Treewidth 2 in the Planar Graph Product Structure Theorem
We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $...
        Saved in:
      
    
          | Published in | Discrete Mathematics and Theoretical Computer Science Vol. 27:2; no. Graph Theory; p. 1 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            DMTCS
    
        01.08.2025
     Discrete Mathematics & Theoretical Computer Science  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1365-8050 1462-7264 1365-8050  | 
| DOI | 10.46298/dmtcs.14785 | 
Cover
| Abstract | We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $G$ such that for any tree $T$ and graph $H$ with $\text{tw}(H) \leqslant 2$, $G$ is not contained in $H \boxtimes T \boxtimes K_c$.
Comment: arXiv admin note: text overlap with arXiv:2410.20333 | 
    
|---|---|
| AbstractList | We prove that every planar graph is contained in [H.sub.1] [??] [H.sub.2] [??] [K.sub.2] for some graphs [H.sub.1] and [H.sub.2] both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible in the following sense: for any c [member of] N, there is a planar graph G such that for any tree T and graph H with tw(H) [??] 2, G is not contained in H [??] T [??] [K.sub.c]. We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $G$ such that for any tree $T$ and graph $H$ with $\text{tw}(H) \leqslant 2$, $G$ is not contained in $H \boxtimes T \boxtimes K_c$. We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible: for any $c \in \mathbb{N}$, there is a planar graph $G$ such that for any tree $T$ and graph $H$ with $\text{tw}(H) \leqslant 2$, $G$ is not contained in $H \boxtimes T \boxtimes K_c$. Comment: arXiv admin note: text overlap with arXiv:2410.20333 We prove that every planar graph is contained in [H.sub.1] [??] [H.sub.2] [??] [K.sub.2] for some graphs [H.sub.1] and [H.sub.2] both with treewidth 2. This resolves a question of Liu, Norin and Wood [arXiv:2410.20333]. We also show this result is best possible in the following sense: for any c [member of] N, there is a planar graph G such that for any tree T and graph H with tw(H) [??] 2, G is not contained in H [??] T [??] [K.sub.c]. Keywords: planar graph, product structure  | 
    
| Audience | Academic | 
    
| Author | Yip, Jung Hon Karol, Nikolai Wood, David R. Distel, Marc Hendrey, Kevin  | 
    
| Author_xml | – sequence: 1 givenname: Marc surname: Distel fullname: Distel, Marc – sequence: 2 givenname: Kevin surname: Hendrey fullname: Hendrey, Kevin – sequence: 3 givenname: Nikolai surname: Karol fullname: Karol, Nikolai – sequence: 4 givenname: David R. surname: Wood fullname: Wood, David R. – sequence: 5 givenname: Jung Hon surname: Yip fullname: Yip, Jung Hon  | 
    
| BookMark | eNp9kV1LwzAUhoNMcJve-QMK3tqZtGmaXI6hczBw4LwOp_nYMvox0o6xf29oRRREcnEOh-c8CW8maFQ3tUHonuAZZYngT7rqVDsjNOfZFRqTlGUxxxke_ehv0KRtDxiTRNB8jMTWG3N2uttHSeTqqNubaFNCDT5aejjuo41v9El10XvnQzl5E233pvGmukXXFsrW3H3VKfp4ed4uXuP123K1mK9jFa7sYiUwKEqyhHFlE5xjhRXRDJSiKrOFSFjGLdMkz7mGPBWGZ4KmBhixorCYpVO0Gry6gYM8eleBv8gGnOwHjd9J8J1TpZFFUWibQAoZEdRYVhhOcrA01RRCh4MrHlyn-giXM5Tlt5Bg2Wco-wxln2HgHwZ-B0Hvatt0HlTlWiXnPOBUJLkI1OwPKhxtKqfCF1kX5r8WHocF5Zu29cb-_4pPBHSQ9A | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 DMTCS | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 DMTCS | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.46298/dmtcs.14785 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ : directory of open access journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Computer Science  | 
    
| EISSN | 1365-8050 | 
    
| ExternalDocumentID | oai_doaj_org_article_bbbdf2a3a5194ef6be817af43d4a8170 10.46298/dmtcs.14785 A846249279 10_46298_dmtcs_14785  | 
    
| GeographicLocations | Australia | 
    
| GeographicLocations_xml | – name: Australia | 
    
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO PV9 REM RNS RSU RZL TR2 TUS XSB ~8M M~E ADTOC C1A CAG COF LO0 UNPAY  | 
    
| ID | FETCH-LOGICAL-c365t-c90ac415268cf2070c0c1d6acc4c5fb92658f6d1778da739e85943ea61f9bf063 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1365-8050 1462-7264  | 
    
| IngestDate | Fri Oct 03 12:44:35 EDT 2025 Mon Sep 15 10:17:56 EDT 2025 Wed Jul 16 16:53:39 EDT 2025 Tue Jul 15 03:51:19 EDT 2025 Wed Oct 01 06:42:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | Graph Theory | 
    
| Language | English | 
    
| License | https://arxiv.org/licenses/nonexclusive-distrib/1.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c365t-c90ac415268cf2070c0c1d6acc4c5fb92658f6d1778da739e85943ea61f9bf063 | 
    
| OpenAccessLink | https://doaj.org/article/bbbdf2a3a5194ef6be817af43d4a8170 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bbbdf2a3a5194ef6be817af43d4a8170 unpaywall_primary_10_46298_dmtcs_14785 gale_infotracmisc_A846249279 gale_infotracacademiconefile_A846249279 crossref_primary_10_46298_dmtcs_14785  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250801 | 
    
| PublicationDateYYYYMMDD | 2025-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 20250801 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Discrete Mathematics and Theoretical Computer Science | 
    
| PublicationYear | 2025 | 
    
| Publisher | DMTCS Discrete Mathematics & Theoretical Computer Science  | 
    
| Publisher_xml | – name: DMTCS – name: Discrete Mathematics & Theoretical Computer Science  | 
    
| SSID | ssj0012947 ssib044734695  | 
    
| Score | 2.3528917 | 
    
| Snippet | We prove that every planar graph is contained in $H_1\boxtimes H_2\boxtimes K_2$ for some graphs $H_1$ and $H_2$ both with treewidth 2. This resolves a... We prove that every planar graph is contained in [H.sub.1] [??] [H.sub.2] [??] [K.sub.2] for some graphs [H.sub.1] and [H.sub.2] both with treewidth 2. This...  | 
    
| SourceID | doaj unpaywall gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 1 | 
    
| SubjectTerms | computer science - discrete mathematics Decomposition (Mathematics) Graph theory mathematics - combinatorics  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fTxQxEJ7g8YA8iCKGUzR9QH1a2B_ddvt4GpCYQEjkEnzaTH9FIqzk2AuBv95pd_fCYaK-bttkMp2v8zXb-QZgN5V5YUppE2fLNOGK7qxacJdkhaP8xb2QNhQnH5-Ioyn_el6er8DuUAvz4P89F7mq9u1Va24Iz7Iqn8CqKIlxj2B1enI6-T6UVFVpbMRKmCeySAm-e9_-x_KlzBMF-hfH8Nq8uca7W7y8fJBcDjfgYDCre1Pyc2_e6j1z_0ix8V92P4dnPbtkky4cXsCKazZhY-jcwHogb8L68UKt9eYlqLOZc7cXtv3BcnbRMBpioZkRztiXoGfNTjtZWPYtis3OZ47Fkn53tQXTw4Ozz0dJ31IhMeSpNjEqRRNytqiMzwnuJjWZFWgMN6XXKidC4oXNpKwsykK5qlS8cCgyr7QnOvMKRs2vxm0Dk5lPOXrp6VTgJc_RuMzYjIIiRbpj4RjeD-6urzvljJpuHNE7dfROHb0zhk9hLxZzgt51_EDurHv41Fpr63MskAgnd15oV2USPS8sxyAxOIaPYSfrgMp2hgb74gIyNehb1ROiWUEbUaox7CzNJDSZpeEPi1j4q9mv_3fiG3iah57B8dHgDoxop9xbIjKtftfH8W8ZOe13 priority: 102 providerName: Unpaywall  | 
    
| Title | Treewidth 2 in the Planar Graph Product Structure Theorem | 
    
| URI | https://doi.org/10.46298/dmtcs.14785 https://doaj.org/article/bbbdf2a3a5194ef6be817af43d4a8170  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 27:2 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: ABDBF dateStart: 20030601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: AMVHM dateStart: 20030601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044734695 issn: 1462-7264 databaseCode: M~E dateStart: 19980101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hONAeSoFW3ZYiHyicIhLHsePjgqCrSkFIZRE9RRM_BBKkaAlCXPjtHTvZ1XJpL73kYPswms_zUjzfAOyliuemUDZxtkgToalmbaRwSZY7il_CS2VDc3J1JidT8eOquFoa9RXehPX0wL3iDpumsZ5jjpRqCOdl48pMoRe5FRjI5YL3TUs9L6aG_wdcC9U_cxeS6_LQ3nXmgbyCCjOTlwJQ5OlfeOP1x_Yen5_w9nYpxpy-h3dDcsjGvVCbsOLaLdiYD15ggx1uwdtqQbb6sA36Yubc043trhlnNy2jLRZmEeGMfQ901Oy8Z3VlPyNX7OPMsdiR7-4-wPT05OJ4kgwTERKTy6JLjE7RhJArS-M5WatJTWYlGiNM4RvNKZ_w0mZKlRZVrl1ZaJE7lJnXjads5COstr9b9wmYynwq0CtPRi0KwdG4zNiMME2RSiQcwbe5mur7nviipoIhqrOO6qyjOkdwFHS4OBPoquMCgVgPINb_AnEEBwGBOhhVN0ODQ28AiRroqeoxZUmB2lDpEey8OknGYF5t7y8w_KvYn_-H2F_gDQ_jgON7wB1YJRTdV8pRumYX1sbV5aTajdeSvtXLCa1Nz87Hv_4AJmDppQ | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fTxQxEJ7g8YA8iCKGUzR9QH1a2B_ddvt4GpCYQEjkEnzaTH9FIqzk2AuBv95pd_fCYaK-bttkMp2v8zXb-QZgN5V5YUppE2fLNOGK7qxacJdkhaP8xb2QNhQnH5-Ioyn_el6er8DuUAvz4P89F7mq9u1Va24Iz7Iqn8CqKIlxj2B1enI6-T6UVFVpbMRKmCeySAm-e9_-x_KlzBMF-hfH8Nq8uca7W7y8fJBcDjfgYDCre1Pyc2_e6j1z_0ix8V92P4dnPbtkky4cXsCKazZhY-jcwHogb8L68UKt9eYlqLOZc7cXtv3BcnbRMBpioZkRztiXoGfNTjtZWPYtis3OZ47Fkn53tQXTw4Ozz0dJ31IhMeSpNjEqRRNytqiMzwnuJjWZFWgMN6XXKidC4oXNpKwsykK5qlS8cCgyr7QnOvMKRs2vxm0Dk5lPOXrp6VTgJc_RuMzYjIIiRbpj4RjeD-6urzvljJpuHNE7dfROHb0zhk9hLxZzgt51_EDurHv41Fpr63MskAgnd15oV2USPS8sxyAxOIaPYSfrgMp2hgb74gIyNehb1ROiWUEbUaox7CzNJDSZpeEPi1j4q9mv_3fiG3iah57B8dHgDoxop9xbIjKtftfH8W8ZOe13 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treewidth+2+in+the+Planar+Graph+Product+Structure+Theorem&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Marc+Distel&rft.au=Kevin+Hendrey&rft.au=Nikolai+Karol&rft.au=David+R.+Wood&rft.date=2025-08-01&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=27%3A2&rft.issue=Graph+Theory&rft_id=info:doi/10.46298%2Fdmtcs.14785&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bbbdf2a3a5194ef6be817af43d4a8170 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |