Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 101; p. 103403
Main Authors Wang, Xiaochuan, Fang, Yuqi, Wang, Qianqian, Yap, Pew-Thian, Zhu, Hongtu, Liu, Mingxia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2024.103403

Cover

Abstract Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts. [Display omitted] •Creating a self-supervised graph contrastive learning framework for fMRI analysis and brain disease detection to alleviate the small-sample-size problem.•Designing a graph diffusion augmentation strategy to preserve the integrity of original BOLD signals.•Conducting extensive experiments on two rs-fMRI datasets with 1,230 subjects.
AbstractList Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts.
Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts. [Display omitted] •Creating a self-supervised graph contrastive learning framework for fMRI analysis and brain disease detection to alleviate the small-sample-size problem.•Designing a graph diffusion augmentation strategy to preserve the integrity of original BOLD signals.•Conducting extensive experiments on two rs-fMRI datasets with 1,230 subjects.
Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts.Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts.
ArticleNumber 103403
Author Wang, Qianqian
Liu, Mingxia
Fang, Yuqi
Yap, Pew-Thian
Wang, Xiaochuan
Zhu, Hongtu
AuthorAffiliation b Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
AuthorAffiliation_xml – name: a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– name: b Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Author_xml – sequence: 1
  givenname: Xiaochuan
  orcidid: 0000-0002-9848-8125
  surname: Wang
  fullname: Wang, Xiaochuan
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 2
  givenname: Yuqi
  orcidid: 0000-0002-8769-496X
  surname: Fang
  fullname: Fang, Yuqi
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 3
  givenname: Qianqian
  surname: Wang
  fullname: Wang, Qianqian
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 4
  givenname: Pew-Thian
  orcidid: 0000-0003-1489-2102
  surname: Yap
  fullname: Yap, Pew-Thian
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 5
  givenname: Hongtu
  surname: Zhu
  fullname: Zhu, Hongtu
  organization: Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 6
  givenname: Mingxia
  orcidid: 0000-0002-0166-0807
  surname: Liu
  fullname: Liu, Mingxia
  email: mingxia_liu@med.unc.edu
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39637557$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAr-gG_AAn5yCWLnYnj5IAQqvioVFSphbPl2JNdr7L2YieLeuKv4zRlBRdO8-H3ZsbvXZATHzwS8oqzFWe8frtd7dA6vSpZWeUOVAyekXMONS-aqoSTY87FGblIacsYk1XFnpMzaGuQQshz8useh75I0x7jwSW0dB31fkNN8GPUaXQHpAPq6J1f059u3FDr-n5KLniqp_UO_ajHuehDpP3kzVzogX69u6Y6Jw_JpZxY2kXtfCanEC1GanHER-wLctrrIeHLp3hJvn_6-O3qS3Fz-_n66sNNYaAWY2FlI1hTQ1-2RnMNTQe8QlEJzTpZ5RYalltN2zaMS-hlI20OGsoSyg4ALsn7Ze5-6rJsBuf_DWof3U7HBxW0U_--eLdR63BQnDdStOU84c3ThBh-TJhGtXPJ4DBoj2FKKh9UC-AL9PXfy45b_sieAbAATAwpReyPEM7UbK7aqkdz1WyuWszNrHcLC7NQB4dRJePQmwyMWU1lg_sv_zeCArBh
Cites_doi 10.1016/j.compbiomed.2023.106749
10.1109/JBHI.2023.3274531
10.1016/j.neuroimage.2023.120485
10.1016/j.procs.2020.07.012
10.1145/3442381.3449802
10.1016/j.neuroimage.2016.03.033
10.1109/TPAMI.2022.3214832
10.1109/TBME.2021.3080259
10.1109/CVPR46437.2021.01549
10.1016/j.neuroimage.2015.05.015
10.1016/j.neubiorev.2022.104972
10.1016/j.jad.2023.07.077
10.1016/j.jad.2016.04.001
10.1109/TAI.2021.3076021
10.1109/TCSS.2024.3402328
10.1016/j.ins.2019.05.043
10.1109/TBME.2024.3370415
10.1109/TBME.2021.3117407
10.1145/3616855.3635850
10.1016/j.neuroimage.2022.119296
10.1038/tp.2016.110
10.1109/TPAMI.2022.3209686
10.1016/j.media.2023.102756
10.1038/s41467-019-13005-8
10.1016/j.media.2023.102932
10.1016/S1474-4422(15)00050-2
10.1109/TMI.2022.3201974
10.1109/MSP.2021.3134634
10.1016/j.media.2022.102707
10.1145/3626235
10.1109/CVPR42600.2020.00975
10.1038/s41380-021-01090-5
10.1109/TNNLS.2022.3220220
10.1002/hbm.26469
10.1371/journal.pone.0068910
10.1016/j.jalz.2013.05.1769
10.1038/s41746-023-00859-y
10.1016/j.media.2020.101765
10.1002/hbm.25656
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.media.2024.103403
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 103403
ExternalDocumentID PMC11875923
39637557
10_1016_j_media_2024_103403
S1361841524003281
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS134849
– fundername: NIA NIH HHS
  grantid: RF1 AG082938
– fundername: NIA NIH HHS
  grantid: RF1 AG073297
– fundername: NIBIB NIH HHS
  grantid: R01 EB035160
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAYWO
AAYXX
ACIEU
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c365t-d7850863f29ca1a38b314e545a0b74ca1ec0b3189980173f787d73fa32232b333
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Tue Sep 30 17:04:36 EDT 2025
Wed Oct 01 13:45:41 EDT 2025
Mon Jul 21 06:04:17 EDT 2025
Wed Oct 01 06:50:56 EDT 2025
Sat Mar 15 15:41:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Data augmentation
Functional MRI
Diffusion model
Contrastive learning
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-d7850863f29ca1a38b314e545a0b74ca1ec0b3189980173f787d73fa32232b333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9848-8125
0000-0002-8769-496X
0000-0002-0166-0807
0000-0003-1489-2102
PMID 39637557
PQID 3146531923
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11875923
proquest_miscellaneous_3146531923
pubmed_primary_39637557
crossref_primary_10_1016_j_media_2024_103403
elsevier_sciencedirect_doi_10_1016_j_media_2024_103403
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Gu, Dvornek, Staib, Ventola, Duncan (b29) 2020; 65
Ericsson, Gouk, Loy, Hospedales (b12) 2022; 39
Yang, Zhang, Song, Hong, Xu, Zhao, Zhang, Cui, Yang (b63) 2023; 56
Rashid, Louis (b44) 2019; vol. 36
Song, Hu, Li, Gao, Ju, Liu, Wang, Xue, Cai, Bai (b48) 2021; 26
Jiang, Y., Yang, Y., Xia, L., Huang, C., 2024. DiffKG: Knowledge Graph Diffusion Model for Recommendation. In: Proceedings of the 17th ACM International Conference on Web Search and Data Mining. pp. 313–321.
Ecker, Bookheimer, Murphy (b11) 2015; 14
Ingalhalikar, Shinde, Karmarkar, Rajan, Rangaprakash, Deshpande (b22) 2021; 68
Luo, Su, Peng, Wang, Peng, Ma (b33) 2022; 35
Liao, Li, Song, Wang, Hamilton, Duvenaud, Urtasun, Zemel (b31) 2019; 32
Tian, Sun, Poole, Krishnan, Schmid, Isola (b51) 2020; 33
Vignac, Krawczuk, Siraudin, Wang, Cevher, Frossard (b53) 2022
Oh, Han, Jeong (b37) 2020; 175
Bijsterbosch, Smith, Beckmann (b3) 2017
Zhang, Qamar, Kang, Jung, Zhang, Bae, Zhang (b67) 2023
Wang, Isola (b55) 2020
Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (b58) 2013; 9
Bessadok, Mahjoub, Rekik (b2) 2022; 45
Bondi, Maggioni, Brambilla, Delvecchio (b4) 2023; 144
Fang, Wang, Potter, Liu (b13) 2023; 84
Wang, Chu, Wang, Cao, Qiao, Zhang, Liu (b54) 2023; 44
Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L., 2021. Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021. pp. 2069–2080.
Fedorov, Geenjaar, Wu, Sylvain, DeRamus, Luck, Misiura, Mittapalle, Hjelm, Plis (b14) 2024; 285
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b38) 2017
Demirel, Holz (b9) 2024; 36
Pei, Wang, Cao, Lv (b39) 2022; 72
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738.
Shi, Yao, Zhu, Lin, Ji, Liu, Li (b46) 2024
Li, Srinivasan, Zhuo, Cui, Gur, Gur, Oathes, Davatzikos, Satterthwaite, Fan (b30) 2023; 85
Dwivedi, Bresson (b10) 2020
Perez, Strub, De Vries, Dumoulin, Courville (b42) 2018; vol. 32
Kingma, Ba (b26) 2014
Mao, Su, Xu, Wang, Huang, Yue, Sun, Xiong (b34) 2019; 499
Amemiya, Takao, Hanaoka, Ohtomo (b1) 2016; 133
Hou, Guo, Wang, Liu, Lin, Fan, Li, Wei, Lin, Jiang (b21) 2023; 6
Liu, Zhang, Hou, Mian, Wang, Zhang, Tang (b32) 2021; 35
Yin, Wang, Huang, Xiong, Zhang (b64) 2022; vol. 36
Zhang, Chen, Shen, Ren, Yu, Yang, Jiang, Shen, Zhou, Zhang (b66) 2023; 90
Wu, Fu, Fang, Zhang, Yang, Xiong, Liu, Xu (b60) 2024
Xia, Wang, He (b62) 2013; 8
You, Chen, Sui, Chen, Wang, Shen (b65) 2020; 33
Jang, Gu, Poole (b23) 2016
Tang, Ma, Guo, Fu, Huang, Zhan (b50) 2022; 35
Kim, Ye, Kim (b25) 2021; 34
Dai, Lu, Shi, Zhou, Xiong, Zhou, Chen, Zou, Tang, Huang (b8) 2023; 339
Shirer, Jiang, Price, Ng, Greicius (b47) 2015; 117
Chen, Kornblith, Norouzi, Hinton (b6) 2020
Hebling Vieira, Dubois, Calhoun, Garrido Salmon (b18) 2021; 42
Chen, X., He, K., 2021. Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15750–15758.
Peng, Wang, Xu, Zhu, Li (b41) 2022; 42
Postema, Van Rooij, Anagnostou, Arango, Auzias, Behrmann, Filho, Calderoni, Calvo, Daly (b43) 2019; 10
Peng, Chen, Yin, Jia, Gong (b40) 2016; 199
Wang, Yao, Rekik, Zhang (b57) 2022
Cui, Du, Sun, Zhu, Zhao, Peng, Tan, Li (b7) 2023; 157
Hendrycks, Mazeika, Kadavath, Song (b19) 2019; 32
Wang, Wang, Fang, Yap, Zhu, Li, Qiao, Liu (b56) 2024
Kingma, Salimans, Poole, Ho (b27) 2021; 34
Myung, Han, Fava, Mischoulon, Papakostas, Heo, Kim, Kim, Kim, Kim (b35) 2016; 6
Wen, Cao, Liu, Yang, Zhang, Wang, Zaiane (b59) 2023
Guo, Zhao (b16) 2022; 45
Shi, Luo, Xu, Tang (b45) 2021
Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b52) 2017; 1050
Zhu, Wang, Zhao, Lu, Shi (b69) 2022
Nebel, Lidstone, Wang, Benkeser, Mostofsky, Risk (b36) 2022; 257
Ho, Jain, Abbeel (b20) 2020; 33
Kipf, Welling (b28) 2016
Suresh, Li, Hao, Neville (b49) 2021; 34
Xia, Sun, Yu, Aziz, Wan, Pan, Liu (b61) 2021; 2
Guan, Liu (b15) 2021; 69
Zhang, Wen, Cao, Yang, Zhang, Zhang, Zhu, Zaiane, Wang (b68) 2023
Bessadok (10.1016/j.media.2024.103403_b2) 2022; 45
Oh (10.1016/j.media.2024.103403_b37) 2020; 175
Hou (10.1016/j.media.2024.103403_b21) 2023; 6
Peng (10.1016/j.media.2024.103403_b41) 2022; 42
Dwivedi (10.1016/j.media.2024.103403_b10) 2020
Liu (10.1016/j.media.2024.103403_b32) 2021; 35
Wang (10.1016/j.media.2024.103403_b54) 2023; 44
Xia (10.1016/j.media.2024.103403_b61) 2021; 2
Chen (10.1016/j.media.2024.103403_b6) 2020
Yang (10.1016/j.media.2024.103403_b63) 2023; 56
Suresh (10.1016/j.media.2024.103403_b49) 2021; 34
Vignac (10.1016/j.media.2024.103403_b53) 2022
Shirer (10.1016/j.media.2024.103403_b47) 2015; 117
10.1016/j.media.2024.103403_b24
Guan (10.1016/j.media.2024.103403_b15) 2021; 69
10.1016/j.media.2024.103403_b17
Zhang (10.1016/j.media.2024.103403_b66) 2023; 90
Tian (10.1016/j.media.2024.103403_b51) 2020; 33
Ho (10.1016/j.media.2024.103403_b20) 2020; 33
Bijsterbosch (10.1016/j.media.2024.103403_b3) 2017
Nebel (10.1016/j.media.2024.103403_b36) 2022; 257
Liao (10.1016/j.media.2024.103403_b31) 2019; 32
Kingma (10.1016/j.media.2024.103403_b27) 2021; 34
Wang (10.1016/j.media.2024.103403_b55) 2020
Rashid (10.1016/j.media.2024.103403_b44) 2019; vol. 36
Postema (10.1016/j.media.2024.103403_b43) 2019; 10
Hendrycks (10.1016/j.media.2024.103403_b19) 2019; 32
Tang (10.1016/j.media.2024.103403_b50) 2022; 35
Demirel (10.1016/j.media.2024.103403_b9) 2024; 36
Shi (10.1016/j.media.2024.103403_b46) 2024
Velickovic (10.1016/j.media.2024.103403_b52) 2017; 1050
Bondi (10.1016/j.media.2024.103403_b4) 2023; 144
Li (10.1016/j.media.2024.103403_b29) 2020; 65
Mao (10.1016/j.media.2024.103403_b34) 2019; 499
Perez (10.1016/j.media.2024.103403_b42) 2018; vol. 32
Ecker (10.1016/j.media.2024.103403_b11) 2015; 14
Kipf (10.1016/j.media.2024.103403_b28) 2016
Fedorov (10.1016/j.media.2024.103403_b14) 2024; 285
Zhang (10.1016/j.media.2024.103403_b68) 2023
10.1016/j.media.2024.103403_b5
Dai (10.1016/j.media.2024.103403_b8) 2023; 339
Fang (10.1016/j.media.2024.103403_b13) 2023; 84
Guo (10.1016/j.media.2024.103403_b16) 2022; 45
Zhu (10.1016/j.media.2024.103403_b69) 2022
Pei (10.1016/j.media.2024.103403_b39) 2022; 72
Xia (10.1016/j.media.2024.103403_b62) 2013; 8
Kingma (10.1016/j.media.2024.103403_b26) 2014
Song (10.1016/j.media.2024.103403_b48) 2021; 26
Shi (10.1016/j.media.2024.103403_b45) 2021
Cui (10.1016/j.media.2024.103403_b7) 2023; 157
Li (10.1016/j.media.2024.103403_b30) 2023; 85
Weiner (10.1016/j.media.2024.103403_b58) 2013; 9
Wu (10.1016/j.media.2024.103403_b60) 2024
Myung (10.1016/j.media.2024.103403_b35) 2016; 6
Wang (10.1016/j.media.2024.103403_b56) 2024
Amemiya (10.1016/j.media.2024.103403_b1) 2016; 133
Paszke (10.1016/j.media.2024.103403_b38) 2017
Peng (10.1016/j.media.2024.103403_b40) 2016; 199
Yin (10.1016/j.media.2024.103403_b64) 2022; vol. 36
Wen (10.1016/j.media.2024.103403_b59) 2023
Ingalhalikar (10.1016/j.media.2024.103403_b22) 2021; 68
Zhang (10.1016/j.media.2024.103403_b67) 2023
Jang (10.1016/j.media.2024.103403_b23) 2016
Luo (10.1016/j.media.2024.103403_b33) 2022; 35
10.1016/j.media.2024.103403_b70
Ericsson (10.1016/j.media.2024.103403_b12) 2022; 39
Kim (10.1016/j.media.2024.103403_b25) 2021; 34
You (10.1016/j.media.2024.103403_b65) 2020; 33
Hebling Vieira (10.1016/j.media.2024.103403_b18) 2021; 42
Wang (10.1016/j.media.2024.103403_b57) 2022
References_xml – year: 2016
  ident: b28
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 45
  start-page: 5833
  year: 2022
  end-page: 5848
  ident: b2
  article-title: Graph neural networks in network neuroscience
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 205
  year: 2023
  end-page: 214
  ident: b68
  article-title: BrainUSL: U nsupervised graph s tructure l earning for functional brain network analysis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 42
  start-page: 391
  year: 2022
  end-page: 402
  ident: b41
  article-title: GATE: Graph CCA for temporal self-supervised learning for label-efficient fMRI analysis
  publication-title: IEEE Trans. Med. Imaging
– volume: 32
  year: 2019
  ident: b19
  article-title: Using self-supervised learning can improve model robustness and uncertainty
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: b53
  article-title: Digress: Discrete denoising diffusion for graph generation
– volume: 144
  year: 2023
  ident: b4
  article-title: A systematic review on the potential use of machine learning to classify major depressive disorder from healthy controls using resting state fMRI measures
  publication-title: Neurosci. Biobehav. Rev.
– volume: 157
  year: 2023
  ident: b7
  article-title: Dynamic multi-site graph convolutional network for autism spectrum disorder identification
  publication-title: Comput. Biol. Med.
– volume: 6
  start-page: 116
  year: 2023
  ident: b21
  article-title: Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI
  publication-title: NPJ Digit. Med.
– start-page: 9558
  year: 2021
  end-page: 9568
  ident: b45
  article-title: Learning gradient fields for molecular conformation generation
  publication-title: International Conference on Machine Learning
– volume: 36
  year: 2024
  ident: b9
  article-title: Finding order in chaos: A novel data augmentation method for time series in contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 133
  start-page: 331
  year: 2016
  end-page: 340
  ident: b1
  article-title: Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity
  publication-title: Neuroimage
– volume: 90
  year: 2023
  ident: b66
  article-title: A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders
  publication-title: Med. Image Anal.
– volume: 10
  start-page: 4958
  year: 2019
  ident: b43
  article-title: Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets
  publication-title: Nature Commun.
– volume: 199
  start-page: 114
  year: 2016
  end-page: 123
  ident: b40
  article-title: Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients
  publication-title: J. Affect. Disord.
– start-page: 221
  year: 2022
  end-page: 230
  ident: b57
  article-title: Contrastive functional connectivity graph learning for population-based fMRI classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 32
  year: 2019
  ident: b31
  article-title: Efficient graph generation with graph recurrent attention networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 65
  year: 2020
  ident: b29
  article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 857
  year: 2021
  end-page: 876
  ident: b32
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2023
  ident: b67
  article-title: A survey on graph diffusion models: Generative AI in science for molecule, protein and material
– reference: Chen, X., He, K., 2021. Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15750–15758.
– year: 2020
  ident: b10
  article-title: A generalization of transformer networks to graphs
– volume: 68
  start-page: 3628
  year: 2021
  end-page: 3637
  ident: b22
  article-title: Functional connectivity-based prediction of autism on site harmonized ABIDE dataset
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 499
  start-page: 1
  year: 2019
  end-page: 11
  ident: b34
  article-title: Spatio-temporal deep learning method for adhd fMRI classification
  publication-title: Inform. Sci.
– year: 2014
  ident: b26
  article-title: Adam: A method for stochastic optimization
– volume: 39
  start-page: 42
  year: 2022
  end-page: 62
  ident: b12
  article-title: Self-supervised representation learning: Introduction, advances, and challenges
  publication-title: IEEE Signal Process. Mag.
– volume: vol. 32
  year: 2018
  ident: b42
  article-title: Film: Visual reasoning with a general conditioning layer
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 9
  start-page: e111
  year: 2013
  end-page: e194
  ident: b58
  article-title: The alzheimer’s disease neuroimaging initiative: A review of papers published since its inception
  publication-title: Alzheimer’s & Dementia
– year: 2017
  ident: b3
  article-title: An Introduction to Resting State fMRI Functional Connectivity
– start-page: 1623
  year: 2024
  end-page: 1639
  ident: b60
  article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model
  publication-title: Medical Imaging with Deep Learning
– volume: 175
  start-page: 64
  year: 2020
  end-page: 71
  ident: b37
  article-title: Time-series data augmentation based on interpolation
  publication-title: Procedia Comput. Sci.
– reference: Jiang, Y., Yang, Y., Xia, L., Huang, C., 2024. DiffKG: Knowledge Graph Diffusion Model for Recommendation. In: Proceedings of the 17th ACM International Conference on Web Search and Data Mining. pp. 313–321.
– volume: 6
  year: 2016
  ident: b35
  article-title: Reduced frontal-subcortical white matter connectivity in association with suicidal ideation in major depressive disorder
  publication-title: Transl. Psychiatry
– volume: 2
  start-page: 109
  year: 2021
  end-page: 127
  ident: b61
  article-title: Graph learning: A survey
  publication-title: IEEE Trans. Artif. Intell.
– volume: 8
  year: 2013
  ident: b62
  article-title: BrainNet viewer: A network visualization tool for human brain connectomics
  publication-title: PLoS One
– volume: 35
  start-page: 9754
  year: 2022
  end-page: 9767
  ident: b33
  article-title: Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 72
  start-page: 1
  year: 2022
  end-page: 15
  ident: b39
  article-title: Data augmentation for fMRI-based functional connectivity and its application to cross-site ADHD classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b20
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b6
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International Conference on Machine Learning
– volume: 44
  start-page: 5672
  year: 2023
  end-page: 5692
  ident: b54
  article-title: Unsupervised contrastive graph learning for resting-state functional MRI analysis and brain disorder detection
  publication-title: Hum. Brain Mapp.
– volume: vol. 36
  start-page: 8892
  year: 2022
  end-page: 8900
  ident: b64
  article-title: Autogcl: Automated graph contrastive learning via learnable view generators
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 339
  start-page: 511
  year: 2023
  end-page: 519
  ident: b8
  article-title: Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fMRI data
  publication-title: J. Affect. Disord.
– start-page: 9929
  year: 2020
  end-page: 9939
  ident: b55
  article-title: Understanding contrastive representation learning through alignment and uniformity on the hypersphere
  publication-title: International Conference on Machine Learning
– volume: vol. 36
  start-page: 651
  year: 2019
  end-page: 657
  ident: b44
  article-title: Window-warping: A time series data augmentation of IMU data for construction equipment activity identification
  publication-title: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction
– volume: 69
  start-page: 1173
  year: 2021
  end-page: 1185
  ident: b15
  article-title: Domain adaptation for medical image analysis: A survey
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 34
  start-page: 15920
  year: 2021
  end-page: 15933
  ident: b49
  article-title: Adversarial graph augmentation to improve graph contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 6827
  year: 2020
  end-page: 6839
  ident: b51
  article-title: What makes for good views for contrastive learning?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 5812
  year: 2020
  end-page: 5823
  ident: b65
  article-title: Graph contrastive learning with augmentations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 21696
  year: 2021
  end-page: 21707
  ident: b27
  article-title: Variational diffusion models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 117
  start-page: 67
  year: 2015
  end-page: 79
  ident: b47
  article-title: Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination
  publication-title: Neuroimage
– year: 2024
  ident: b56
  article-title: Leveraging brain modularity prior for interpretable representation learning of fMRI
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 35
  start-page: 7363
  year: 2022
  end-page: 7375
  ident: b50
  article-title: Contrastive brain network learning via hierarchical signed graph pooling model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 42
  start-page: 5873
  year: 2021
  end-page: 5887
  ident: b18
  article-title: A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI
  publication-title: Hum. Brain Mapp.
– volume: 34
  start-page: 4314
  year: 2021
  end-page: 4327
  ident: b25
  article-title: Learning dynamic graph representation of brain connectome with spatio-temporal attention
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1050
  start-page: 10
  year: 2017
  end-page: 48550
  ident: b52
  article-title: Graph attention networks
  publication-title: Stat
– volume: 285
  year: 2024
  ident: b14
  article-title: Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links
  publication-title: Neuroimage
– volume: 257
  year: 2022
  ident: b36
  article-title: Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder?
  publication-title: Neuroimage
– reference: He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738.
– volume: 56
  start-page: 1
  year: 2023
  end-page: 39
  ident: b63
  article-title: Diffusion models: A comprehensive survey of methods and applications
  publication-title: ACM Comput. Surv.
– volume: 14
  start-page: 1121
  year: 2015
  end-page: 1134
  ident: b11
  article-title: Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan
  publication-title: Lancet Neurol.
– reference: Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L., 2021. Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021. pp. 2069–2080.
– year: 2016
  ident: b23
  article-title: Categorical reparameterization with gumbel-softmax
– volume: 45
  start-page: 5370
  year: 2022
  end-page: 5390
  ident: b16
  article-title: A systematic survey on deep generative models for graph generation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2022
  ident: b69
  article-title: Contrastive multi-view composite graph convolutional networks based on contribution learning for autism spectrum disorder classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 85
  year: 2023
  ident: b30
  article-title: Computing personalized brain functional networks from fMRI using self-supervised deep learning
  publication-title: Med. Image Anal.
– year: 2024
  ident: b46
  article-title: Contrastive hierarchical augmentation learning for modeling cognitive and multimodal brain network
  publication-title: IEEE Trans. Comput. Soc. Syst.
– year: 2023
  ident: b59
  article-title: Graph self-supervised learning with application to brain networks analysis
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 84
  year: 2023
  ident: b13
  article-title: Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification
  publication-title: Med. Image Anal.
– volume: 26
  start-page: 6747
  year: 2021
  end-page: 6755
  ident: b48
  article-title: Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder
  publication-title: Mol. Psychiatry
– year: 2017
  ident: b38
  article-title: Automatic differentiation in pytorch
– volume: 157
  year: 2023
  ident: 10.1016/j.media.2024.103403_b7
  article-title: Dynamic multi-site graph convolutional network for autism spectrum disorder identification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106749
– year: 2016
  ident: 10.1016/j.media.2024.103403_b23
– year: 2023
  ident: 10.1016/j.media.2024.103403_b59
  article-title: Graph self-supervised learning with application to brain networks analysis
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2023.3274531
– volume: 285
  year: 2024
  ident: 10.1016/j.media.2024.103403_b14
  article-title: Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120485
– volume: 175
  start-page: 64
  year: 2020
  ident: 10.1016/j.media.2024.103403_b37
  article-title: Time-series data augmentation based on interpolation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.07.012
– ident: 10.1016/j.media.2024.103403_b70
  doi: 10.1145/3442381.3449802
– volume: 133
  start-page: 331
  year: 2016
  ident: 10.1016/j.media.2024.103403_b1
  article-title: Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.033
– volume: 45
  start-page: 5370
  issue: 5
  year: 2022
  ident: 10.1016/j.media.2024.103403_b16
  article-title: A systematic survey on deep generative models for graph generation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3214832
– volume: 68
  start-page: 3628
  issue: 12
  year: 2021
  ident: 10.1016/j.media.2024.103403_b22
  article-title: Functional connectivity-based prediction of autism on site harmonized ABIDE dataset
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3080259
– ident: 10.1016/j.media.2024.103403_b5
  doi: 10.1109/CVPR46437.2021.01549
– volume: 117
  start-page: 67
  year: 2015
  ident: 10.1016/j.media.2024.103403_b47
  article-title: Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.015
– volume: 144
  year: 2023
  ident: 10.1016/j.media.2024.103403_b4
  article-title: A systematic review on the potential use of machine learning to classify major depressive disorder from healthy controls using resting state fMRI measures
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2022.104972
– volume: 339
  start-page: 511
  year: 2023
  ident: 10.1016/j.media.2024.103403_b8
  article-title: Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fMRI data
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2023.07.077
– year: 2014
  ident: 10.1016/j.media.2024.103403_b26
– volume: 199
  start-page: 114
  year: 2016
  ident: 10.1016/j.media.2024.103403_b40
  article-title: Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2016.04.001
– volume: 2
  start-page: 109
  issue: 2
  year: 2021
  ident: 10.1016/j.media.2024.103403_b61
  article-title: Graph learning: A survey
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2021.3076021
– year: 2024
  ident: 10.1016/j.media.2024.103403_b46
  article-title: Contrastive hierarchical augmentation learning for modeling cognitive and multimodal brain network
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2024.3402328
– volume: 499
  start-page: 1
  year: 2019
  ident: 10.1016/j.media.2024.103403_b34
  article-title: Spatio-temporal deep learning method for adhd fMRI classification
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.05.043
– year: 2024
  ident: 10.1016/j.media.2024.103403_b56
  article-title: Leveraging brain modularity prior for interpretable representation learning of fMRI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2024.3370415
– volume: 69
  start-page: 1173
  issue: 3
  year: 2021
  ident: 10.1016/j.media.2024.103403_b15
  article-title: Domain adaptation for medical image analysis: A survey
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3117407
– ident: 10.1016/j.media.2024.103403_b24
  doi: 10.1145/3616855.3635850
– volume: 35
  start-page: 857
  issue: 1
  year: 2021
  ident: 10.1016/j.media.2024.103403_b32
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.media.2024.103403_b20
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 257
  year: 2022
  ident: 10.1016/j.media.2024.103403_b36
  article-title: Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119296
– start-page: 9929
  year: 2020
  ident: 10.1016/j.media.2024.103403_b55
  article-title: Understanding contrastive representation learning through alignment and uniformity on the hypersphere
– volume: 6
  issue: 6
  year: 2016
  ident: 10.1016/j.media.2024.103403_b35
  article-title: Reduced frontal-subcortical white matter connectivity in association with suicidal ideation in major depressive disorder
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2016.110
– volume: 72
  start-page: 1
  year: 2022
  ident: 10.1016/j.media.2024.103403_b39
  article-title: Data augmentation for fMRI-based functional connectivity and its application to cross-site ADHD classification
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2022
  ident: 10.1016/j.media.2024.103403_b53
– volume: 45
  start-page: 5833
  issue: 5
  year: 2022
  ident: 10.1016/j.media.2024.103403_b2
  article-title: Graph neural networks in network neuroscience
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3209686
– start-page: 1623
  year: 2024
  ident: 10.1016/j.media.2024.103403_b60
  article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model
– volume: 33
  start-page: 6827
  year: 2020
  ident: 10.1016/j.media.2024.103403_b51
  article-title: What makes for good views for contrastive learning?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 9754
  year: 2022
  ident: 10.1016/j.media.2024.103403_b33
  article-title: Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 85
  year: 2023
  ident: 10.1016/j.media.2024.103403_b30
  article-title: Computing personalized brain functional networks from fMRI using self-supervised deep learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102756
– year: 2017
  ident: 10.1016/j.media.2024.103403_b3
– volume: 34
  start-page: 4314
  year: 2021
  ident: 10.1016/j.media.2024.103403_b25
  article-title: Learning dynamic graph representation of brain connectome with spatio-temporal attention
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 4958
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2024.103403_b43
  article-title: Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-13005-8
– volume: 90
  year: 2023
  ident: 10.1016/j.media.2024.103403_b66
  article-title: A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102932
– volume: vol. 36
  start-page: 8892
  year: 2022
  ident: 10.1016/j.media.2024.103403_b64
  article-title: Autogcl: Automated graph contrastive learning via learnable view generators
– volume: 14
  start-page: 1121
  issue: 11
  year: 2015
  ident: 10.1016/j.media.2024.103403_b11
  article-title: Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00050-2
– volume: 33
  start-page: 5812
  year: 2020
  ident: 10.1016/j.media.2024.103403_b65
  article-title: Graph contrastive learning with augmentations
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.media.2024.103403_b10
– volume: 42
  start-page: 391
  issue: 2
  year: 2022
  ident: 10.1016/j.media.2024.103403_b41
  article-title: GATE: Graph CCA for temporal self-supervised learning for label-efficient fMRI analysis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3201974
– start-page: 221
  year: 2022
  ident: 10.1016/j.media.2024.103403_b57
  article-title: Contrastive functional connectivity graph learning for population-based fMRI classification
– volume: 39
  start-page: 42
  issue: 3
  year: 2022
  ident: 10.1016/j.media.2024.103403_b12
  article-title: Self-supervised representation learning: Introduction, advances, and challenges
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2021.3134634
– year: 2022
  ident: 10.1016/j.media.2024.103403_b69
  article-title: Contrastive multi-view composite graph convolutional networks based on contribution learning for autism spectrum disorder classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 84
  year: 2023
  ident: 10.1016/j.media.2024.103403_b13
  article-title: Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102707
– volume: 56
  start-page: 1
  issue: 4
  year: 2023
  ident: 10.1016/j.media.2024.103403_b63
  article-title: Diffusion models: A comprehensive survey of methods and applications
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3626235
– ident: 10.1016/j.media.2024.103403_b17
  doi: 10.1109/CVPR42600.2020.00975
– volume: 26
  start-page: 6747
  issue: 11
  year: 2021
  ident: 10.1016/j.media.2024.103403_b48
  article-title: Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-021-01090-5
– start-page: 1597
  year: 2020
  ident: 10.1016/j.media.2024.103403_b6
  article-title: A simple framework for contrastive learning of visual representations
– volume: 32
  year: 2019
  ident: 10.1016/j.media.2024.103403_b31
  article-title: Efficient graph generation with graph recurrent attention networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 15920
  year: 2021
  ident: 10.1016/j.media.2024.103403_b49
  article-title: Adversarial graph augmentation to improve graph contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 7363
  year: 2022
  ident: 10.1016/j.media.2024.103403_b50
  article-title: Contrastive brain network learning via hierarchical signed graph pooling model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3220220
– volume: 32
  year: 2019
  ident: 10.1016/j.media.2024.103403_b19
  article-title: Using self-supervised learning can improve model robustness and uncertainty
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 32
  year: 2018
  ident: 10.1016/j.media.2024.103403_b42
  article-title: Film: Visual reasoning with a general conditioning layer
– volume: 44
  start-page: 5672
  issue: 17
  year: 2023
  ident: 10.1016/j.media.2024.103403_b54
  article-title: Unsupervised contrastive graph learning for resting-state functional MRI analysis and brain disorder detection
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26469
– start-page: 9558
  year: 2021
  ident: 10.1016/j.media.2024.103403_b45
  article-title: Learning gradient fields for molecular conformation generation
– year: 2016
  ident: 10.1016/j.media.2024.103403_b28
– volume: 8
  issue: 7
  year: 2013
  ident: 10.1016/j.media.2024.103403_b62
  article-title: BrainNet viewer: A network visualization tool for human brain connectomics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068910
– volume: 36
  year: 2024
  ident: 10.1016/j.media.2024.103403_b9
  article-title: Finding order in chaos: A novel data augmentation method for time series in contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: e111
  issue: 5
  year: 2013
  ident: 10.1016/j.media.2024.103403_b58
  article-title: The alzheimer’s disease neuroimaging initiative: A review of papers published since its inception
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2013.05.1769
– volume: 34
  start-page: 21696
  year: 2021
  ident: 10.1016/j.media.2024.103403_b27
  article-title: Variational diffusion models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1050
  start-page: 10
  issue: 20
  year: 2017
  ident: 10.1016/j.media.2024.103403_b52
  article-title: Graph attention networks
  publication-title: Stat
– start-page: 205
  year: 2023
  ident: 10.1016/j.media.2024.103403_b68
  article-title: BrainUSL: U nsupervised graph s tructure l earning for functional brain network analysis
– year: 2023
  ident: 10.1016/j.media.2024.103403_b67
– volume: 6
  start-page: 116
  issue: 1
  year: 2023
  ident: 10.1016/j.media.2024.103403_b21
  article-title: Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-023-00859-y
– year: 2017
  ident: 10.1016/j.media.2024.103403_b38
– volume: 65
  year: 2020
  ident: 10.1016/j.media.2024.103403_b29
  article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101765
– volume: 42
  start-page: 5873
  issue: 18
  year: 2021
  ident: 10.1016/j.media.2024.103403_b18
  article-title: A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25656
– volume: vol. 36
  start-page: 651
  year: 2019
  ident: 10.1016/j.media.2024.103403_b44
  article-title: Window-warping: A time series data augmentation of IMU data for construction equipment activity identification
SSID ssj0007440
Score 2.4814358
Snippet Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103403
SubjectTerms Algorithms
Brain - diagnostic imaging
Brain - physiopathology
Brain Diseases - diagnostic imaging
Brain Diseases - physiopathology
Brain Mapping - methods
Contrastive learning
Data augmentation
Diffusion model
Functional MRI
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Supervised Machine Learning
Title Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection
URI https://dx.doi.org/10.1016/j.media.2024.103403
https://www.ncbi.nlm.nih.gov/pubmed/39637557
https://www.proquest.com/docview/3146531923
https://pubmed.ncbi.nlm.nih.gov/PMC11875923
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hkKr2gIB-LRTkSj3W3SS2k-xxQYWl7XIopeJmObEDW0FYsZsr_HVmHAdYkDj0lMhxIsdjz4ztmfcAvgyUdYPMWa6UcFzGzvBBHpfcujwr88hE0lGi8PgoHZ3IH6fqdAn2ulwYCqsMur_V6V5bh5J-6M3-dDLpH8eCyErQ_uAwFIlPv5YyIxaDbzcPYR4EgNfmXsWcanfIQz7Gy2dn4CIxkZR8LjvmrOfW6bn3-TSI8pFV2l-D1eBOsmHb4nVYcvUGvHkEMrgBr8bh-Pwt3B67i4rPmikpiJmzzMNVMx-ubmak-FhgkThjtEHLiD6lof00Zpqzy5CmVDN0dBkZxHYfkY1_HzITwE3wxrKCeCeYDcCezLq5D_iq38HJ_vc_eyMeGBh4KVI15zbL0YFLRZUMShMbkRcilg6dLhMVmcQiV0ZYRGs2nNmiwtlv8WJQS4ikEEK8h-X6qnYfgclKCfSG8iSzsVRRZSrafcKXCxkVRaJ68LXreT1tgTZ0F4H2T3tBaRKUbgXVg7STjl4YLxpNwcsvfu5kqXEm0fGIqd1VM9P4aylppATrfGhle98SgXoqUyrrQb4g9fsKhNK9-KSenHu0buJzV_jRzf9t8Ra8Toh02IcLfYLl-XXjttETmhc7fqjvwMrw8OfoCK8Hu7_-Du8AvLQLuw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKrXlgFr6YKGlrtRj3U38SLJHhIoWynIoIHGznNihW5WwYjdX-OudcRxgi9QDp0SOEzkee2Zsf_MNwJeRdn6Ue8e1lp6r1Fs-KtKKO1_kVZHYRHkKFJ4cZ-MzdXiuz1dgr4-FIVhl1P2dTg_aOpYMY28OZ9Pp8CSVlKwE7Q8OQyko_PqZ0iKnFdi3m3ucBzHgdcFXKafqPfVQAHmF8AxcJQpF0eeqT5312Dw9dj__RVE-MEv7r2A9-pNst2vya1jxzQasPWAZ3IDnk3h-_gZuT_yfms_bGWmIuXcs8FWzgFe3c9J8LKaRuGC0Q8sof0pLG2rMtheXMU6pYejpMrKI3UYim_w8YDaym-CNYyUlnmAuMnsy5xcB8dW8hbP976d7Yx5TMPBKZnrBXV6gB5fJWowqm1pZlDJVHr0um5S5wiJfJVhEizac2rLG6e_wYlFNSFFKKd_BanPV-E1gqtYS3aFC5C5VOqltTdtP-HKpkrIUegBf-543s45pw_QQtN8mCMqQoEwnqAFkvXTM0oAxaAv-_-LnXpYGpxKdj9jGX7Vzg7-WkUoSWOd9J9u7lkhUVLnW-QCKJanfVSCa7uUnzfRXoOumhO4aP7r11BZ_ghfj08mROTo4_rENLwVlIA7YoQ-wurhu_Ud0ixblThj2fwFzMAvB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+graph+contrastive+learning+with+diffusion+augmentation+for+functional+MRI+analysis+and+brain+disorder+detection&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Xiaochuan&rft.au=Fang%2C+Yuqi&rft.au=Wang%2C+Qianqian&rft.au=Yap%2C+Pew-Thian&rft.date=2025-04-01&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=101&rft.spage=103403&rft.epage=103403&rft_id=info:doi/10.1016%2Fj.media.2024.103403&rft_id=info%3Apmid%2F39637557&rft.externalDocID=PMC11875923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon