Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection
Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning...
Saved in:
| Published in | Medical image analysis Vol. 101; p. 103403 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8423 |
| DOI | 10.1016/j.media.2024.103403 |
Cover
| Abstract | Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts.
[Display omitted]
•Creating a self-supervised graph contrastive learning framework for fMRI analysis and brain disease detection to alleviate the small-sample-size problem.•Designing a graph diffusion augmentation strategy to preserve the integrity of original BOLD signals.•Conducting extensive experiments on two rs-fMRI datasets with 1,230 subjects. |
|---|---|
| AbstractList | Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts. Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts. [Display omitted] •Creating a self-supervised graph contrastive learning framework for fMRI analysis and brain disease detection to alleviate the small-sample-size problem.•Designing a graph diffusion augmentation strategy to preserve the integrity of original BOLD signals.•Conducting extensive experiments on two rs-fMRI datasets with 1,230 subjects. Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts.Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts. |
| ArticleNumber | 103403 |
| Author | Wang, Qianqian Liu, Mingxia Fang, Yuqi Yap, Pew-Thian Wang, Xiaochuan Zhu, Hongtu |
| AuthorAffiliation | b Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| AuthorAffiliation_xml | – name: a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – name: b Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| Author_xml | – sequence: 1 givenname: Xiaochuan orcidid: 0000-0002-9848-8125 surname: Wang fullname: Wang, Xiaochuan organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 2 givenname: Yuqi orcidid: 0000-0002-8769-496X surname: Fang fullname: Fang, Yuqi organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 3 givenname: Qianqian surname: Wang fullname: Wang, Qianqian organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 4 givenname: Pew-Thian orcidid: 0000-0003-1489-2102 surname: Yap fullname: Yap, Pew-Thian organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 5 givenname: Hongtu surname: Zhu fullname: Zhu, Hongtu organization: Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 6 givenname: Mingxia orcidid: 0000-0002-0166-0807 surname: Liu fullname: Liu, Mingxia email: mingxia_liu@med.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39637557$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1v1DAQtVAr-gG_AAn5yCWLnYnj5IAQqvioVFSphbPl2JNdr7L2YieLeuKv4zRlBRdO8-H3ZsbvXZATHzwS8oqzFWe8frtd7dA6vSpZWeUOVAyekXMONS-aqoSTY87FGblIacsYk1XFnpMzaGuQQshz8useh75I0x7jwSW0dB31fkNN8GPUaXQHpAPq6J1f059u3FDr-n5KLniqp_UO_ajHuehDpP3kzVzogX69u6Y6Jw_JpZxY2kXtfCanEC1GanHER-wLctrrIeHLp3hJvn_6-O3qS3Fz-_n66sNNYaAWY2FlI1hTQ1-2RnMNTQe8QlEJzTpZ5RYalltN2zaMS-hlI20OGsoSyg4ALsn7Ze5-6rJsBuf_DWof3U7HBxW0U_--eLdR63BQnDdStOU84c3ThBh-TJhGtXPJ4DBoj2FKKh9UC-AL9PXfy45b_sieAbAATAwpReyPEM7UbK7aqkdz1WyuWszNrHcLC7NQB4dRJePQmwyMWU1lg_sv_zeCArBh |
| Cites_doi | 10.1016/j.compbiomed.2023.106749 10.1109/JBHI.2023.3274531 10.1016/j.neuroimage.2023.120485 10.1016/j.procs.2020.07.012 10.1145/3442381.3449802 10.1016/j.neuroimage.2016.03.033 10.1109/TPAMI.2022.3214832 10.1109/TBME.2021.3080259 10.1109/CVPR46437.2021.01549 10.1016/j.neuroimage.2015.05.015 10.1016/j.neubiorev.2022.104972 10.1016/j.jad.2023.07.077 10.1016/j.jad.2016.04.001 10.1109/TAI.2021.3076021 10.1109/TCSS.2024.3402328 10.1016/j.ins.2019.05.043 10.1109/TBME.2024.3370415 10.1109/TBME.2021.3117407 10.1145/3616855.3635850 10.1016/j.neuroimage.2022.119296 10.1038/tp.2016.110 10.1109/TPAMI.2022.3209686 10.1016/j.media.2023.102756 10.1038/s41467-019-13005-8 10.1016/j.media.2023.102932 10.1016/S1474-4422(15)00050-2 10.1109/TMI.2022.3201974 10.1109/MSP.2021.3134634 10.1016/j.media.2022.102707 10.1145/3626235 10.1109/CVPR42600.2020.00975 10.1038/s41380-021-01090-5 10.1109/TNNLS.2022.3220220 10.1002/hbm.26469 10.1371/journal.pone.0068910 10.1016/j.jalz.2013.05.1769 10.1038/s41746-023-00859-y 10.1016/j.media.2020.101765 10.1002/hbm.25656 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.media.2024.103403 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 103403 |
| ExternalDocumentID | PMC11875923 39637557 10_1016_j_media_2024_103403 S1361841524003281 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS134849 – fundername: NIA NIH HHS grantid: RF1 AG082938 – fundername: NIA NIH HHS grantid: RF1 AG073297 – fundername: NIBIB NIH HHS grantid: R01 EB035160 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAYWO AAYXX ACIEU ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c365t-d7850863f29ca1a38b314e545a0b74ca1ec0b3189980173f787d73fa32232b333 |
| IEDL.DBID | .~1 |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Tue Sep 30 17:04:36 EDT 2025 Wed Oct 01 13:45:41 EDT 2025 Mon Jul 21 06:04:17 EDT 2025 Wed Oct 01 06:50:56 EDT 2025 Sat Mar 15 15:41:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data augmentation Functional MRI Diffusion model Contrastive learning |
| Language | English |
| License | Copyright © 2024 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-d7850863f29ca1a38b314e545a0b74ca1ec0b3189980173f787d73fa32232b333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9848-8125 0000-0002-8769-496X 0000-0002-0166-0807 0000-0003-1489-2102 |
| PMID | 39637557 |
| PQID | 3146531923 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11875923 proquest_miscellaneous_3146531923 pubmed_primary_39637557 crossref_primary_10_1016_j_media_2024_103403 elsevier_sciencedirect_doi_10_1016_j_media_2024_103403 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Gu, Dvornek, Staib, Ventola, Duncan (b29) 2020; 65 Ericsson, Gouk, Loy, Hospedales (b12) 2022; 39 Yang, Zhang, Song, Hong, Xu, Zhao, Zhang, Cui, Yang (b63) 2023; 56 Rashid, Louis (b44) 2019; vol. 36 Song, Hu, Li, Gao, Ju, Liu, Wang, Xue, Cai, Bai (b48) 2021; 26 Jiang, Y., Yang, Y., Xia, L., Huang, C., 2024. DiffKG: Knowledge Graph Diffusion Model for Recommendation. In: Proceedings of the 17th ACM International Conference on Web Search and Data Mining. pp. 313–321. Ecker, Bookheimer, Murphy (b11) 2015; 14 Ingalhalikar, Shinde, Karmarkar, Rajan, Rangaprakash, Deshpande (b22) 2021; 68 Luo, Su, Peng, Wang, Peng, Ma (b33) 2022; 35 Liao, Li, Song, Wang, Hamilton, Duvenaud, Urtasun, Zemel (b31) 2019; 32 Tian, Sun, Poole, Krishnan, Schmid, Isola (b51) 2020; 33 Vignac, Krawczuk, Siraudin, Wang, Cevher, Frossard (b53) 2022 Oh, Han, Jeong (b37) 2020; 175 Bijsterbosch, Smith, Beckmann (b3) 2017 Zhang, Qamar, Kang, Jung, Zhang, Bae, Zhang (b67) 2023 Wang, Isola (b55) 2020 Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (b58) 2013; 9 Bessadok, Mahjoub, Rekik (b2) 2022; 45 Bondi, Maggioni, Brambilla, Delvecchio (b4) 2023; 144 Fang, Wang, Potter, Liu (b13) 2023; 84 Wang, Chu, Wang, Cao, Qiao, Zhang, Liu (b54) 2023; 44 Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L., 2021. Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021. pp. 2069–2080. Fedorov, Geenjaar, Wu, Sylvain, DeRamus, Luck, Misiura, Mittapalle, Hjelm, Plis (b14) 2024; 285 Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b38) 2017 Demirel, Holz (b9) 2024; 36 Pei, Wang, Cao, Lv (b39) 2022; 72 He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738. Shi, Yao, Zhu, Lin, Ji, Liu, Li (b46) 2024 Li, Srinivasan, Zhuo, Cui, Gur, Gur, Oathes, Davatzikos, Satterthwaite, Fan (b30) 2023; 85 Dwivedi, Bresson (b10) 2020 Perez, Strub, De Vries, Dumoulin, Courville (b42) 2018; vol. 32 Kingma, Ba (b26) 2014 Mao, Su, Xu, Wang, Huang, Yue, Sun, Xiong (b34) 2019; 499 Amemiya, Takao, Hanaoka, Ohtomo (b1) 2016; 133 Hou, Guo, Wang, Liu, Lin, Fan, Li, Wei, Lin, Jiang (b21) 2023; 6 Liu, Zhang, Hou, Mian, Wang, Zhang, Tang (b32) 2021; 35 Yin, Wang, Huang, Xiong, Zhang (b64) 2022; vol. 36 Zhang, Chen, Shen, Ren, Yu, Yang, Jiang, Shen, Zhou, Zhang (b66) 2023; 90 Wu, Fu, Fang, Zhang, Yang, Xiong, Liu, Xu (b60) 2024 Xia, Wang, He (b62) 2013; 8 You, Chen, Sui, Chen, Wang, Shen (b65) 2020; 33 Jang, Gu, Poole (b23) 2016 Tang, Ma, Guo, Fu, Huang, Zhan (b50) 2022; 35 Kim, Ye, Kim (b25) 2021; 34 Dai, Lu, Shi, Zhou, Xiong, Zhou, Chen, Zou, Tang, Huang (b8) 2023; 339 Shirer, Jiang, Price, Ng, Greicius (b47) 2015; 117 Chen, Kornblith, Norouzi, Hinton (b6) 2020 Hebling Vieira, Dubois, Calhoun, Garrido Salmon (b18) 2021; 42 Chen, X., He, K., 2021. Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15750–15758. Peng, Wang, Xu, Zhu, Li (b41) 2022; 42 Postema, Van Rooij, Anagnostou, Arango, Auzias, Behrmann, Filho, Calderoni, Calvo, Daly (b43) 2019; 10 Peng, Chen, Yin, Jia, Gong (b40) 2016; 199 Wang, Yao, Rekik, Zhang (b57) 2022 Cui, Du, Sun, Zhu, Zhao, Peng, Tan, Li (b7) 2023; 157 Hendrycks, Mazeika, Kadavath, Song (b19) 2019; 32 Wang, Wang, Fang, Yap, Zhu, Li, Qiao, Liu (b56) 2024 Kingma, Salimans, Poole, Ho (b27) 2021; 34 Myung, Han, Fava, Mischoulon, Papakostas, Heo, Kim, Kim, Kim, Kim (b35) 2016; 6 Wen, Cao, Liu, Yang, Zhang, Wang, Zaiane (b59) 2023 Guo, Zhao (b16) 2022; 45 Shi, Luo, Xu, Tang (b45) 2021 Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b52) 2017; 1050 Zhu, Wang, Zhao, Lu, Shi (b69) 2022 Nebel, Lidstone, Wang, Benkeser, Mostofsky, Risk (b36) 2022; 257 Ho, Jain, Abbeel (b20) 2020; 33 Kipf, Welling (b28) 2016 Suresh, Li, Hao, Neville (b49) 2021; 34 Xia, Sun, Yu, Aziz, Wan, Pan, Liu (b61) 2021; 2 Guan, Liu (b15) 2021; 69 Zhang, Wen, Cao, Yang, Zhang, Zhang, Zhu, Zaiane, Wang (b68) 2023 Bessadok (10.1016/j.media.2024.103403_b2) 2022; 45 Oh (10.1016/j.media.2024.103403_b37) 2020; 175 Hou (10.1016/j.media.2024.103403_b21) 2023; 6 Peng (10.1016/j.media.2024.103403_b41) 2022; 42 Dwivedi (10.1016/j.media.2024.103403_b10) 2020 Liu (10.1016/j.media.2024.103403_b32) 2021; 35 Wang (10.1016/j.media.2024.103403_b54) 2023; 44 Xia (10.1016/j.media.2024.103403_b61) 2021; 2 Chen (10.1016/j.media.2024.103403_b6) 2020 Yang (10.1016/j.media.2024.103403_b63) 2023; 56 Suresh (10.1016/j.media.2024.103403_b49) 2021; 34 Vignac (10.1016/j.media.2024.103403_b53) 2022 Shirer (10.1016/j.media.2024.103403_b47) 2015; 117 10.1016/j.media.2024.103403_b24 Guan (10.1016/j.media.2024.103403_b15) 2021; 69 10.1016/j.media.2024.103403_b17 Zhang (10.1016/j.media.2024.103403_b66) 2023; 90 Tian (10.1016/j.media.2024.103403_b51) 2020; 33 Ho (10.1016/j.media.2024.103403_b20) 2020; 33 Bijsterbosch (10.1016/j.media.2024.103403_b3) 2017 Nebel (10.1016/j.media.2024.103403_b36) 2022; 257 Liao (10.1016/j.media.2024.103403_b31) 2019; 32 Kingma (10.1016/j.media.2024.103403_b27) 2021; 34 Wang (10.1016/j.media.2024.103403_b55) 2020 Rashid (10.1016/j.media.2024.103403_b44) 2019; vol. 36 Postema (10.1016/j.media.2024.103403_b43) 2019; 10 Hendrycks (10.1016/j.media.2024.103403_b19) 2019; 32 Tang (10.1016/j.media.2024.103403_b50) 2022; 35 Demirel (10.1016/j.media.2024.103403_b9) 2024; 36 Shi (10.1016/j.media.2024.103403_b46) 2024 Velickovic (10.1016/j.media.2024.103403_b52) 2017; 1050 Bondi (10.1016/j.media.2024.103403_b4) 2023; 144 Li (10.1016/j.media.2024.103403_b29) 2020; 65 Mao (10.1016/j.media.2024.103403_b34) 2019; 499 Perez (10.1016/j.media.2024.103403_b42) 2018; vol. 32 Ecker (10.1016/j.media.2024.103403_b11) 2015; 14 Kipf (10.1016/j.media.2024.103403_b28) 2016 Fedorov (10.1016/j.media.2024.103403_b14) 2024; 285 Zhang (10.1016/j.media.2024.103403_b68) 2023 10.1016/j.media.2024.103403_b5 Dai (10.1016/j.media.2024.103403_b8) 2023; 339 Fang (10.1016/j.media.2024.103403_b13) 2023; 84 Guo (10.1016/j.media.2024.103403_b16) 2022; 45 Zhu (10.1016/j.media.2024.103403_b69) 2022 Pei (10.1016/j.media.2024.103403_b39) 2022; 72 Xia (10.1016/j.media.2024.103403_b62) 2013; 8 Kingma (10.1016/j.media.2024.103403_b26) 2014 Song (10.1016/j.media.2024.103403_b48) 2021; 26 Shi (10.1016/j.media.2024.103403_b45) 2021 Cui (10.1016/j.media.2024.103403_b7) 2023; 157 Li (10.1016/j.media.2024.103403_b30) 2023; 85 Weiner (10.1016/j.media.2024.103403_b58) 2013; 9 Wu (10.1016/j.media.2024.103403_b60) 2024 Myung (10.1016/j.media.2024.103403_b35) 2016; 6 Wang (10.1016/j.media.2024.103403_b56) 2024 Amemiya (10.1016/j.media.2024.103403_b1) 2016; 133 Paszke (10.1016/j.media.2024.103403_b38) 2017 Peng (10.1016/j.media.2024.103403_b40) 2016; 199 Yin (10.1016/j.media.2024.103403_b64) 2022; vol. 36 Wen (10.1016/j.media.2024.103403_b59) 2023 Ingalhalikar (10.1016/j.media.2024.103403_b22) 2021; 68 Zhang (10.1016/j.media.2024.103403_b67) 2023 Jang (10.1016/j.media.2024.103403_b23) 2016 Luo (10.1016/j.media.2024.103403_b33) 2022; 35 10.1016/j.media.2024.103403_b70 Ericsson (10.1016/j.media.2024.103403_b12) 2022; 39 Kim (10.1016/j.media.2024.103403_b25) 2021; 34 You (10.1016/j.media.2024.103403_b65) 2020; 33 Hebling Vieira (10.1016/j.media.2024.103403_b18) 2021; 42 Wang (10.1016/j.media.2024.103403_b57) 2022 |
| References_xml | – year: 2016 ident: b28 article-title: Semi-supervised classification with graph convolutional networks – volume: 45 start-page: 5833 year: 2022 end-page: 5848 ident: b2 article-title: Graph neural networks in network neuroscience publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 205 year: 2023 end-page: 214 ident: b68 article-title: BrainUSL: U nsupervised graph s tructure l earning for functional brain network analysis publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 42 start-page: 391 year: 2022 end-page: 402 ident: b41 article-title: GATE: Graph CCA for temporal self-supervised learning for label-efficient fMRI analysis publication-title: IEEE Trans. Med. Imaging – volume: 32 year: 2019 ident: b19 article-title: Using self-supervised learning can improve model robustness and uncertainty publication-title: Adv. Neural Inf. Process. Syst. – year: 2022 ident: b53 article-title: Digress: Discrete denoising diffusion for graph generation – volume: 144 year: 2023 ident: b4 article-title: A systematic review on the potential use of machine learning to classify major depressive disorder from healthy controls using resting state fMRI measures publication-title: Neurosci. Biobehav. Rev. – volume: 157 year: 2023 ident: b7 article-title: Dynamic multi-site graph convolutional network for autism spectrum disorder identification publication-title: Comput. Biol. Med. – volume: 6 start-page: 116 year: 2023 ident: b21 article-title: Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI publication-title: NPJ Digit. Med. – start-page: 9558 year: 2021 end-page: 9568 ident: b45 article-title: Learning gradient fields for molecular conformation generation publication-title: International Conference on Machine Learning – volume: 36 year: 2024 ident: b9 article-title: Finding order in chaos: A novel data augmentation method for time series in contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 133 start-page: 331 year: 2016 end-page: 340 ident: b1 article-title: Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity publication-title: Neuroimage – volume: 90 year: 2023 ident: b66 article-title: A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders publication-title: Med. Image Anal. – volume: 10 start-page: 4958 year: 2019 ident: b43 article-title: Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets publication-title: Nature Commun. – volume: 199 start-page: 114 year: 2016 end-page: 123 ident: b40 article-title: Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients publication-title: J. Affect. Disord. – start-page: 221 year: 2022 end-page: 230 ident: b57 article-title: Contrastive functional connectivity graph learning for population-based fMRI classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 32 year: 2019 ident: b31 article-title: Efficient graph generation with graph recurrent attention networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 65 year: 2020 ident: b29 article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results publication-title: Med. Image Anal. – volume: 35 start-page: 857 year: 2021 end-page: 876 ident: b32 article-title: Self-supervised learning: Generative or contrastive publication-title: IEEE Trans. Knowl. Data Eng. – year: 2023 ident: b67 article-title: A survey on graph diffusion models: Generative AI in science for molecule, protein and material – reference: Chen, X., He, K., 2021. Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15750–15758. – year: 2020 ident: b10 article-title: A generalization of transformer networks to graphs – volume: 68 start-page: 3628 year: 2021 end-page: 3637 ident: b22 article-title: Functional connectivity-based prediction of autism on site harmonized ABIDE dataset publication-title: IEEE Trans. Biomed. Eng. – volume: 499 start-page: 1 year: 2019 end-page: 11 ident: b34 article-title: Spatio-temporal deep learning method for adhd fMRI classification publication-title: Inform. Sci. – year: 2014 ident: b26 article-title: Adam: A method for stochastic optimization – volume: 39 start-page: 42 year: 2022 end-page: 62 ident: b12 article-title: Self-supervised representation learning: Introduction, advances, and challenges publication-title: IEEE Signal Process. Mag. – volume: vol. 32 year: 2018 ident: b42 article-title: Film: Visual reasoning with a general conditioning layer publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 9 start-page: e111 year: 2013 end-page: e194 ident: b58 article-title: The alzheimer’s disease neuroimaging initiative: A review of papers published since its inception publication-title: Alzheimer’s & Dementia – year: 2017 ident: b3 article-title: An Introduction to Resting State fMRI Functional Connectivity – start-page: 1623 year: 2024 end-page: 1639 ident: b60 article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model publication-title: Medical Imaging with Deep Learning – volume: 175 start-page: 64 year: 2020 end-page: 71 ident: b37 article-title: Time-series data augmentation based on interpolation publication-title: Procedia Comput. Sci. – reference: Jiang, Y., Yang, Y., Xia, L., Huang, C., 2024. DiffKG: Knowledge Graph Diffusion Model for Recommendation. In: Proceedings of the 17th ACM International Conference on Web Search and Data Mining. pp. 313–321. – volume: 6 year: 2016 ident: b35 article-title: Reduced frontal-subcortical white matter connectivity in association with suicidal ideation in major depressive disorder publication-title: Transl. Psychiatry – volume: 2 start-page: 109 year: 2021 end-page: 127 ident: b61 article-title: Graph learning: A survey publication-title: IEEE Trans. Artif. Intell. – volume: 8 year: 2013 ident: b62 article-title: BrainNet viewer: A network visualization tool for human brain connectomics publication-title: PLoS One – volume: 35 start-page: 9754 year: 2022 end-page: 9767 ident: b33 article-title: Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures publication-title: Adv. Neural Inf. Process. Syst. – volume: 72 start-page: 1 year: 2022 end-page: 15 ident: b39 article-title: Data augmentation for fMRI-based functional connectivity and its application to cross-site ADHD classification publication-title: IEEE Trans. Instrum. Meas. – volume: 33 start-page: 6840 year: 2020 end-page: 6851 ident: b20 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1597 year: 2020 end-page: 1607 ident: b6 article-title: A simple framework for contrastive learning of visual representations publication-title: International Conference on Machine Learning – volume: 44 start-page: 5672 year: 2023 end-page: 5692 ident: b54 article-title: Unsupervised contrastive graph learning for resting-state functional MRI analysis and brain disorder detection publication-title: Hum. Brain Mapp. – volume: vol. 36 start-page: 8892 year: 2022 end-page: 8900 ident: b64 article-title: Autogcl: Automated graph contrastive learning via learnable view generators publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 339 start-page: 511 year: 2023 end-page: 519 ident: b8 article-title: Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fMRI data publication-title: J. Affect. Disord. – start-page: 9929 year: 2020 end-page: 9939 ident: b55 article-title: Understanding contrastive representation learning through alignment and uniformity on the hypersphere publication-title: International Conference on Machine Learning – volume: vol. 36 start-page: 651 year: 2019 end-page: 657 ident: b44 article-title: Window-warping: A time series data augmentation of IMU data for construction equipment activity identification publication-title: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction – volume: 69 start-page: 1173 year: 2021 end-page: 1185 ident: b15 article-title: Domain adaptation for medical image analysis: A survey publication-title: IEEE Trans. Biomed. Eng. – volume: 34 start-page: 15920 year: 2021 end-page: 15933 ident: b49 article-title: Adversarial graph augmentation to improve graph contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 6827 year: 2020 end-page: 6839 ident: b51 article-title: What makes for good views for contrastive learning? publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 5812 year: 2020 end-page: 5823 ident: b65 article-title: Graph contrastive learning with augmentations publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 21696 year: 2021 end-page: 21707 ident: b27 article-title: Variational diffusion models publication-title: Adv. Neural Inf. Process. Syst. – volume: 117 start-page: 67 year: 2015 end-page: 79 ident: b47 article-title: Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination publication-title: Neuroimage – year: 2024 ident: b56 article-title: Leveraging brain modularity prior for interpretable representation learning of fMRI publication-title: IEEE Trans. Biomed. Eng. – volume: 35 start-page: 7363 year: 2022 end-page: 7375 ident: b50 article-title: Contrastive brain network learning via hierarchical signed graph pooling model publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 42 start-page: 5873 year: 2021 end-page: 5887 ident: b18 article-title: A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI publication-title: Hum. Brain Mapp. – volume: 34 start-page: 4314 year: 2021 end-page: 4327 ident: b25 article-title: Learning dynamic graph representation of brain connectome with spatio-temporal attention publication-title: Adv. Neural Inf. Process. Syst. – volume: 1050 start-page: 10 year: 2017 end-page: 48550 ident: b52 article-title: Graph attention networks publication-title: Stat – volume: 285 year: 2024 ident: b14 article-title: Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links publication-title: Neuroimage – volume: 257 year: 2022 ident: b36 article-title: Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder? publication-title: Neuroimage – reference: He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738. – volume: 56 start-page: 1 year: 2023 end-page: 39 ident: b63 article-title: Diffusion models: A comprehensive survey of methods and applications publication-title: ACM Comput. Surv. – volume: 14 start-page: 1121 year: 2015 end-page: 1134 ident: b11 article-title: Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan publication-title: Lancet Neurol. – reference: Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L., 2021. Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021. pp. 2069–2080. – year: 2016 ident: b23 article-title: Categorical reparameterization with gumbel-softmax – volume: 45 start-page: 5370 year: 2022 end-page: 5390 ident: b16 article-title: A systematic survey on deep generative models for graph generation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 ident: b69 article-title: Contrastive multi-view composite graph convolutional networks based on contribution learning for autism spectrum disorder classification publication-title: IEEE Trans. Biomed. Eng. – volume: 85 year: 2023 ident: b30 article-title: Computing personalized brain functional networks from fMRI using self-supervised deep learning publication-title: Med. Image Anal. – year: 2024 ident: b46 article-title: Contrastive hierarchical augmentation learning for modeling cognitive and multimodal brain network publication-title: IEEE Trans. Comput. Soc. Syst. – year: 2023 ident: b59 article-title: Graph self-supervised learning with application to brain networks analysis publication-title: IEEE J. Biomed. Health Inf. – volume: 84 year: 2023 ident: b13 article-title: Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification publication-title: Med. Image Anal. – volume: 26 start-page: 6747 year: 2021 end-page: 6755 ident: b48 article-title: Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder publication-title: Mol. Psychiatry – year: 2017 ident: b38 article-title: Automatic differentiation in pytorch – volume: 157 year: 2023 ident: 10.1016/j.media.2024.103403_b7 article-title: Dynamic multi-site graph convolutional network for autism spectrum disorder identification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106749 – year: 2016 ident: 10.1016/j.media.2024.103403_b23 – year: 2023 ident: 10.1016/j.media.2024.103403_b59 article-title: Graph self-supervised learning with application to brain networks analysis publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2023.3274531 – volume: 285 year: 2024 ident: 10.1016/j.media.2024.103403_b14 article-title: Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.120485 – volume: 175 start-page: 64 year: 2020 ident: 10.1016/j.media.2024.103403_b37 article-title: Time-series data augmentation based on interpolation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.07.012 – ident: 10.1016/j.media.2024.103403_b70 doi: 10.1145/3442381.3449802 – volume: 133 start-page: 331 year: 2016 ident: 10.1016/j.media.2024.103403_b1 article-title: Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.033 – volume: 45 start-page: 5370 issue: 5 year: 2022 ident: 10.1016/j.media.2024.103403_b16 article-title: A systematic survey on deep generative models for graph generation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3214832 – volume: 68 start-page: 3628 issue: 12 year: 2021 ident: 10.1016/j.media.2024.103403_b22 article-title: Functional connectivity-based prediction of autism on site harmonized ABIDE dataset publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3080259 – ident: 10.1016/j.media.2024.103403_b5 doi: 10.1109/CVPR46437.2021.01549 – volume: 117 start-page: 67 year: 2015 ident: 10.1016/j.media.2024.103403_b47 article-title: Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.015 – volume: 144 year: 2023 ident: 10.1016/j.media.2024.103403_b4 article-title: A systematic review on the potential use of machine learning to classify major depressive disorder from healthy controls using resting state fMRI measures publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2022.104972 – volume: 339 start-page: 511 year: 2023 ident: 10.1016/j.media.2024.103403_b8 article-title: Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fMRI data publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2023.07.077 – year: 2014 ident: 10.1016/j.media.2024.103403_b26 – volume: 199 start-page: 114 year: 2016 ident: 10.1016/j.media.2024.103403_b40 article-title: Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2016.04.001 – volume: 2 start-page: 109 issue: 2 year: 2021 ident: 10.1016/j.media.2024.103403_b61 article-title: Graph learning: A survey publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2021.3076021 – year: 2024 ident: 10.1016/j.media.2024.103403_b46 article-title: Contrastive hierarchical augmentation learning for modeling cognitive and multimodal brain network publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2024.3402328 – volume: 499 start-page: 1 year: 2019 ident: 10.1016/j.media.2024.103403_b34 article-title: Spatio-temporal deep learning method for adhd fMRI classification publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.05.043 – year: 2024 ident: 10.1016/j.media.2024.103403_b56 article-title: Leveraging brain modularity prior for interpretable representation learning of fMRI publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2024.3370415 – volume: 69 start-page: 1173 issue: 3 year: 2021 ident: 10.1016/j.media.2024.103403_b15 article-title: Domain adaptation for medical image analysis: A survey publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3117407 – ident: 10.1016/j.media.2024.103403_b24 doi: 10.1145/3616855.3635850 – volume: 35 start-page: 857 issue: 1 year: 2021 ident: 10.1016/j.media.2024.103403_b32 article-title: Self-supervised learning: Generative or contrastive publication-title: IEEE Trans. Knowl. Data Eng. – volume: 33 start-page: 6840 year: 2020 ident: 10.1016/j.media.2024.103403_b20 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – volume: 257 year: 2022 ident: 10.1016/j.media.2024.103403_b36 article-title: Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119296 – start-page: 9929 year: 2020 ident: 10.1016/j.media.2024.103403_b55 article-title: Understanding contrastive representation learning through alignment and uniformity on the hypersphere – volume: 6 issue: 6 year: 2016 ident: 10.1016/j.media.2024.103403_b35 article-title: Reduced frontal-subcortical white matter connectivity in association with suicidal ideation in major depressive disorder publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.110 – volume: 72 start-page: 1 year: 2022 ident: 10.1016/j.media.2024.103403_b39 article-title: Data augmentation for fMRI-based functional connectivity and its application to cross-site ADHD classification publication-title: IEEE Trans. Instrum. Meas. – year: 2022 ident: 10.1016/j.media.2024.103403_b53 – volume: 45 start-page: 5833 issue: 5 year: 2022 ident: 10.1016/j.media.2024.103403_b2 article-title: Graph neural networks in network neuroscience publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3209686 – start-page: 1623 year: 2024 ident: 10.1016/j.media.2024.103403_b60 article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model – volume: 33 start-page: 6827 year: 2020 ident: 10.1016/j.media.2024.103403_b51 article-title: What makes for good views for contrastive learning? publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 9754 year: 2022 ident: 10.1016/j.media.2024.103403_b33 article-title: Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures publication-title: Adv. Neural Inf. Process. Syst. – volume: 85 year: 2023 ident: 10.1016/j.media.2024.103403_b30 article-title: Computing personalized brain functional networks from fMRI using self-supervised deep learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102756 – year: 2017 ident: 10.1016/j.media.2024.103403_b3 – volume: 34 start-page: 4314 year: 2021 ident: 10.1016/j.media.2024.103403_b25 article-title: Learning dynamic graph representation of brain connectome with spatio-temporal attention publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 4958 issue: 1 year: 2019 ident: 10.1016/j.media.2024.103403_b43 article-title: Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets publication-title: Nature Commun. doi: 10.1038/s41467-019-13005-8 – volume: 90 year: 2023 ident: 10.1016/j.media.2024.103403_b66 article-title: A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102932 – volume: vol. 36 start-page: 8892 year: 2022 ident: 10.1016/j.media.2024.103403_b64 article-title: Autogcl: Automated graph contrastive learning via learnable view generators – volume: 14 start-page: 1121 issue: 11 year: 2015 ident: 10.1016/j.media.2024.103403_b11 article-title: Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(15)00050-2 – volume: 33 start-page: 5812 year: 2020 ident: 10.1016/j.media.2024.103403_b65 article-title: Graph contrastive learning with augmentations publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: 10.1016/j.media.2024.103403_b10 – volume: 42 start-page: 391 issue: 2 year: 2022 ident: 10.1016/j.media.2024.103403_b41 article-title: GATE: Graph CCA for temporal self-supervised learning for label-efficient fMRI analysis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3201974 – start-page: 221 year: 2022 ident: 10.1016/j.media.2024.103403_b57 article-title: Contrastive functional connectivity graph learning for population-based fMRI classification – volume: 39 start-page: 42 issue: 3 year: 2022 ident: 10.1016/j.media.2024.103403_b12 article-title: Self-supervised representation learning: Introduction, advances, and challenges publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2021.3134634 – year: 2022 ident: 10.1016/j.media.2024.103403_b69 article-title: Contrastive multi-view composite graph convolutional networks based on contribution learning for autism spectrum disorder classification publication-title: IEEE Trans. Biomed. Eng. – volume: 84 year: 2023 ident: 10.1016/j.media.2024.103403_b13 article-title: Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102707 – volume: 56 start-page: 1 issue: 4 year: 2023 ident: 10.1016/j.media.2024.103403_b63 article-title: Diffusion models: A comprehensive survey of methods and applications publication-title: ACM Comput. Surv. doi: 10.1145/3626235 – ident: 10.1016/j.media.2024.103403_b17 doi: 10.1109/CVPR42600.2020.00975 – volume: 26 start-page: 6747 issue: 11 year: 2021 ident: 10.1016/j.media.2024.103403_b48 article-title: Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder publication-title: Mol. Psychiatry doi: 10.1038/s41380-021-01090-5 – start-page: 1597 year: 2020 ident: 10.1016/j.media.2024.103403_b6 article-title: A simple framework for contrastive learning of visual representations – volume: 32 year: 2019 ident: 10.1016/j.media.2024.103403_b31 article-title: Efficient graph generation with graph recurrent attention networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 15920 year: 2021 ident: 10.1016/j.media.2024.103403_b49 article-title: Adversarial graph augmentation to improve graph contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 7363 year: 2022 ident: 10.1016/j.media.2024.103403_b50 article-title: Contrastive brain network learning via hierarchical signed graph pooling model publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3220220 – volume: 32 year: 2019 ident: 10.1016/j.media.2024.103403_b19 article-title: Using self-supervised learning can improve model robustness and uncertainty publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 32 year: 2018 ident: 10.1016/j.media.2024.103403_b42 article-title: Film: Visual reasoning with a general conditioning layer – volume: 44 start-page: 5672 issue: 17 year: 2023 ident: 10.1016/j.media.2024.103403_b54 article-title: Unsupervised contrastive graph learning for resting-state functional MRI analysis and brain disorder detection publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.26469 – start-page: 9558 year: 2021 ident: 10.1016/j.media.2024.103403_b45 article-title: Learning gradient fields for molecular conformation generation – year: 2016 ident: 10.1016/j.media.2024.103403_b28 – volume: 8 issue: 7 year: 2013 ident: 10.1016/j.media.2024.103403_b62 article-title: BrainNet viewer: A network visualization tool for human brain connectomics publication-title: PLoS One doi: 10.1371/journal.pone.0068910 – volume: 36 year: 2024 ident: 10.1016/j.media.2024.103403_b9 article-title: Finding order in chaos: A novel data augmentation method for time series in contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: e111 issue: 5 year: 2013 ident: 10.1016/j.media.2024.103403_b58 article-title: The alzheimer’s disease neuroimaging initiative: A review of papers published since its inception publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2013.05.1769 – volume: 34 start-page: 21696 year: 2021 ident: 10.1016/j.media.2024.103403_b27 article-title: Variational diffusion models publication-title: Adv. Neural Inf. Process. Syst. – volume: 1050 start-page: 10 issue: 20 year: 2017 ident: 10.1016/j.media.2024.103403_b52 article-title: Graph attention networks publication-title: Stat – start-page: 205 year: 2023 ident: 10.1016/j.media.2024.103403_b68 article-title: BrainUSL: U nsupervised graph s tructure l earning for functional brain network analysis – year: 2023 ident: 10.1016/j.media.2024.103403_b67 – volume: 6 start-page: 116 issue: 1 year: 2023 ident: 10.1016/j.media.2024.103403_b21 article-title: Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI publication-title: NPJ Digit. Med. doi: 10.1038/s41746-023-00859-y – year: 2017 ident: 10.1016/j.media.2024.103403_b38 – volume: 65 year: 2020 ident: 10.1016/j.media.2024.103403_b29 article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101765 – volume: 42 start-page: 5873 issue: 18 year: 2021 ident: 10.1016/j.media.2024.103403_b18 article-title: A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25656 – volume: vol. 36 start-page: 651 year: 2019 ident: 10.1016/j.media.2024.103403_b44 article-title: Window-warping: A time series data augmentation of IMU data for construction equipment activity identification |
| SSID | ssj0007440 |
| Score | 2.4814358 |
| Snippet | Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 103403 |
| SubjectTerms | Algorithms Brain - diagnostic imaging Brain - physiopathology Brain Diseases - diagnostic imaging Brain Diseases - physiopathology Brain Mapping - methods Contrastive learning Data augmentation Diffusion model Functional MRI Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Supervised Machine Learning |
| Title | Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection |
| URI | https://dx.doi.org/10.1016/j.media.2024.103403 https://www.ncbi.nlm.nih.gov/pubmed/39637557 https://www.proquest.com/docview/3146531923 https://pubmed.ncbi.nlm.nih.gov/PMC11875923 |
| Volume | 101 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hkKr2gIB-LRTkSj3W3SS2k-xxQYWl7XIopeJmObEDW0FYsZsr_HVmHAdYkDj0lMhxIsdjz4ztmfcAvgyUdYPMWa6UcFzGzvBBHpfcujwr88hE0lGi8PgoHZ3IH6fqdAn2ulwYCqsMur_V6V5bh5J-6M3-dDLpH8eCyErQ_uAwFIlPv5YyIxaDbzcPYR4EgNfmXsWcanfIQz7Gy2dn4CIxkZR8LjvmrOfW6bn3-TSI8pFV2l-D1eBOsmHb4nVYcvUGvHkEMrgBr8bh-Pwt3B67i4rPmikpiJmzzMNVMx-ubmak-FhgkThjtEHLiD6lof00Zpqzy5CmVDN0dBkZxHYfkY1_HzITwE3wxrKCeCeYDcCezLq5D_iq38HJ_vc_eyMeGBh4KVI15zbL0YFLRZUMShMbkRcilg6dLhMVmcQiV0ZYRGs2nNmiwtlv8WJQS4ikEEK8h-X6qnYfgclKCfSG8iSzsVRRZSrafcKXCxkVRaJ68LXreT1tgTZ0F4H2T3tBaRKUbgXVg7STjl4YLxpNwcsvfu5kqXEm0fGIqd1VM9P4aylppATrfGhle98SgXoqUyrrQb4g9fsKhNK9-KSenHu0buJzV_jRzf9t8Ra8Toh02IcLfYLl-XXjttETmhc7fqjvwMrw8OfoCK8Hu7_-Du8AvLQLuw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKrXlgFr6YKGlrtRj3U38SLJHhIoWynIoIHGznNihW5WwYjdX-OudcRxgi9QDp0SOEzkee2Zsf_MNwJeRdn6Ue8e1lp6r1Fs-KtKKO1_kVZHYRHkKFJ4cZ-MzdXiuz1dgr4-FIVhl1P2dTg_aOpYMY28OZ9Pp8CSVlKwE7Q8OQyko_PqZ0iKnFdi3m3ucBzHgdcFXKafqPfVQAHmF8AxcJQpF0eeqT5312Dw9dj__RVE-MEv7r2A9-pNst2vya1jxzQasPWAZ3IDnk3h-_gZuT_yfms_bGWmIuXcs8FWzgFe3c9J8LKaRuGC0Q8sof0pLG2rMtheXMU6pYejpMrKI3UYim_w8YDaym-CNYyUlnmAuMnsy5xcB8dW8hbP976d7Yx5TMPBKZnrBXV6gB5fJWowqm1pZlDJVHr0um5S5wiJfJVhEizac2rLG6e_wYlFNSFFKKd_BanPV-E1gqtYS3aFC5C5VOqltTdtP-HKpkrIUegBf-543s45pw_QQtN8mCMqQoEwnqAFkvXTM0oAxaAv-_-LnXpYGpxKdj9jGX7Vzg7-WkUoSWOd9J9u7lkhUVLnW-QCKJanfVSCa7uUnzfRXoOumhO4aP7r11BZ_ghfj08mROTo4_rENLwVlIA7YoQ-wurhu_Ud0ixblThj2fwFzMAvB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+graph+contrastive+learning+with+diffusion+augmentation+for+functional+MRI+analysis+and+brain+disorder+detection&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Xiaochuan&rft.au=Fang%2C+Yuqi&rft.au=Wang%2C+Qianqian&rft.au=Yap%2C+Pew-Thian&rft.date=2025-04-01&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=101&rft.spage=103403&rft.epage=103403&rft_id=info:doi/10.1016%2Fj.media.2024.103403&rft_id=info%3Apmid%2F39637557&rft.externalDocID=PMC11875923 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |