Emulating computer models with high-dimensional count output

Computer models are used to study the real world, and often contain a large number of uncertain input parameters, produce a large number of outputs, may be expensive to run and need calibrating to real-world observations to be useful for decision-making. Emulators are often used as cheap surrogates...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 383; no. 2292; p. 20240216
Main Authors Salter, James M., McKinley, Trevelyan J., Xiong, Xiaoyu, Williamson, Daniel B.
Format Journal Article
LanguageEnglish
Published England The Royal Society 13.03.2025
Subjects
Online AccessGet full text
ISSN1364-503X
1471-2962
1471-2962
DOI10.1098/rsta.2024.0216

Cover

Abstract Computer models are used to study the real world, and often contain a large number of uncertain input parameters, produce a large number of outputs, may be expensive to run and need calibrating to real-world observations to be useful for decision-making. Emulators are often used as cheap surrogates for the expensive simulator, trained on a small number of simulations to provide predictions with uncertainty at unseen inputs. In epidemiological applications, for example compartmental or agent-based models for modelling the spread of infectious diseases, the output is usually spatially and temporally indexed, stochastic and consists of counts rather than continuous variables. Here, we consider emulating high-dimensional count output from a complex computer model using a Poisson lognormal PCA (PLNPCA) emulator. We apply the PLNPCA emulator to output fields from a COVID-19 model for England and Wales and compare this to fitting emulators to aggregations of the full output. We show that performance is generally comparable, while the PLNPCA emulator inherits desirable properties, including allowing the full output to be predicted while capturing correlations between outputs, providing high-dimensional samples of counts that are representative of the true model output. This article is part of the theme issue ‘Uncertainty quantification for healthcare and biological systems (Part 1)’.
AbstractList Computer models are used to study the real world, and often contain a large number of uncertain input parameters, produce a large number of outputs, may be expensive to run and need calibrating to real-world observations to be useful for decision-making. Emulators are often used as cheap surrogates for the expensive simulator, trained on a small number of simulations to provide predictions with uncertainty at unseen inputs. In epidemiological applications, for example compartmental or agent-based models for modelling the spread of infectious diseases, the output is usually spatially and temporally indexed, stochastic and consists of counts rather than continuous variables. Here, we consider emulating high-dimensional count output from a complex computer model using a Poisson lognormal PCA (PLNPCA) emulator. We apply the PLNPCA emulator to output fields from a COVID-19 model for England and Wales and compare this to fitting emulators to aggregations of the full output. We show that performance is generally comparable, while the PLNPCA emulator inherits desirable properties, including allowing the full output to be predicted while capturing correlations between outputs, providing high-dimensional samples of counts that are representative of the true model output.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.Computer models are used to study the real world, and often contain a large number of uncertain input parameters, produce a large number of outputs, may be expensive to run and need calibrating to real-world observations to be useful for decision-making. Emulators are often used as cheap surrogates for the expensive simulator, trained on a small number of simulations to provide predictions with uncertainty at unseen inputs. In epidemiological applications, for example compartmental or agent-based models for modelling the spread of infectious diseases, the output is usually spatially and temporally indexed, stochastic and consists of counts rather than continuous variables. Here, we consider emulating high-dimensional count output from a complex computer model using a Poisson lognormal PCA (PLNPCA) emulator. We apply the PLNPCA emulator to output fields from a COVID-19 model for England and Wales and compare this to fitting emulators to aggregations of the full output. We show that performance is generally comparable, while the PLNPCA emulator inherits desirable properties, including allowing the full output to be predicted while capturing correlations between outputs, providing high-dimensional samples of counts that are representative of the true model output.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.
Computer models are used to study the real world, and often contain a large number of uncertain input parameters, produce a large number of outputs, may be expensive to run and need calibrating to real-world observations to be useful for decision-making. Emulators are often used as cheap surrogates for the expensive simulator, trained on a small number of simulations to provide predictions with uncertainty at unseen inputs. In epidemiological applications, for example compartmental or agent-based models for modelling the spread of infectious diseases, the output is usually spatially and temporally indexed, stochastic and consists of counts rather than continuous variables. Here, we consider emulating high-dimensional count output from a complex computer model using a Poisson lognormal PCA (PLNPCA) emulator. We apply the PLNPCA emulator to output fields from a COVID-19 model for England and Wales and compare this to fitting emulators to aggregations of the full output. We show that performance is generally comparable, while the PLNPCA emulator inherits desirable properties, including allowing the full output to be predicted while capturing correlations between outputs, providing high-dimensional samples of counts that are representative of the true model output.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.
Computer models are used to study the real world, and often contain a large number of uncertain input parameters, produce a large number of outputs, may be expensive to run and need calibrating to real-world observations to be useful for decision-making. Emulators are often used as cheap surrogates for the expensive simulator, trained on a small number of simulations to provide predictions with uncertainty at unseen inputs. In epidemiological applications, for example compartmental or agent-based models for modelling the spread of infectious diseases, the output is usually spatially and temporally indexed, stochastic and consists of counts rather than continuous variables. Here, we consider emulating high-dimensional count output from a complex computer model using a Poisson lognormal PCA (PLNPCA) emulator. We apply the PLNPCA emulator to output fields from a COVID-19 model for England and Wales and compare this to fitting emulators to aggregations of the full output. We show that performance is generally comparable, while the PLNPCA emulator inherits desirable properties, including allowing the full output to be predicted while capturing correlations between outputs, providing high-dimensional samples of counts that are representative of the true model output. This article is part of the theme issue ‘Uncertainty quantification for healthcare and biological systems (Part 1)’.
Author Xiong, Xiaoyu
Salter, James M.
McKinley, Trevelyan J.
Williamson, Daniel B.
Author_xml – sequence: 1
  givenname: James M.
  orcidid: 0000-0002-7428-6465
  surname: Salter
  fullname: Salter, James M.
– sequence: 2
  givenname: Trevelyan J.
  surname: McKinley
  fullname: McKinley, Trevelyan J.
– sequence: 3
  givenname: Xiaoyu
  surname: Xiong
  fullname: Xiong, Xiaoyu
– sequence: 4
  givenname: Daniel B.
  surname: Williamson
  fullname: Williamson, Daniel B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40078142$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAUhYOMOA_dupQu3XTMa5IWBJFhfMCAGwV3IU3TaaRNxiZV_PemzCgquElyyXfOvdwzBSPrrAbgFME5gnl20fkg5xhiOocYsQMwQZSjFOcMj-KbMJouIHkeg6n3LxAixBb4CIwphDxDFE_A5artGxmM3STKtds-6C5pXakbn7ybUCe12dRpaVptvXFWNpHqbUhcHyJ7DA4r2Xh9sr9n4Olm9bi8S9cPt_fL63WqCFuEVOqCMMl4SQiHVEKJc4WVrqQqF7GmLFdal5BzFWcvYZEpXlQaEVUUNCNRPANXO99tX7S6VNqGTjZi25lWdh_CSSN-_1hTi417EwjlkDLEo8P53qFzr732QbTGK9000mrXe0EQZyzL4hnRs5_Nvrt87SwC8x2gOud9p6tvBEExhCKGUMQQihhCiQL6R6BMiDt3w7Cm-U_2CT6wk5s
CitedBy_id crossref_primary_10_1098_rsta_2024_0232
Cites_doi 10.1615/Int.J.UncertaintyQuantification.2022039747
10.1214/18-AOAS1177
10.1093/biomet/76.4.643
10.1080/00401706.1999.10485594
10.1098/rsta.2022.0039
10.1214/21-STS822
10.5194/gmd-17-1059-2024
10.1137/17M1161233
10.1016/j.epidem.2022.100574
10.1214/16-AOAS934
10.5194/acp-13-8879-2013
10.1186/s12918-017-0484-3
10.1080/00401706.2013.860919
10.1080/10618600.2018.1458625
10.1016/j.jocs.2017.08.006
10.1198/TECH.2009.08019
10.1080/01621459.2015.1108199
10.3389/fevo.2021.588292
10.1098/rstb.2020.0272
10.1109/WSC.2008.4736089
10.1198/016214507000000888
10.1371/journal.pcbi.1003968
10.1002/9780470685853.ch10
10.18637/jss.v098.i13
10.1080/01621459.2018.1514306
10.1098/rsta.2020.0071
10.1007/s00382-013-1896-4
10.3389/fphys.2021.693015
10.1016/j.epidem.2009.11.002
10.1093/jrsssc/qlad083
10.1073/pnas.1000416107
ContentType Journal Article
Copyright 2025 The Author(s). 2025
Copyright_xml – notice: 2025 The Author(s). 2025
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1098/rsta.2024.0216
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
DocumentTitleAlternate Emulating computer models with high-dimensional count output
EISSN 1471-2962
ExternalDocumentID PMC11904617
40078142
10_1098_rsta_2024_0216
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
– fundername: ;
GroupedDBID ---
-~X
0R~
18M
4.4
5VS
AACGO
AANCE
AAYXX
ABFAN
ABPLY
ABTLG
ABYWD
ACGFO
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
AFVYC
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
BTFSW
CITATION
DIK
EBS
F5P
H13
HZ~
JLS
JSG
KQ8
MRS
MV1
NSAHA
O9-
OK1
P2P
RRY
TN5
TR2
V1E
XSW
YNT
~02
NPM
7X8
5PM
ID FETCH-LOGICAL-c365t-aeb36a67d33704a0a29c2cefacd504a469ceed077c471d0b8c7bfe13cbb483eb3
ISSN 1364-503X
1471-2962
IngestDate Thu Aug 21 18:33:59 EDT 2025
Thu Jul 10 17:06:43 EDT 2025
Sun Mar 16 01:22:23 EDT 2025
Sun Jul 06 05:06:16 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2292
Keywords Poisson lognormal
basis emulation
uncertainty quantification
Gaussian processes
Language English
License Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-aeb36a67d33704a0a29c2cefacd504a469ceed077c471d0b8c7bfe13cbb483eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
One contribution of 13 to a theme issue ‘Uncertainty quantification for healthcare and biological systems (Part 1)’.
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.7611332.
ORCID 0000-0002-7428-6465
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11904617
PMID 40078142
PQID 3176688176
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11904617
proquest_miscellaneous_3176688176
pubmed_primary_40078142
crossref_primary_10_1098_rsta_2024_0216
crossref_citationtrail_10_1098_rsta_2024_0216
PublicationCentury 2000
PublicationDate 2025-03-13
2025-Mar-13
20250313
PublicationDateYYYYMMDD 2025-03-13
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAlternate Philos Trans A Math Phys Eng Sci
PublicationYear 2025
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_30_2
Rasmussen CE (e_1_3_6_19_2) 2006
e_1_3_6_31_2
e_1_3_6_32_2
e_1_3_6_10_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_13_2
e_1_3_6_12_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_20_2
e_1_3_6_21_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_2_2
e_1_3_6_9_2
e_1_3_6_8_2
e_1_3_6_7_2
e_1_3_6_6_2
Maddox WJ (e_1_3_6_28_2) 2021; 34
e_1_3_6_26_2
e_1_3_6_27_2
e_1_3_6_29_2
e_1_3_6_22_2
e_1_3_6_23_2
e_1_3_6_24_2
e_1_3_6_25_2
References_xml – ident: e_1_3_6_29_2
  doi: 10.1615/Int.J.UncertaintyQuantification.2022039747
– ident: e_1_3_6_18_2
  doi: 10.1214/18-AOAS1177
– ident: e_1_3_6_32_2
  doi: 10.1093/biomet/76.4.643
– ident: e_1_3_6_16_2
  doi: 10.1080/00401706.1999.10485594
– ident: e_1_3_6_12_2
  doi: 10.1098/rsta.2022.0039
– ident: e_1_3_6_37_2
– ident: e_1_3_6_21_2
  doi: 10.1214/21-STS822
– ident: e_1_3_6_6_2
  doi: 10.5194/gmd-17-1059-2024
– ident: e_1_3_6_11_2
  doi: 10.1137/17M1161233
– ident: e_1_3_6_13_2
  doi: 10.1016/j.epidem.2022.100574
– ident: e_1_3_6_27_2
  doi: 10.1214/16-AOAS934
– ident: e_1_3_6_26_2
  doi: 10.5194/acp-13-8879-2013
– ident: e_1_3_6_8_2
  doi: 10.1186/s12918-017-0484-3
– ident: e_1_3_6_23_2
  doi: 10.1080/00401706.2013.860919
– ident: e_1_3_6_24_2
  doi: 10.1080/10618600.2018.1458625
– ident: e_1_3_6_7_2
  doi: 10.1016/j.jocs.2017.08.006
– ident: e_1_3_6_20_2
  doi: 10.1198/TECH.2009.08019
– ident: e_1_3_6_30_2
  doi: 10.1080/01621459.2015.1108199
– ident: e_1_3_6_31_2
  doi: 10.3389/fevo.2021.588292
– ident: e_1_3_6_35_2
  doi: 10.1098/rstb.2020.0272
– ident: e_1_3_6_22_2
  doi: 10.1109/WSC.2008.4736089
– ident: e_1_3_6_36_2
– ident: e_1_3_6_14_2
  doi: 10.1198/016214507000000888
– ident: e_1_3_6_10_2
  doi: 10.1371/journal.pcbi.1003968
– volume: 34
  start-page: 19274
  year: 2021
  ident: e_1_3_6_28_2
  article-title: Bayesian Optimization with High-Dimensional Outputs
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_6_15_2
  doi: 10.1002/9780470685853.ch10
– ident: e_1_3_6_25_2
  doi: 10.18637/jss.v098.i13
– ident: e_1_3_6_5_2
  doi: 10.1080/01621459.2018.1514306
– ident: e_1_3_6_3_2
  doi: 10.1098/rsta.2020.0071
– ident: e_1_3_6_4_2
  doi: 10.1007/s00382-013-1896-4
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: e_1_3_6_19_2
– ident: e_1_3_6_9_2
  doi: 10.3389/fphys.2021.693015
– ident: e_1_3_6_33_2
  doi: 10.1016/j.epidem.2009.11.002
– ident: e_1_3_6_2_2
– ident: e_1_3_6_17_2
  doi: 10.1093/jrsssc/qlad083
– ident: e_1_3_6_34_2
  doi: 10.1073/pnas.1000416107
SSID ssj0011652
Score 2.461443
Snippet Computer models are used to study the real world, and often contain a large number of uncertain input parameters, produce a large number of outputs, may be...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20240216
Title Emulating computer models with high-dimensional count output
URI https://www.ncbi.nlm.nih.gov/pubmed/40078142
https://www.proquest.com/docview/3176688176
https://pubmed.ncbi.nlm.nih.gov/PMC11904617
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rieA9iHd-3PpFBUGltHaT9At8UTk5lBXFPdi30qQ5XDi74rYP59_nH-ZMkqbt3gqnLyVtk3Z3ZzYzmcz8foQ8k1meZDFNA1nN4oCX0BIMBCIQWyRmKaUKi5Pnn5KTU_5hGS8nk9-DrKW2EaH8tbOu5H-kCtdArlgl-w-SdQ-FC9AG-cIRJAzHK8n4-Lsm3zJls5qcwTDb2JI1hCIOKoTvN9AbviaG8NdtA32HXunnjs9AS6zpKcQ3XQqBiTJ0KZ64r6BpQEKca2Ct7esw_dxBwGoWARs1MW2Mz6se-9C3ltd59F_Ntn2Xt-vPwz5i-HFV28j6AgGnzi-w5MrdX65sVvFyVa4v2u1AkskqMJX0_ttwGOWgMaZ5mSJVOzGzhAdxpLmDwW6Za2BYA5qPZ3OWsYHaUmqY9i4ZiijH4gcsHgrhdTwEV2cHIveWpXT5i2bnPitwfIHjCxx_jVynKXhwmBrwpd_LmiWa98l9Awcdmr0av3_sGl1a72yn7Q78oMVtcssuYLw3RhsPyETVh2R_AGsJZ70ibA7JDZ1kjK0Da0g23guLdv7yDnntlNjrlNgzSuyhEnvbSuxpJfaMEt8lp--PF-9OAkvpEUiWxE1QKsGSMkkrxtKIl1FJc0mlOitlFcM5T3J02qI0lSDbKhKZTMWZmjEpBM8YDL5H9up1rY6IJynjYBylYirilYpEycC1Z0qmkuUVK6ck6H7NQlq8e6RdOS92S29Knrv-PwzSy197Pu2EU8BkjDtsZa3W7aZgCLeaZXCckvtGWO5ZHL3xGadTko3E6Dog0Pv4Tr36pgHfZ-C1c1hqPLjyR3xIbvb_okdkr_nZqsfgPTfiiVbOP-TRyh8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emulating+computer+models+with+high-dimensional+count+output&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Salter%2C+James+M.&rft.au=McKinley%2C+Trevelyan+J.&rft.au=Xiong%2C+Xiaoyu&rft.au=Williamson%2C+Daniel+B.&rft.date=2025-03-13&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=383&rft.issue=2292&rft_id=info:doi/10.1098%2Frsta.2024.0216&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsta_2024_0216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon