j.ymssp.2008.12.006 10.1016/S0888-3270(03)00079-7 10.1007/s00170-004-2131-6 10.1016/j.ymssp.2005.11.008 10.1016/j.ymssp.2005.09.012 10.1016/j.apenergy.2008.06.006 10.1016/j.ymssp.2008.06.009 10.1016/j.ejor.2006.01.041 10.1023/A:1009606229786 10.1016/j.ress.2008.05.008 10.1016/j.ress.2005.03.006 10.1016/j.ymssp.2004.10.009 10.1016/S0029-5493(99)00138-7 10.1016/j.ress.2007.12.006 10.1016/j.cirp.2008.03.026 10.1016/j.ress.2006.12.004 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Ltd |
| Copyright_xml | – notice: 2010 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2010.07.050 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 1446 |
| ExternalDocumentID | 10_1016_j_eswa_2010_07_050 S0957417410006780 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c365t-fbfdea55c3cebbca7cbbe98f6b5ba7e357444e84e8e64bce6ee506584743e58a3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Thu Oct 02 09:32:41 EDT 2025 Thu Oct 02 06:46:13 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Wed Oct 01 03:51:26 EDT 2025 Fri Feb 23 02:30:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Fault propagation path Risk evaluation Proactive maintenance Dynamic Bayesian networks Ant colony algorithm Safety prognosis |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-fbfdea55c3cebbca7cbbe98f6b5ba7e357444e84e8e64bce6ee506584743e58a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1701074098 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_849473403 proquest_miscellaneous_1701074098 crossref_citationtrail_10_1016_j_eswa_2010_07_050 crossref_primary_10_1016_j_eswa_2010_07_050 elsevier_sciencedirect_doi_10_1016_j_eswa_2010_07_050 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-03-01 |
| PublicationDateYYYYMMDD | 2011-03-01 |
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Iung, Monnin, Voisin, Cocheteux, Levrat (b0050) 2008; 57 Heng, Tan, Mathew, Montgomery, Banjevic, Jardine (b0025) 2009; 23 Liu, Djurdjanovic, Ni, Casoetto, Lee (b0070) 2007; 58 Lee, Chung, Kim, Ford, Andersen (b0065) 1999; 191 Kothamasu, Huang, VerDuin (b0060) 2006; 28 Dong, He (b0005) 2007; 178 Samrout, Chatelet, Kouta, Chebbo (b0100) 2009; 94 Texas. Herzog, Marwala, Heyns (b0035) 2009; 94 Lugtigheid, Banjevic, Jardine (b0080) 2008; 93 Thesis of the University of California, Berkley. Sun, Ma, Mathew, Wang, Zhang (b0105) 2006; 20 Zhang, L. B., Hu, J. Q., Liang, W., & Wang, Z. H. (2008). Quantitative HAZOP analysis of compressor units based on fuzzy information fusion. In Gu (b0020) 2001 Salvador, Brazil. (pp. 3131–3136). Muller, A., Suhner, M. C., & Iung, B. (2004). Probabilistic vs. dynamical prognosis process-based e-maintenance system. In Tran, Yang, Tan (b0115) 2009; 36 Huang, Xi, Li, Liu, Qiu, Lee (b0045) 2007; 21 Murphy, K. (2002). Ghorbanian, Gholamrezaei (b0015) 2009; 86 Jardine, Lin, Banjevic (b0055) 2006; 20 Heng, Zhang, Tan, Mathew (b0030) 2008; 23 Duan (b0010) 2005 Vlok, Wnek, Zygmunt (b0120) 2004; 18 Louzada-Neto (b0075) 1997; 3 Weber, Jouffe (b0130) 2006; 91 Hu, Zhang, Wang, Liang (b0040) 2009; 22 Sutherland, H., Repoff, T., House, M., & Flickinger, G. (2003). Prognostics, a new look at statistical life prediction for condition-based maintenance. In Wang, Golnaraghi, Ismail (b0125) 2004; 18 Muller, Suhner, Iung (b0090) 2008; 93 Iung (10.1016/j.eswa.2010.07.050_b0050) 2008; 57 Weber (10.1016/j.eswa.2010.07.050_b0130) 2006; 91 Herzog (10.1016/j.eswa.2010.07.050_b0035) 2009; 94 Kothamasu (10.1016/j.eswa.2010.07.050_b0060) 2006; 28 Tran (10.1016/j.eswa.2010.07.050_b0115) 2009; 36 Jardine (10.1016/j.eswa.2010.07.050_b0055) 2006; 20 Gu (10.1016/j.eswa.2010.07.050_b0020) 2001 Wang (10.1016/j.eswa.2010.07.050_b0125) 2004; 18 Lee (10.1016/j.eswa.2010.07.050_b0065) 1999; 191 Lugtigheid (10.1016/j.eswa.2010.07.050_b0080) 2008; 93 10.1016/j.eswa.2010.07.050_b0095 Huang (10.1016/j.eswa.2010.07.050_b0045) 2007; 21 Vlok (10.1016/j.eswa.2010.07.050_b0120) 2004; 18 10.1016/j.eswa.2010.07.050_b0135 Samrout (10.1016/j.eswa.2010.07.050_b0100) 2009; 94 Sun (10.1016/j.eswa.2010.07.050_b0105) 2006; 20 10.1016/j.eswa.2010.07.050_b0110 Ghorbanian (10.1016/j.eswa.2010.07.050_b0015) 2009; 86 Hu (10.1016/j.eswa.2010.07.050_b0040) 2009; 22 Muller (10.1016/j.eswa.2010.07.050_b0090) 2008; 93 Louzada-Neto (10.1016/j.eswa.2010.07.050_b0075) 1997; 3 Heng (10.1016/j.eswa.2010.07.050_b0025) 2009; 23 10.1016/j.eswa.2010.07.050_b0085 Dong (10.1016/j.eswa.2010.07.050_b0005) 2007; 178 Duan (10.1016/j.eswa.2010.07.050_b0010) 2005 Liu (10.1016/j.eswa.2010.07.050_b0070) 2007; 58 Heng (10.1016/j.eswa.2010.07.050_b0030) 2008; 23 |
| References_xml | – reference: (pp. 3131–3136). – reference: Zhang, L. B., Hu, J. Q., Liang, W., & Wang, Z. H. (2008). Quantitative HAZOP analysis of compressor units based on fuzzy information fusion. In – volume: 3 start-page: 367 year: 1997 end-page: 381 ident: b0075 article-title: Extended hazard regression model for reliability and survival analysis publication-title: Lifetime Data Analysis – volume: 86 start-page: 1210 year: 2009 end-page: 1221 ident: b0015 article-title: An artificial neural network approach to compressor performance prediction publication-title: Applied Energy – volume: 36 start-page: 9378 year: 2009 end-page: 9387 ident: b0115 article-title: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuron-fuzzy systems publication-title: Expert Systems with Applications – year: 2001 ident: b0020 article-title: Safety analysis method and its application in petrochemical industry – reference: . Thesis of the University of California, Berkley. – volume: 18 start-page: 813 year: 2004 end-page: 831 ident: b0125 article-title: Prognosis of machine health condition using neuro-fuzzy systems publication-title: Mechanical Systems and Signal Processing – volume: 18 start-page: 833 year: 2004 end-page: 847 ident: b0120 article-title: Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions publication-title: Mechanical Systems and Signal Processing – volume: 91 start-page: 149 year: 2006 end-page: 162 ident: b0130 article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN) publication-title: Reliability Engineering & System Safety – volume: 21 start-page: 193 year: 2007 end-page: 207 ident: b0045 article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods publication-title: Mechanical Systems and Signal Processing – volume: 93 start-page: 604 year: 2008 end-page: 615 ident: b0080 article-title: System repairs: When to perform and what to do publication-title: Reliability Engineering & System Safety – volume: 22 start-page: 1025 year: 2009 end-page: 1033 ident: b0040 article-title: The application of integrated diagnosis database technology in safety management of oil pipeline and transferring pump units publication-title: Journal of Loss Prevention in the Process Industries – volume: 58 start-page: 558 year: 2007 end-page: 566 ident: b0070 article-title: Similarity based method for manufacturing process performance prediction and diagnosis publication-title: Computers in Industry – reference: , Salvador, Brazil. – year: 2005 ident: b0010 article-title: Ant colony algorithms: Theory and applications – volume: 23 start-page: 1600 year: 2009 end-page: 1614 ident: b0025 article-title: Intelligent condition-based prediction of machinery reliability publication-title: Mechanical Systems and Signal Processing – volume: 94 start-page: 44 year: 2009 end-page: 52 ident: b0100 article-title: Optimization of maintenance policy using the proportional hazard model publication-title: Reliability Engineering & System Safety – reference: Sutherland, H., Repoff, T., House, M., & Flickinger, G. (2003). Prognostics, a new look at statistical life prediction for condition-based maintenance. In – volume: 94 start-page: 479 year: 2009 end-page: 489 ident: b0035 article-title: Machine and component residual life estimation through the application of neural networks publication-title: Reliability Engineering & System Safety – volume: 191 start-page: 157 year: 1999 end-page: 165 ident: b0065 article-title: Remaining life prediction methods using operating data and knowledge on mechanisms publication-title: Nuclear Engineering and Design – volume: 20 start-page: 1483 year: 2006 end-page: 1510 ident: b0055 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mechanical Systems and Signal Processing – volume: 178 start-page: 858 year: 2007 end-page: 878 ident: b0005 article-title: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis publication-title: European Journal of Operational Research – reference: Muller, A., Suhner, M. C., & Iung, B. (2004). Probabilistic vs. dynamical prognosis process-based e-maintenance system. In – volume: 57 start-page: 49 year: 2008 end-page: 52 ident: b0050 article-title: Degradation state model-based prognosis for proactively maintaining product performance publication-title: CIRP Annals-Manufacturing Technology – reference: , Texas. – reference: Murphy, K. (2002). – volume: 20 start-page: 1189 year: 2006 end-page: 1201 ident: b0105 article-title: Mechanical systems hazard estimation using condition monitoring publication-title: Mechanical Systems and Signal Processing – volume: 23 start-page: 724 year: 2008 end-page: 739 ident: b0030 article-title: Rotating machinery prognostics: State of the art, challenges and opportunities publication-title: Mechanical Systems and Signal Processing – volume: 28 start-page: 1012 year: 2006 end-page: 1024 ident: b0060 article-title: System health monitoring and prognostics – A review of current paradigms and practices publication-title: International Journal of Advanced Manufacturing Technology – volume: 93 start-page: 234 year: 2008 end-page: 253 ident: b0090 article-title: Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system publication-title: Reliability Engineering & System Safety – ident: 10.1016/j.eswa.2010.07.050_b0095 – volume: 93 start-page: 604 issue: 4 year: 2008 ident: 10.1016/j.eswa.2010.07.050_b0080 article-title: System repairs: When to perform and what to do publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2007.03.023 – ident: 10.1016/j.eswa.2010.07.050_b0110 doi: 10.1109/AERO.2003.1234156 – ident: 10.1016/j.eswa.2010.07.050_b0135 – volume: 22 start-page: 1025 issue: 6 year: 2009 ident: 10.1016/j.eswa.2010.07.050_b0040 article-title: The application of integrated diagnosis database technology in safety management of oil pipeline and transferring pump units publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2008.08.005 – volume: 58 start-page: 558 issue: 6 year: 2007 ident: 10.1016/j.eswa.2010.07.050_b0070 article-title: Similarity based method for manufacturing process performance prediction and diagnosis publication-title: Computers in Industry doi: 10.1016/j.compind.2006.12.004 – volume: 36 start-page: 9378 issue: 5 year: 2009 ident: 10.1016/j.eswa.2010.07.050_b0115 article-title: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuron-fuzzy systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.01.007 – volume: 18 start-page: 833 issue: 4 year: 2004 ident: 10.1016/j.eswa.2010.07.050_b0120 article-title: Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2003.09.003 – year: 2005 ident: 10.1016/j.eswa.2010.07.050_b0010 – volume: 23 start-page: 1600 issue: 5 year: 2009 ident: 10.1016/j.eswa.2010.07.050_b0025 article-title: Intelligent condition-based prediction of machinery reliability publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2008.12.006 – volume: 18 start-page: 813 issue: 4 year: 2004 ident: 10.1016/j.eswa.2010.07.050_b0125 article-title: Prognosis of machine health condition using neuro-fuzzy systems publication-title: Mechanical Systems and Signal Processing doi: 10.1016/S0888-3270(03)00079-7 – volume: 28 start-page: 1012 year: 2006 ident: 10.1016/j.eswa.2010.07.050_b0060 article-title: System health monitoring and prognostics – A review of current paradigms and practices publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-004-2131-6 – volume: 21 start-page: 193 issue: 1 year: 2007 ident: 10.1016/j.eswa.2010.07.050_b0045 article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.11.008 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 10.1016/j.eswa.2010.07.050_b0055 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – volume: 86 start-page: 1210 issue: 7–8 year: 2009 ident: 10.1016/j.eswa.2010.07.050_b0015 article-title: An artificial neural network approach to compressor performance prediction publication-title: Applied Energy doi: 10.1016/j.apenergy.2008.06.006 – volume: 23 start-page: 724 issue: 3 year: 2008 ident: 10.1016/j.eswa.2010.07.050_b0030 article-title: Rotating machinery prognostics: State of the art, challenges and opportunities publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2008.06.009 – year: 2001 ident: 10.1016/j.eswa.2010.07.050_b0020 – volume: 178 start-page: 858 issue: 3 year: 2007 ident: 10.1016/j.eswa.2010.07.050_b0005 article-title: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.01.041 – volume: 3 start-page: 367 issue: 4 year: 1997 ident: 10.1016/j.eswa.2010.07.050_b0075 article-title: Extended hazard regression model for reliability and survival analysis publication-title: Lifetime Data Analysis doi: 10.1023/A:1009606229786 – ident: 10.1016/j.eswa.2010.07.050_b0085 – volume: 94 start-page: 479 issue: 2 year: 2009 ident: 10.1016/j.eswa.2010.07.050_b0035 article-title: Machine and component residual life estimation through the application of neural networks publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2008.05.008 – volume: 91 start-page: 149 issue: 2 year: 2006 ident: 10.1016/j.eswa.2010.07.050_b0130 article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN) publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2005.03.006 – volume: 20 start-page: 1189 issue: 5 year: 2006 ident: 10.1016/j.eswa.2010.07.050_b0105 article-title: Mechanical systems hazard estimation using condition monitoring publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.10.009 – volume: 191 start-page: 157 issue: 2 year: 1999 ident: 10.1016/j.eswa.2010.07.050_b0065 article-title: Remaining life prediction methods using operating data and knowledge on mechanisms publication-title: Nuclear Engineering and Design doi: 10.1016/S0029-5493(99)00138-7 – volume: 94 start-page: 44 issue: 1 year: 2009 ident: 10.1016/j.eswa.2010.07.050_b0100 article-title: Optimization of maintenance policy using the proportional hazard model publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2007.12.006 – volume: 57 start-page: 49 issue: 1 year: 2008 ident: 10.1016/j.eswa.2010.07.050_b0050 article-title: Degradation state model-based prognosis for proactively maintaining product performance publication-title: CIRP Annals-Manufacturing Technology doi: 10.1016/j.cirp.2008.03.026 – volume: 93 start-page: 234 issue: 2 year: 2008 ident: 10.1016/j.eswa.2010.07.050_b0090 article-title: Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2006.12.004 |
| SSID | ssj0017007 |
| Score | 2.2684476 |
| Snippet | In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1431 |
| SubjectTerms | Algorithms Ant colony algorithm Complex systems Dynamic Bayesian networks Dynamical systems Dynamics Fault propagation path Faults Mathematical models Proactive maintenance Risk Risk evaluation Safety Safety prognosis |
| Title | An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2010.07.050 https://www.proquest.com/docview/1701074098 https://www.proquest.com/docview/849473403 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELWqcuECtAWxQKtB6g2FTTZ2kj1uK6otiF6gUm_W2JnAouJUm1SwF769nthZCaT2gORcIluJPPbMc_LmjRDHaoaYmiZNZuUcE5lhlmDe-KNKmaOsrZpZ5NzhzxfF8lJ-vFJXO-J0zIVhWmX0_cGnD9463pnG2ZzerFbTLx4c-HDoW3C5fG6XsuQqBu__bGkeLD9XBr29MuHeMXEmcLyo-4WR3sUCnul9wekfNz3EnrNn4kkEjbAI77Undsjti6djQQaI-_NArBcOtvoPNXTYUL8BpmC5tlt1MJS9AQ9TYWCS028IQs7AsayG1kEdCtTDCW6I0yvBBZo4oKv91QOLXLsN4PW3dr3qv_98Li7PPnw9XSaxqEJi80L1SWOamlApm1syxmJpjaF51RRGGSwp93MqJVW-USGNpYJIDTDFQw1SFeYvxK5rHb0UgHlKTUaY1ZWRJjXeFVDWkPKgAWdYm4nIxtnUNiqOc-GLaz1Sy35otoBmC-i01N4CE_FuO-Ym6G082FuNRtJ_rRrtA8KD496OFtV-O_E_EnTU3naa5ek9qkrn1UTAPX0qOfdLWab5q_98_GvxOHyaZirbG7Hbr2_p0GOb3hwNi_dIPFqcf1pe3AHucvz8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALb8TyHCRuKGwedpI9lopqgbYXWqk3a-xM6KLiVJtUsBd-O-PYWQmk9oDkXCJbiTz2zOfkm2-EeKtyxNS0aZJXC0xkhlmCRctHlapA2ViVW_S5w0fH5fJUfj5TZztif8qF8bTK6PuDTx-9dbwzj7M5v1yt5l8ZHHA45BZcLp_bb0mVV_4E9v73lufh9eeqILhXJb57zJwJJC_qf2Lkd3kFz_S66PSPnx6Dz8F9cTeiRtgLL_ZA7JB7KO5NFRkgbtBHYr3nYCsA0UCPLQ0b8Bws1_WrHsa6N8A4FUYqOf2CoOQMPpg10DloQoV6-IAb8vmV4AJPHNA1fA3gVa7dBvDiW7deDec_HovTg48n-8skVlVIbFGqIWlN2xAqZQtLxlisrDG0qNvSKIMVFTypUlLNjUppLJVEasQpjDVI1Vg8Ebuuc_RUABYptRlh1tRGmtSwL6CsJcWoAXNszExk02xqGyXHfeWLCz1xy75rbwHtLaDTSrMFZuLddsxlENy4sbeajKT_WjaaI8KN495MFtW8n_xPEnTUXfXa69MzrEoX9UzANX1queC1LNPi2X8-_rW4vTw5OtSHn46_PBd3wndqz2t7IXaH9RW9ZKAzmFfjQv4DvPD-kQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+safety+prognosis+model+for+complex+system+based+on+dynamic+Bayesian+network+and+ant+colony+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Hu%2C+Jinqiu&rft.au=Zhang%2C+Laibin&rft.au=Ma%2C+Lin&rft.au=Liang%2C+Wei&rft.date=2011-03-01&rft.issn=0957-4174&rft.volume=38&rft.issue=3&rft.spage=1431&rft.epage=1446&rft_id=info:doi/10.1016%2Fj.eswa.2010.07.050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2010_07_050 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |