An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm

In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 38; no. 3; pp. 1431 - 1446
Main Authors Hu, Jinqiu, Zhang, Laibin, Ma, Lin, Liang, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2011
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2010.07.050

Cover

Abstract In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge economic losses, environmental contamination, or human injuries. In order to ensure system intrinsic safety and increase operational performance and reliability in a long period, this study proposes an integrated safety prognosis model (ISPM) considering the randomness, complexity and uncertainty of fault propagation. ISPM is developed based on dynamic Bayesian networks to model the propagation of faults in a complex system, integrating the priori knowledge of the interactions and dependencies among subsystems, components, and the environment of the system, as well as the relationships between fault causes and effects. So the current safety state and potential risk of system can be assessed by locating potential hazard origins and deducing corresponding possible consequences. Furthermore, ISPM is also developed to predict the future degradation trend in terms of future reliability or performance of system, and provide proper proactive maintenance plans. Ant colony algorithm is introduced in ISPM by comprehensively considering two factors as probability and severity of faults, to perform the quantitative risk estimation of the underlining system. The feasibility and benefits of ISPM are investigated with a field case study of gas turbine compressor system. According to the outputs given by ISPM in the application, proactive maintenance, safety-related actions and contingency plans are further discussed and then made to keep the system in a high reliability and safety level in the long term.
AbstractList In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge economic losses, environmental contamination, or human injuries. In order to ensure system intrinsic safety and increase operational performance and reliability in a long period, this study proposes an integrated safety prognosis model (ISPM) considering the randomness, complexity and uncertainty of fault propagation. ISPM is developed based on dynamic Bayesian networks to model the propagation of faults in a complex system, integrating the priori knowledge of the interactions and dependencies among subsystems, components, and the environment of the system, as well as the relationships between fault causes and effects. So the current safety state and potential risk of system can be assessed by locating potential hazard origins and deducing corresponding possible consequences. Furthermore, ISPM is also developed to predict the future degradation trend in terms of future reliability or performance of system, and provide proper proactive maintenance plans. Ant colony algorithm is introduced in ISPM by comprehensively considering two factors as probability and severity of faults, to perform the quantitative risk estimation of the underlining system. The feasibility and benefits of ISPM are investigated with a field case study of gas turbine compressor system. According to the outputs given by ISPM in the application, proactive maintenance, safety-related actions and contingency plans are further discussed and then made to keep the system in a high reliability and safety level in the long term.
In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and even catastrophic accidents, which lead to huge economic losses, environmental contamination, or human injuries. In order to ensure system intrinsic safety and increase operational performance and reliability in a long period, this study proposes an integrated safety prognosis model (ISPM) considering the randomness, complexity and uncertainty of fault propagation. ISPM is developed based on dynamic Bayesian networks to model the propagation of faults in a complex system, integrating the priori knowledge of the interactions and dependencies among subsystems, components, and the environment of the system, as well as the relationships between fault causes and effects. So the current safety state and potential risk of system can be assessed by locating potential hazard origins and deducing corresponding possible consequences. Furthermore, ISPM is also developed to predict the future degradation trend in terms of future reliability or performance of system, and provide proper proactive maintenance plans. Ant colony algorithm is introduced in ISPM by comprehensively considering two factors as probability and severity of faults, to perform the quantitative risk estimation of the underlining system. The feasibility and benefits of ISPM are investigated with a field case study of gas turbine compressor system. According to the outputs given by ISPM in the application, proactive maintenance, safety-related actions and contingency plans are further discussed and then made to keep the system in a high reliability and safety level in the long term.
Author Ma, Lin
Hu, Jinqiu
Zhang, Laibin
Liang, Wei
Author_xml – sequence: 1
  givenname: Jinqiu
  surname: Hu
  fullname: Hu, Jinqiu
  email: hjqcup@hotmail.com
  organization: College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
– sequence: 2
  givenname: Laibin
  surname: Zhang
  fullname: Zhang, Laibin
  organization: College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
– sequence: 3
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
  organization: Cooperative Research Centre for Integrated Engineering Asset Management, Queensland University of Technology, Brisbane, QLD 4001, Australia
– sequence: 4
  givenname: Wei
  surname: Liang
  fullname: Liang, Wei
  organization: College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
BookMark eNp9kcFu1DAQhi1UJLaFF-DkG1yydWo7TiQupSoUqRIXOFtjZ7J4SezF41Ly9ni1nDisNNZI1vdZ8v9fsouYIjL2thXbVrTd9X6L9AzbG1EvhNkKLV6wTdsb2XRmkBdsIwZtGtUa9YpdEu2FaI0QZsPybeQhFtxlKDhyggnLyg857WKiQHxJI858Spn7tBxm_MNppYILd0CVT5GPa4QleP4RVqQAkUcszyn_5BDHekoV5xRXDvMu5VB-LK_Zywlmwjf_9hX7_un-291D8_j185e728fGy06XZnLTiKC1lx6d82C8czj0U-e0A4NSG6UU9nWwU85jh6hFp3tllETdg7xi707v1t_8ekIqdgnkcZ4hYnoi26tBGamErOT7s2TNqhVGiaGvaH9CfU5EGSfrQ4ESUiwZwmxbYY-F2L09FmKPhVhhbC2kqjf_qYccFsjreenDScKa1O-A2ZIPGD2OIaMvdkzhnP4XORqqKQ
CitedBy_id crossref_primary_10_1016_j_jlp_2015_08_010
crossref_primary_10_1049_iet_rpg_2017_0736
crossref_primary_10_1016_j_cirp_2015_05_011
crossref_primary_10_3390_en14206598
crossref_primary_10_1016_j_ssci_2015_10_005
crossref_primary_10_1252_jcej_14we275
crossref_primary_10_4018_IJITSA_290003
crossref_primary_10_1016_j_psep_2012_06_004
crossref_primary_10_1177_1748006X20947851
crossref_primary_10_1016_j_jngse_2016_06_054
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1007_s11431_017_9165_7
crossref_primary_10_1016_j_engfailanal_2017_04_015
crossref_primary_10_1016_j_psep_2015_02_003
crossref_primary_10_1016_j_ress_2018_07_002
crossref_primary_10_4028_www_scientific_net_AMR_655_657_1783
crossref_primary_10_1016_j_psep_2023_03_031
crossref_primary_10_1007_s10846_014_0153_3
crossref_primary_10_1109_TR_2017_2722471
crossref_primary_10_3390_s17092123
crossref_primary_10_1016_j_eswa_2021_116418
crossref_primary_10_1115_1_4034223
crossref_primary_10_1080_18756891_2014_853933
crossref_primary_10_1177_0954406220951209
crossref_primary_10_3390_machines9110298
crossref_primary_10_1016_j_apor_2019_101990
crossref_primary_10_1061_AJRUA6_0000920
crossref_primary_10_1007_s00170_017_0110_y
crossref_primary_10_1177_1748006X231211998
crossref_primary_10_1016_j_ress_2020_107329
crossref_primary_10_1016_j_energy_2017_07_034
crossref_primary_10_1016_j_eswa_2022_119214
crossref_primary_10_1007_s12182_013_0299_9
crossref_primary_10_3390_buildings14113428
crossref_primary_10_1109_TR_2015_2419220
crossref_primary_10_1016_j_psep_2024_08_054
crossref_primary_10_1016_j_anucene_2019_107181
crossref_primary_10_1155_2022_1299434
crossref_primary_10_1016_j_ress_2014_10_021
crossref_primary_10_1016_j_ress_2014_09_002
crossref_primary_10_1109_TSMC_2016_2630800
crossref_primary_10_1016_j_ress_2017_01_025
crossref_primary_10_1016_j_ssci_2018_10_019
crossref_primary_10_1016_j_ress_2019_106505
crossref_primary_10_1016_j_renene_2021_04_102
crossref_primary_10_1109_ACCESS_2023_3242642
crossref_primary_10_1016_j_ress_2020_107194
crossref_primary_10_1109_ACCESS_2019_2961433
crossref_primary_10_18184_2079_4665_2024_15_1_96_114
crossref_primary_10_1088_1757_899X_1043_3_032011
Cites_doi 10.1016/j.ress.2007.03.023
10.1109/AERO.2003.1234156
10.1016/j.jlp.2008.08.005
10.1016/j.compind.2006.12.004
10.1016/j.eswa.2009.01.007
10.1016/j.ymssp.2003.09.003
10.1016/j.ymssp.2008.12.006
10.1016/S0888-3270(03)00079-7
10.1007/s00170-004-2131-6
10.1016/j.ymssp.2005.11.008
10.1016/j.ymssp.2005.09.012
10.1016/j.apenergy.2008.06.006
10.1016/j.ymssp.2008.06.009
10.1016/j.ejor.2006.01.041
10.1023/A:1009606229786
10.1016/j.ress.2008.05.008
10.1016/j.ress.2005.03.006
10.1016/j.ymssp.2004.10.009
10.1016/S0029-5493(99)00138-7
10.1016/j.ress.2007.12.006
10.1016/j.cirp.2008.03.026
10.1016/j.ress.2006.12.004
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2010.07.050
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 1446
ExternalDocumentID 10_1016_j_eswa_2010_07_050
S0957417410006780
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c365t-fbfdea55c3cebbca7cbbe98f6b5ba7e357444e84e8e64bce6ee506584743e58a3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Oct 02 09:32:41 EDT 2025
Thu Oct 02 06:46:13 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Wed Oct 01 03:51:26 EDT 2025
Fri Feb 23 02:30:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fault propagation path
Risk evaluation
Proactive maintenance
Dynamic Bayesian networks
Ant colony algorithm
Safety prognosis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-fbfdea55c3cebbca7cbbe98f6b5ba7e357444e84e8e64bce6ee506584743e58a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1701074098
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_849473403
proquest_miscellaneous_1701074098
crossref_citationtrail_10_1016_j_eswa_2010_07_050
crossref_primary_10_1016_j_eswa_2010_07_050
elsevier_sciencedirect_doi_10_1016_j_eswa_2010_07_050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Iung, Monnin, Voisin, Cocheteux, Levrat (b0050) 2008; 57
Heng, Tan, Mathew, Montgomery, Banjevic, Jardine (b0025) 2009; 23
Liu, Djurdjanovic, Ni, Casoetto, Lee (b0070) 2007; 58
Lee, Chung, Kim, Ford, Andersen (b0065) 1999; 191
Kothamasu, Huang, VerDuin (b0060) 2006; 28
Dong, He (b0005) 2007; 178
Samrout, Chatelet, Kouta, Chebbo (b0100) 2009; 94
Texas.
Herzog, Marwala, Heyns (b0035) 2009; 94
Lugtigheid, Banjevic, Jardine (b0080) 2008; 93
Thesis of the University of California, Berkley.
Sun, Ma, Mathew, Wang, Zhang (b0105) 2006; 20
Zhang, L. B., Hu, J. Q., Liang, W., & Wang, Z. H. (2008). Quantitative HAZOP analysis of compressor units based on fuzzy information fusion. In
Gu (b0020) 2001
Salvador, Brazil.
(pp. 3131–3136).
Muller, A., Suhner, M. C., & Iung, B. (2004). Probabilistic vs. dynamical prognosis process-based e-maintenance system. In
Tran, Yang, Tan (b0115) 2009; 36
Huang, Xi, Li, Liu, Qiu, Lee (b0045) 2007; 21
Murphy, K. (2002).
Ghorbanian, Gholamrezaei (b0015) 2009; 86
Jardine, Lin, Banjevic (b0055) 2006; 20
Heng, Zhang, Tan, Mathew (b0030) 2008; 23
Duan (b0010) 2005
Vlok, Wnek, Zygmunt (b0120) 2004; 18
Louzada-Neto (b0075) 1997; 3
Weber, Jouffe (b0130) 2006; 91
Hu, Zhang, Wang, Liang (b0040) 2009; 22
Sutherland, H., Repoff, T., House, M., & Flickinger, G. (2003). Prognostics, a new look at statistical life prediction for condition-based maintenance. In
Wang, Golnaraghi, Ismail (b0125) 2004; 18
Muller, Suhner, Iung (b0090) 2008; 93
Iung (10.1016/j.eswa.2010.07.050_b0050) 2008; 57
Weber (10.1016/j.eswa.2010.07.050_b0130) 2006; 91
Herzog (10.1016/j.eswa.2010.07.050_b0035) 2009; 94
Kothamasu (10.1016/j.eswa.2010.07.050_b0060) 2006; 28
Tran (10.1016/j.eswa.2010.07.050_b0115) 2009; 36
Jardine (10.1016/j.eswa.2010.07.050_b0055) 2006; 20
Gu (10.1016/j.eswa.2010.07.050_b0020) 2001
Wang (10.1016/j.eswa.2010.07.050_b0125) 2004; 18
Lee (10.1016/j.eswa.2010.07.050_b0065) 1999; 191
Lugtigheid (10.1016/j.eswa.2010.07.050_b0080) 2008; 93
10.1016/j.eswa.2010.07.050_b0095
Huang (10.1016/j.eswa.2010.07.050_b0045) 2007; 21
Vlok (10.1016/j.eswa.2010.07.050_b0120) 2004; 18
10.1016/j.eswa.2010.07.050_b0135
Samrout (10.1016/j.eswa.2010.07.050_b0100) 2009; 94
Sun (10.1016/j.eswa.2010.07.050_b0105) 2006; 20
10.1016/j.eswa.2010.07.050_b0110
Ghorbanian (10.1016/j.eswa.2010.07.050_b0015) 2009; 86
Hu (10.1016/j.eswa.2010.07.050_b0040) 2009; 22
Muller (10.1016/j.eswa.2010.07.050_b0090) 2008; 93
Louzada-Neto (10.1016/j.eswa.2010.07.050_b0075) 1997; 3
Heng (10.1016/j.eswa.2010.07.050_b0025) 2009; 23
10.1016/j.eswa.2010.07.050_b0085
Dong (10.1016/j.eswa.2010.07.050_b0005) 2007; 178
Duan (10.1016/j.eswa.2010.07.050_b0010) 2005
Liu (10.1016/j.eswa.2010.07.050_b0070) 2007; 58
Heng (10.1016/j.eswa.2010.07.050_b0030) 2008; 23
References_xml – reference: (pp. 3131–3136).
– reference: Zhang, L. B., Hu, J. Q., Liang, W., & Wang, Z. H. (2008). Quantitative HAZOP analysis of compressor units based on fuzzy information fusion. In
– volume: 3
  start-page: 367
  year: 1997
  end-page: 381
  ident: b0075
  article-title: Extended hazard regression model for reliability and survival analysis
  publication-title: Lifetime Data Analysis
– volume: 86
  start-page: 1210
  year: 2009
  end-page: 1221
  ident: b0015
  article-title: An artificial neural network approach to compressor performance prediction
  publication-title: Applied Energy
– volume: 36
  start-page: 9378
  year: 2009
  end-page: 9387
  ident: b0115
  article-title: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuron-fuzzy systems
  publication-title: Expert Systems with Applications
– year: 2001
  ident: b0020
  article-title: Safety analysis method and its application in petrochemical industry
– reference: . Thesis of the University of California, Berkley.
– volume: 18
  start-page: 813
  year: 2004
  end-page: 831
  ident: b0125
  article-title: Prognosis of machine health condition using neuro-fuzzy systems
  publication-title: Mechanical Systems and Signal Processing
– volume: 18
  start-page: 833
  year: 2004
  end-page: 847
  ident: b0120
  article-title: Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions
  publication-title: Mechanical Systems and Signal Processing
– volume: 91
  start-page: 149
  year: 2006
  end-page: 162
  ident: b0130
  article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN)
  publication-title: Reliability Engineering & System Safety
– volume: 21
  start-page: 193
  year: 2007
  end-page: 207
  ident: b0045
  article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
  publication-title: Mechanical Systems and Signal Processing
– volume: 93
  start-page: 604
  year: 2008
  end-page: 615
  ident: b0080
  article-title: System repairs: When to perform and what to do
  publication-title: Reliability Engineering & System Safety
– volume: 22
  start-page: 1025
  year: 2009
  end-page: 1033
  ident: b0040
  article-title: The application of integrated diagnosis database technology in safety management of oil pipeline and transferring pump units
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 58
  start-page: 558
  year: 2007
  end-page: 566
  ident: b0070
  article-title: Similarity based method for manufacturing process performance prediction and diagnosis
  publication-title: Computers in Industry
– reference: , Salvador, Brazil.
– year: 2005
  ident: b0010
  article-title: Ant colony algorithms: Theory and applications
– volume: 23
  start-page: 1600
  year: 2009
  end-page: 1614
  ident: b0025
  article-title: Intelligent condition-based prediction of machinery reliability
  publication-title: Mechanical Systems and Signal Processing
– volume: 94
  start-page: 44
  year: 2009
  end-page: 52
  ident: b0100
  article-title: Optimization of maintenance policy using the proportional hazard model
  publication-title: Reliability Engineering & System Safety
– reference: Sutherland, H., Repoff, T., House, M., & Flickinger, G. (2003). Prognostics, a new look at statistical life prediction for condition-based maintenance. In
– volume: 94
  start-page: 479
  year: 2009
  end-page: 489
  ident: b0035
  article-title: Machine and component residual life estimation through the application of neural networks
  publication-title: Reliability Engineering & System Safety
– volume: 191
  start-page: 157
  year: 1999
  end-page: 165
  ident: b0065
  article-title: Remaining life prediction methods using operating data and knowledge on mechanisms
  publication-title: Nuclear Engineering and Design
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: b0055
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
– volume: 178
  start-page: 858
  year: 2007
  end-page: 878
  ident: b0005
  article-title: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis
  publication-title: European Journal of Operational Research
– reference: Muller, A., Suhner, M. C., & Iung, B. (2004). Probabilistic vs. dynamical prognosis process-based e-maintenance system. In
– volume: 57
  start-page: 49
  year: 2008
  end-page: 52
  ident: b0050
  article-title: Degradation state model-based prognosis for proactively maintaining product performance
  publication-title: CIRP Annals-Manufacturing Technology
– reference: , Texas.
– reference: Murphy, K. (2002).
– volume: 20
  start-page: 1189
  year: 2006
  end-page: 1201
  ident: b0105
  article-title: Mechanical systems hazard estimation using condition monitoring
  publication-title: Mechanical Systems and Signal Processing
– volume: 23
  start-page: 724
  year: 2008
  end-page: 739
  ident: b0030
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mechanical Systems and Signal Processing
– volume: 28
  start-page: 1012
  year: 2006
  end-page: 1024
  ident: b0060
  article-title: System health monitoring and prognostics – A review of current paradigms and practices
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 93
  start-page: 234
  year: 2008
  end-page: 253
  ident: b0090
  article-title: Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system
  publication-title: Reliability Engineering & System Safety
– ident: 10.1016/j.eswa.2010.07.050_b0095
– volume: 93
  start-page: 604
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2010.07.050_b0080
  article-title: System repairs: When to perform and what to do
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2007.03.023
– ident: 10.1016/j.eswa.2010.07.050_b0110
  doi: 10.1109/AERO.2003.1234156
– ident: 10.1016/j.eswa.2010.07.050_b0135
– volume: 22
  start-page: 1025
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2010.07.050_b0040
  article-title: The application of integrated diagnosis database technology in safety management of oil pipeline and transferring pump units
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2008.08.005
– volume: 58
  start-page: 558
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2010.07.050_b0070
  article-title: Similarity based method for manufacturing process performance prediction and diagnosis
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2006.12.004
– volume: 36
  start-page: 9378
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2010.07.050_b0115
  article-title: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuron-fuzzy systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.01.007
– volume: 18
  start-page: 833
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2010.07.050_b0120
  article-title: Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2003.09.003
– year: 2005
  ident: 10.1016/j.eswa.2010.07.050_b0010
– volume: 23
  start-page: 1600
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2010.07.050_b0025
  article-title: Intelligent condition-based prediction of machinery reliability
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2008.12.006
– volume: 18
  start-page: 813
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2010.07.050_b0125
  article-title: Prognosis of machine health condition using neuro-fuzzy systems
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/S0888-3270(03)00079-7
– volume: 28
  start-page: 1012
  year: 2006
  ident: 10.1016/j.eswa.2010.07.050_b0060
  article-title: System health monitoring and prognostics – A review of current paradigms and practices
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-004-2131-6
– volume: 21
  start-page: 193
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2010.07.050_b0045
  article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.11.008
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.eswa.2010.07.050_b0055
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 86
  start-page: 1210
  issue: 7–8
  year: 2009
  ident: 10.1016/j.eswa.2010.07.050_b0015
  article-title: An artificial neural network approach to compressor performance prediction
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2008.06.006
– volume: 23
  start-page: 724
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2010.07.050_b0030
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2008.06.009
– year: 2001
  ident: 10.1016/j.eswa.2010.07.050_b0020
– volume: 178
  start-page: 858
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2010.07.050_b0005
  article-title: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.01.041
– volume: 3
  start-page: 367
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2010.07.050_b0075
  article-title: Extended hazard regression model for reliability and survival analysis
  publication-title: Lifetime Data Analysis
  doi: 10.1023/A:1009606229786
– ident: 10.1016/j.eswa.2010.07.050_b0085
– volume: 94
  start-page: 479
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2010.07.050_b0035
  article-title: Machine and component residual life estimation through the application of neural networks
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2008.05.008
– volume: 91
  start-page: 149
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2010.07.050_b0130
  article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN)
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2005.03.006
– volume: 20
  start-page: 1189
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2010.07.050_b0105
  article-title: Mechanical systems hazard estimation using condition monitoring
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.10.009
– volume: 191
  start-page: 157
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2010.07.050_b0065
  article-title: Remaining life prediction methods using operating data and knowledge on mechanisms
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/S0029-5493(99)00138-7
– volume: 94
  start-page: 44
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2010.07.050_b0100
  article-title: Optimization of maintenance policy using the proportional hazard model
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2007.12.006
– volume: 57
  start-page: 49
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2010.07.050_b0050
  article-title: Degradation state model-based prognosis for proactively maintaining product performance
  publication-title: CIRP Annals-Manufacturing Technology
  doi: 10.1016/j.cirp.2008.03.026
– volume: 93
  start-page: 234
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2010.07.050_b0090
  article-title: Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2006.12.004
SSID ssj0017007
Score 2.2684476
Snippet In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1431
SubjectTerms Algorithms
Ant colony algorithm
Complex systems
Dynamic Bayesian networks
Dynamical systems
Dynamics
Fault propagation path
Faults
Mathematical models
Proactive maintenance
Risk
Risk evaluation
Safety
Safety prognosis
Title An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm
URI https://dx.doi.org/10.1016/j.eswa.2010.07.050
https://www.proquest.com/docview/1701074098
https://www.proquest.com/docview/849473403
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELWqcuECtAWxQKtB6g2FTTZ2kj1uK6otiF6gUm_W2JnAouJUm1SwF769nthZCaT2gORcIluJPPbMc_LmjRDHaoaYmiZNZuUcE5lhlmDe-KNKmaOsrZpZ5NzhzxfF8lJ-vFJXO-J0zIVhWmX0_cGnD9463pnG2ZzerFbTLx4c-HDoW3C5fG6XsuQqBu__bGkeLD9XBr29MuHeMXEmcLyo-4WR3sUCnul9wekfNz3EnrNn4kkEjbAI77Undsjti6djQQaI-_NArBcOtvoPNXTYUL8BpmC5tlt1MJS9AQ9TYWCS028IQs7AsayG1kEdCtTDCW6I0yvBBZo4oKv91QOLXLsN4PW3dr3qv_98Li7PPnw9XSaxqEJi80L1SWOamlApm1syxmJpjaF51RRGGSwp93MqJVW-USGNpYJIDTDFQw1SFeYvxK5rHb0UgHlKTUaY1ZWRJjXeFVDWkPKgAWdYm4nIxtnUNiqOc-GLaz1Sy35otoBmC-i01N4CE_FuO-Ym6G082FuNRtJ_rRrtA8KD496OFtV-O_E_EnTU3naa5ek9qkrn1UTAPX0qOfdLWab5q_98_GvxOHyaZirbG7Hbr2_p0GOb3hwNi_dIPFqcf1pe3AHucvz8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALb8TyHCRuKGwedpI9lopqgbYXWqk3a-xM6KLiVJtUsBd-O-PYWQmk9oDkXCJbiTz2zOfkm2-EeKtyxNS0aZJXC0xkhlmCRctHlapA2ViVW_S5w0fH5fJUfj5TZztif8qF8bTK6PuDTx-9dbwzj7M5v1yt5l8ZHHA45BZcLp_bb0mVV_4E9v73lufh9eeqILhXJb57zJwJJC_qf2Lkd3kFz_S66PSPnx6Dz8F9cTeiRtgLL_ZA7JB7KO5NFRkgbtBHYr3nYCsA0UCPLQ0b8Bws1_WrHsa6N8A4FUYqOf2CoOQMPpg10DloQoV6-IAb8vmV4AJPHNA1fA3gVa7dBvDiW7deDec_HovTg48n-8skVlVIbFGqIWlN2xAqZQtLxlisrDG0qNvSKIMVFTypUlLNjUppLJVEasQpjDVI1Vg8Ebuuc_RUABYptRlh1tRGmtSwL6CsJcWoAXNszExk02xqGyXHfeWLCz1xy75rbwHtLaDTSrMFZuLddsxlENy4sbeajKT_WjaaI8KN495MFtW8n_xPEnTUXfXa69MzrEoX9UzANX1queC1LNPi2X8-_rW4vTw5OtSHn46_PBd3wndqz2t7IXaH9RW9ZKAzmFfjQv4DvPD-kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+safety+prognosis+model+for+complex+system+based+on+dynamic+Bayesian+network+and+ant+colony+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Hu%2C+Jinqiu&rft.au=Zhang%2C+Laibin&rft.au=Ma%2C+Lin&rft.au=Liang%2C+Wei&rft.date=2011-03-01&rft.issn=0957-4174&rft.volume=38&rft.issue=3&rft.spage=1431&rft.epage=1446&rft_id=info:doi/10.1016%2Fj.eswa.2010.07.050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2010_07_050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon