Treewidth 2 in the Planar Graph Product Structure Theorem

We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Mathematics and Theoretical Computer Science Vol. 27:2; no. Graph Theory; p. 1
Main Authors Distel, Marc, Hendrey, Kevin, Karol, Nikolai, Wood, David R., Yip, Jung Hon
Format Journal Article
LanguageEnglish
Published DMTCS 01.08.2025
Discrete Mathematics & Theoretical Computer Science
Subjects
Online AccessGet full text
ISSN1365-8050
1462-7264
1365-8050
DOI10.46298/dmtcs.14785

Cover

Abstract We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $G$ such that for any tree $T$ and graph $H$ with $\text{tw}(H) \leqslant 2$, $G$ is not contained in $H \boxtimes T \boxtimes K_c$. Comment: arXiv admin note: text overlap with arXiv:2410.20333
AbstractList We prove that every planar graph is contained in [H.sub.1] [??] [H.sub.2] [??] [K.sub.2] for some graphs [H.sub.1] and [H.sub.2] both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible in the following sense: for any c [member of] N, there is a planar graph G such that for any tree T and graph H with tw(H) [??] 2, G is not contained in H [??] T [??] [K.sub.c].
We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $G$ such that for any tree $T$ and graph $H$ with $\text{tw}(H) \leqslant 2$, $G$ is not contained in $H \boxtimes T \boxtimes K_c$.
We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $G$ such that for any tree $T$ and graph $H$ with $\text{tw}(H) \leqslant 2$, $G$ is not contained in $H \boxtimes T \boxtimes K_c$. Comment: arXiv admin note: text overlap with arXiv:2410.20333
We prove that every planar graph is contained in [H.sub.1] [??] [H.sub.2] [??] [K.sub.2] for some graphs [H.sub.1] and [H.sub.2] both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible in the following sense: for any c [member of] N, there is a planar graph G such that for any tree T and graph H with tw(H) [??] 2, G is not contained in H [??] T [??] [K.sub.c]. Keywords: planar graph, product structure
Audience Academic
Author Yip, Jung Hon
Karol, Nikolai
Wood, David R.
Distel, Marc
Hendrey, Kevin
Author_xml – sequence: 1
  givenname: Marc
  surname: Distel
  fullname: Distel, Marc
– sequence: 2
  givenname: Kevin
  surname: Hendrey
  fullname: Hendrey, Kevin
– sequence: 3
  givenname: Nikolai
  surname: Karol
  fullname: Karol, Nikolai
– sequence: 4
  givenname: David R.
  surname: Wood
  fullname: Wood, David R.
– sequence: 5
  givenname: Jung Hon
  surname: Yip
  fullname: Yip, Jung Hon
BookMark eNp9kV1LwzAUhoNMcJve-QMK3tqZtGmaXI6hczBw4LwOp_nYMvox0o6xf29oRRREcnEOh-c8CW8maFQ3tUHonuAZZYngT7rqVDsjNOfZFRqTlGUxxxke_ehv0KRtDxiTRNB8jMTWG3N2uttHSeTqqNubaFNCDT5aejjuo41v9El10XvnQzl5E233pvGmukXXFsrW3H3VKfp4ed4uXuP123K1mK9jFa7sYiUwKEqyhHFlE5xjhRXRDJSiKrOFSFjGLdMkz7mGPBWGZ4KmBhixorCYpVO0Gry6gYM8eleBv8gGnOwHjd9J8J1TpZFFUWibQAoZEdRYVhhOcrA01RRCh4MrHlyn-giXM5Tlt5Bg2Wco-wxln2HgHwZ-B0Hvatt0HlTlWiXnPOBUJLkI1OwPKhxtKqfCF1kX5r8WHocF5Zu29cb-_4pPBHSQ9A
ContentType Journal Article
Copyright COPYRIGHT 2025 DMTCS
Copyright_xml – notice: COPYRIGHT 2025 DMTCS
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.46298/dmtcs.14785
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ : directory of open access journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_bbbdf2a3a5194ef6be817af43d4a8170
10.46298/dmtcs.14785
A846249279
10_46298_dmtcs_14785
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
M~E
ADTOC
C1A
CAG
COF
LO0
UNPAY
ID FETCH-LOGICAL-c365t-c90ac415268cf2070c0c1d6acc4c5fb92658f6d1778da739e85943ea61f9bf063
IEDL.DBID DOA
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:44:35 EDT 2025
Mon Sep 15 10:17:56 EDT 2025
Wed Jul 16 16:53:39 EDT 2025
Tue Jul 15 03:51:19 EDT 2025
Wed Oct 01 06:42:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Graph Theory
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-c90ac415268cf2070c0c1d6acc4c5fb92658f6d1778da739e85943ea61f9bf063
OpenAccessLink https://doaj.org/article/bbbdf2a3a5194ef6be817af43d4a8170
ParticipantIDs doaj_primary_oai_doaj_org_article_bbbdf2a3a5194ef6be817af43d4a8170
unpaywall_primary_10_46298_dmtcs_14785
gale_infotracmisc_A846249279
gale_infotracacademiconefile_A846249279
crossref_primary_10_46298_dmtcs_14785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 20250801
  day: 01
PublicationDecade 2020
PublicationTitle Discrete Mathematics and Theoretical Computer Science
PublicationYear 2025
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 2.3528917
Snippet We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a...
We prove that every planar graph is contained in [H.sub.1] [??] [H.sub.2] [??] [K.sub.2] for some graphs [H.sub.1] and [H.sub.2] both with treewidth 2. This...
SourceID doaj
unpaywall
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms computer science - discrete mathematics
Decomposition (Mathematics)
Graph theory
mathematics - combinatorics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fTxQxEJ7g8YA8iCKGUzR9QH1a2B_ddvt4GpCYQEjkEnzaTH9FIqzk2AuBv95pd_fCYaK-bttkMp2v8zXb-QZgN5V5YUppE2fLNOGK7qxacJdkhaP8xb2QNhQnH5-Ioyn_el6er8DuUAvz4P89F7mq9u1Va24Iz7Iqn8CqKIlxj2B1enI6-T6UVFVpbMRKmCeySAm-e9_-x_KlzBMF-hfH8Nq8uca7W7y8fJBcDjfgYDCre1Pyc2_e6j1z_0ix8V92P4dnPbtkky4cXsCKazZhY-jcwHogb8L68UKt9eYlqLOZc7cXtv3BcnbRMBpioZkRztiXoGfNTjtZWPYtis3OZ47Fkn53tQXTw4Ozz0dJ31IhMeSpNjEqRRNytqiMzwnuJjWZFWgMN6XXKidC4oXNpKwsykK5qlS8cCgyr7QnOvMKRs2vxm0Dk5lPOXrp6VTgJc_RuMzYjIIiRbpj4RjeD-6urzvljJpuHNE7dfROHb0zhk9hLxZzgt51_EDurHv41Fpr63MskAgnd15oV2USPS8sxyAxOIaPYSfrgMp2hgb74gIyNehb1ROiWUEbUaox7CzNJDSZpeEPi1j4q9mv_3fiG3iah57B8dHgDoxop9xbIjKtftfH8W8ZOe13
  priority: 102
  providerName: Unpaywall
Title Treewidth 2 in the Planar Graph Product Structure Theorem
URI https://doi.org/10.46298/dmtcs.14785
https://doaj.org/article/bbbdf2a3a5194ef6be817af43d4a8170
UnpaywallVersion publishedVersion
Volume 27:2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: ABDBF
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: AMVHM
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044734695
  issn: 1462-7264
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hONAeSoFW3ZYiHyicIhLHsePjgqCrSkFIZRE9RRM_BBKkaAlCXPjtHTvZ1XJpL73kYPswms_zUjzfAOyliuemUDZxtkgToalmbaRwSZY7il_CS2VDc3J1JidT8eOquFoa9RXehPX0wL3iDpumsZ5jjpRqCOdl48pMoRe5FRjI5YL3TUs9L6aG_wdcC9U_cxeS6_LQ3nXmgbyCCjOTlwJQ5OlfeOP1x_Yen5_w9nYpxpy-h3dDcsjGvVCbsOLaLdiYD15ggx1uwdtqQbb6sA36Yubc043trhlnNy2jLRZmEeGMfQ901Oy8Z3VlPyNX7OPMsdiR7-4-wPT05OJ4kgwTERKTy6JLjE7RhJArS-M5WatJTWYlGiNM4RvNKZ_w0mZKlRZVrl1ZaJE7lJnXjads5COstr9b9wmYynwq0CtPRi0KwdG4zNiMME2RSiQcwbe5mur7nviipoIhqrOO6qyjOkdwFHS4OBPoquMCgVgPINb_AnEEBwGBOhhVN0ODQ28AiRroqeoxZUmB2lDpEey8OknGYF5t7y8w_KvYn_-H2F_gDQ_jgON7wB1YJRTdV8pRumYX1sbV5aTajdeSvtXLCa1Nz87Hv_4AJmDppQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fTxQxEJ7g8YA8iCKGUzR9QH1a2B_ddvt4GpCYQEjkEnzaTH9FIqzk2AuBv95pd_fCYaK-bttkMp2v8zXb-QZgN5V5YUppE2fLNOGK7qxacJdkhaP8xb2QNhQnH5-Ioyn_el6er8DuUAvz4P89F7mq9u1Va24Iz7Iqn8CqKIlxj2B1enI6-T6UVFVpbMRKmCeySAm-e9_-x_KlzBMF-hfH8Nq8uca7W7y8fJBcDjfgYDCre1Pyc2_e6j1z_0ix8V92P4dnPbtkky4cXsCKazZhY-jcwHogb8L68UKt9eYlqLOZc7cXtv3BcnbRMBpioZkRztiXoGfNTjtZWPYtis3OZ47Fkn53tQXTw4Ozz0dJ31IhMeSpNjEqRRNytqiMzwnuJjWZFWgMN6XXKidC4oXNpKwsykK5qlS8cCgyr7QnOvMKRs2vxm0Dk5lPOXrp6VTgJc_RuMzYjIIiRbpj4RjeD-6urzvljJpuHNE7dfROHb0zhk9hLxZzgt51_EDurHv41Fpr63MskAgnd15oV2USPS8sxyAxOIaPYSfrgMp2hgb74gIyNehb1ROiWUEbUaox7CzNJDSZpeEPi1j4q9mv_3fiG3iah57B8dHgDoxop9xbIjKtftfH8W8ZOe13
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treewidth+2+in+the+Planar+Graph+Product+Structure+Theorem&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Marc+Distel&rft.au=Kevin+Hendrey&rft.au=Nikolai+Karol&rft.au=David+R.+Wood&rft.date=2025-08-01&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=27%3A2&rft.issue=Graph+Theory&rft_id=info:doi/10.46298%2Fdmtcs.14785&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bbbdf2a3a5194ef6be817af43d4a8170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon