A Regional Aerosol Model for the Middle Urals Based on CALIPSO Measurements
The present work aims to develop a regional Middle Urals Aerosol model (MUrA model) based on the joint analysis of long-term ground-based photometric measurements of the Aerosol Robotic NETwork (AERONET) and the results of lidar measurements of the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinde...
Saved in:
| Published in | Atmosphere Vol. 15; no. 1; p. 48 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4433 2073-4433 |
| DOI | 10.3390/atmos15010048 |
Cover
| Abstract | The present work aims to develop a regional Middle Urals Aerosol model (MUrA model) based on the joint analysis of long-term ground-based photometric measurements of the Aerosol Robotic NETwork (AERONET) and the results of lidar measurements of the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite relying on information on the air trajectories at different altitudes calculated using the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory model) software package. The MUrA model contains parameters of normalized volume size distributions (NVSDs) characterizing the tropospheric aerosol subtypes detected by the CALIPSO satellite. When comparing the MUrA model with the global CALIPSO Aerosol Model (CAMel), we found significant differences in NVSDs for elevated smoke and clean continental aerosol types. NVSDs for dust and polluted continental/smoke aerosol types in the global and regional models differ much less. The total volumes of aerosol particles along the atmospheric column reconstructed from satellite measurements of the attenuation coefficient at a wavelength of 532 nm based on the regional MUrA model and global CAMel are compared with the AERONET inversion data. The mean bias error for the regional model is 0.016 μm3/μm2, and 0.043 μm3/μm2 for the global model. |
|---|---|
| AbstractList | The present work aims to develop a regional Middle Urals Aerosol model (MUrA model) based on the joint analysis of long-term ground-based photometric measurements of the Aerosol Robotic NETwork (AERONET) and the results of lidar measurements of the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite relying on information on the air trajectories at different altitudes calculated using the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory model) software package. The MUrA model contains parameters of normalized volume size distributions (NVSDs) characterizing the tropospheric aerosol subtypes detected by the CALIPSO satellite. When comparing the MUrA model with the global CALIPSO Aerosol Model (CAMel), we found significant differences in NVSDs for elevated smoke and clean continental aerosol types. NVSDs for dust and polluted continental/smoke aerosol types in the global and regional models differ much less. The total volumes of aerosol particles along the atmospheric column reconstructed from satellite measurements of the attenuation coefficient at a wavelength of 532 nm based on the regional MUrA model and global CAMel are compared with the AERONET inversion data. The mean bias error for the regional model is 0.016 μm3/μm2, and 0.043 μm3/μm2 for the global model. The present work aims to develop a regional Middle Urals Aerosol model (MUrA model) based on the joint analysis of long-term ground-based photometric measurements of the Aerosol Robotic NETwork (AERONET) and the results of lidar measurements of the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite relying on information on the air trajectories at different altitudes calculated using the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory model) software package. The MUrA model contains parameters of normalized volume size distributions (NVSDs) characterizing the tropospheric aerosol subtypes detected by the CALIPSO satellite. When comparing the MUrA model with the global CALIPSO Aerosol Model (CAMel), we found significant differences in NVSDs for elevated smoke and clean continental aerosol types. NVSDs for dust and polluted continental/smoke aerosol types in the global and regional models differ much less. The total volumes of aerosol particles along the atmospheric column reconstructed from satellite measurements of the attenuation coefficient at a wavelength of 532 nm based on the regional MUrA model and global CAMel are compared with the AERONET inversion data. The mean bias error for the regional model is 0.016 μm[sup.3] /μm[sup.2] , and 0.043 μm[sup.3] /μm[sup.2] for the global model. |
| Audience | Academic |
| Author | Nagovitsyna, Ekaterina S. Karasev, Alexander A. Poddubny, Vassily A. Dzholumbetov, Sergey K. |
| Author_xml | – sequence: 1 givenname: Ekaterina S. surname: Nagovitsyna fullname: Nagovitsyna, Ekaterina S. – sequence: 2 givenname: Sergey K. orcidid: 0000-0002-6242-869X surname: Dzholumbetov fullname: Dzholumbetov, Sergey K. – sequence: 3 givenname: Alexander A. surname: Karasev fullname: Karasev, Alexander A. – sequence: 4 givenname: Vassily A. orcidid: 0000-0002-3966-4395 surname: Poddubny fullname: Poddubny, Vassily A. |
| BookMark | eNqFkU1v1DAQhi1UJErpkbslzil2xk7s41LxsaKrIqBna2KPl6yy8WJnVfXf47KIjxP2waORn0ejd56zsznNxNhLKa4ArHiNyz4VqYUUQpkn7LwVPTRKAZz9VT9jl6XsRD3KQgvqnH1c8c-0HdOME19RTiVNfJMCTTymzJdvxDdjCBPxu4xT4W-wUOBp5term_WnL7d8Q1iOmfY0L-UFexrrJ7r89V6wu3dvv15_aG5u368r0Hjo9NJg3w-69aFFJGWNGGJA8KhNCDp46LVSUlvqUQ1S9noQikD5aOUQohw6AxdsffKGhDt3yOMe84NLOLqfjZS3DvMy-okcWBuN9p2MSipP2livO62kHSyS94-uq5PrOB_w4R6n6bdQCveYrPsn2Qq8OgGHnL4fqSxul465xldca6XR0IGAP9ot1inGOaYlo6830H70dXNxrP1Vb4TppQZZgeYE-LqDkin-Z4wfHTGXUg |
| Cites_doi | 10.1029/2007JD008962 10.1016/j.envres.2012.11.003 10.5194/amt-11-2897-2018 10.1175/2010BAMS3009.1 10.1134/S1024856023010098 10.5194/acp-21-13397-2021 10.1029/2000JD900040 10.3390/rs14071693 10.1016/j.atmosenv.2013.03.043 10.1073/pnas.1514043113 10.1016/j.atmosenv.2019.117050 10.2151/sola.2006-004 10.1134/S1024856023030090 10.1016/j.envint.2014.10.005 10.1364/AO.41.003685 10.1029/2004JD004874 10.1016/S0034-4257(98)00031-5 10.1029/2006JD007918 10.1029/2000JD900282 10.1175/2009JTECHA1281.1 10.3390/atmos14010139 10.1029/2009JD011862 10.5194/acp-21-16745-2021 10.1134/S0001433813030109 10.1186/s40068-023-00327-2 10.1016/j.envres.2019.108924 10.5194/amt-15-639-2022 10.1016/j.rse.2021.112732 10.3390/atmos14050894 10.1016/j.atmosenv.2006.04.044 10.5194/amt-16-6025-2023 10.1007/s00024-018-1767-3 10.1364/JOSAA.22.000518 10.5194/amt-5-1513-2012 10.3390/atmos13060981 10.1175/2009WAF2222201.1 10.5194/amt-12-4849-2019 10.1175/2009JTECHA1231.1 10.1029/98JD00994 10.1175/JAS-D-16-0037.1 10.1631/jzus.B1700123 10.5194/acp-21-9269-2021 10.5194/amt-11-6107-2018 10.1175/BAMS-D-14-00110.1 10.1016/j.scitotenv.2020.137699 10.5194/acp-22-7143-2022 10.5194/gmd-11-2739-2018 10.3390/toxics11100813 10.5194/amt-11-4129-2018 10.1016/j.rse.2016.08.027 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QH 7ST 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU COVID DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC UNPAY DOA |
| DOI | 10.3390/atmos15010048 |
| DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 2073-4433 |
| ExternalDocumentID | oai_doaj_org_article_399f85c61f414ce589c565419b9aecc8 10.3390/atmos15010048 A780871531 10_3390_atmos15010048 |
| GeographicLocations | Russia |
| GeographicLocations_xml | – name: Russia |
| GroupedDBID | 2XV 5VS 8FE 8FH AAFWJ AAHBH AAYXX ADMLS AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BENPR BHPHI BKSAR CCPQU CITATION D1K GROUPED_DOAJ HCIFZ IAO ITC K6- KQ8 MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC 7QH 7ST 7TG 7TN 7UA ABUWG AZQEC C1K COVID DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c365t-a77b52cd2aae4980bfda3ca58dd5dc37544159e7a4b1175b04e34cf91bdf1b683 |
| IEDL.DBID | BENPR |
| ISSN | 2073-4433 |
| IngestDate | Tue Oct 14 19:05:57 EDT 2025 Tue Aug 19 18:59:32 EDT 2025 Mon Jun 30 07:34:04 EDT 2025 Mon Oct 20 17:13:55 EDT 2025 Thu Oct 16 04:41:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-a77b52cd2aae4980bfda3ca58dd5dc37544159e7a4b1175b04e34cf91bdf1b683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6242-869X 0000-0002-3966-4395 |
| OpenAccessLink | https://www.proquest.com/docview/2918536303?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2918536303 |
| PQPubID | 2032431 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_399f85c61f414ce589c565419b9aecc8 unpaywall_primary_10_3390_atmos15010048 proquest_journals_2918536303 gale_infotracacademiconefile_A780871531 crossref_primary_10_3390_atmos15010048 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Atmosphere |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Veselovskii (ref_26) 2002; 41 Nordio (ref_15) 2013; 74 Ma (ref_39) 2020; 721 Omar (ref_38) 2009; 26 Gasteiger (ref_50) 2018; 11 Seinfeld (ref_5) 2016; 113 Quaas (ref_2) 2008; 113 Kim (ref_36) 2018; 11 Tsekeri (ref_33) 2023; 16 Pope (ref_9) 2020; 183 Fang (ref_16) 2016; 186 Zhang (ref_1) 2020; 8 Ahmad (ref_13) 2019; 219 ref_18 Choudhury (ref_48) 2022; 22 Dubovik (ref_42) 2000; 105 Ansmann (ref_32) 2019; 12 Holben (ref_41) 1998; 66 Winker (ref_35) 2010; 91 Choudhury (ref_40) 2022; 15 Panchenko (ref_21) 2012; 5 Mamali (ref_22) 2018; 11 Poddubnyi (ref_43) 2013; 49 Popovicheva (ref_19) 2023; 36 Fan (ref_4) 2016; 73 Markowicz (ref_23) 2018; 175 Stein (ref_44) 2015; 96 ref_28 ref_27 Omar (ref_37) 2005; 110 Kleist (ref_45) 2009; 24 Winker (ref_46) 2009; 26 Hu (ref_17) 2013; 121 Tackett (ref_47) 2018; 11 Zhang (ref_10) 2018; 19 ref_34 ref_31 Engelmann (ref_25) 2021; 21 Shinozuka (ref_20) 2007; 112 Remer (ref_49) 1998; 103 Williamson (ref_6) 2021; 267 Lyamani (ref_30) 2021; 21 Luzhetskaya (ref_14) 2022; 35 Mironova (ref_24) 2005; 22 Koelemeijer (ref_12) 2006; 40 Aoki (ref_7) 2006; 2 Tesche (ref_52) 2009; 114 Dubovik (ref_51) 2000; 105 ref_3 Ansmann (ref_29) 2021; 21 Kim (ref_8) 2015; 74 Saju (ref_11) 2023; 12 |
| References_xml | – volume: 113 start-page: D05204 year: 2008 ident: ref_2 article-title: Satellite-Based Estimate of the Direct and Indirect Aerosol Climate Forcing publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2007JD008962 – volume: 121 start-page: 1 year: 2013 ident: ref_17 article-title: Estimating Ground-Level PM2.5 Concentrations in the Southeastern U.S. Using Geographically Weighted Regression publication-title: Environ. Res. doi: 10.1016/j.envres.2012.11.003 – volume: 11 start-page: 2897 year: 2018 ident: ref_22 article-title: Vertical Profiles of Aerosol Mass Concentration Derived by Unmanned Airborne in Situ and Remote Sensing Instruments during Dust Events publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-2897-2018 – volume: 91 start-page: 1211 year: 2010 ident: ref_35 article-title: The Calipso Mission publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2010BAMS3009.1 – volume: 35 start-page: S133 year: 2022 ident: ref_14 article-title: Temporal Variability and Relationship between Surface Concentration of PM2.5 and Aerosol Optical Depth According to Measurements in the Middle Urals publication-title: Atmos. Ocean. Opt. doi: 10.1134/S1024856023010098 – volume: 21 start-page: 13397 year: 2021 ident: ref_25 article-title: Wildfire Smoke, Arctic Haze, and Aerosol Effects on Mixed-Phase and Cirrus Clouds over the North Pole Region during MOSAiC: An Introduction publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-13397-2021 – volume: 105 start-page: 9791 year: 2000 ident: ref_51 article-title: Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900040 – ident: ref_31 doi: 10.3390/rs14071693 – volume: 74 start-page: 227 year: 2013 ident: ref_15 article-title: Estimating Spatio-Temporal Resolved PM10 Aerosol Mass Concentrations Using MODIS Satellite Data and Land Use Regression over Lombardy, Italy publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.03.043 – volume: 113 start-page: 5781 year: 2016 ident: ref_5 article-title: Improving Our Fundamental Understanding of the Role of Aerosol−cloud Interactions in the Climate System publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1514043113 – volume: 219 start-page: 117050 year: 2019 ident: ref_13 article-title: Estimating Fine Particulate Concentration Using a Combined Approach of Linear Regression and Artificial Neural Network publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.117050 – volume: 2 start-page: 13 year: 2006 ident: ref_7 article-title: Atmospheric Aerosol Deposition on Snow Surfaces and Its Effect on Albedo publication-title: Sola doi: 10.2151/sola.2006-004 – volume: 36 start-page: 176 year: 2023 ident: ref_19 article-title: Black Carbon Seasonal Trends and Regional Sources on Bely Island (Arctic) publication-title: Atmos. Ocean. Opt. doi: 10.1134/S1024856023030090 – volume: 74 start-page: 136 year: 2015 ident: ref_8 article-title: A Review on the Human Health Impact of Airborne Particulate Matter publication-title: Environ. Int. doi: 10.1016/j.envint.2014.10.005 – volume: 41 start-page: 3685 year: 2002 ident: ref_26 article-title: Inversion with Regularization for the Retrieval of Tropospheric Aerosol Parameters from Multiwavelength Lidar Sounding publication-title: Appl. Opt. doi: 10.1364/AO.41.003685 – volume: 110 start-page: D10S14 year: 2005 ident: ref_37 article-title: Development of Global Aerosol Models Using Cluster Analysis of Aerosol Robotic Network (AERONET) Measurements publication-title: J. Geophys. Res. doi: 10.1029/2004JD004874 – volume: 66 start-page: 1 year: 1998 ident: ref_41 article-title: AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00031-5 – volume: 112 start-page: D12S20 year: 2007 ident: ref_20 article-title: Aircraft Profiles of Aerosol Microphysics and Optical Properties over North America: Aerosol Optical Depth and Its Association with PM2.5 and Water Uptake publication-title: J. Geophys. Res. doi: 10.1029/2006JD007918 – volume: 105 start-page: 20673 year: 2000 ident: ref_42 article-title: A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900282 – volume: 26 start-page: 2310 year: 2009 ident: ref_46 article-title: Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms publication-title: J. Atmos. Ocean Technol. doi: 10.1175/2009JTECHA1281.1 – ident: ref_18 doi: 10.3390/atmos14010139 – volume: 114 start-page: D13202 year: 2009 ident: ref_52 article-title: Vertically Resolved Separation of Dust and Smoke over Cape Verde Using Multiwavelength Raman and Polarization Lidars during Saharan Mineral Dust Experiment 2008 publication-title: J. Geophys. Res. doi: 10.1029/2009JD011862 – ident: ref_3 – volume: 21 start-page: 16745 year: 2021 ident: ref_29 article-title: Measurement Report: Comparison of Airborne, in Situ Measured, Lidar-Based, and Modeled Aerosol Optical Properties in the Central European Background—Identifying Sources of Deviations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-16745-2021 – volume: 49 start-page: 285 year: 2013 ident: ref_43 article-title: Features of Optical Characteristics of Atmospheric Aerosol in the Middle Urals publication-title: Izv. Atmos. Ocean. Phys. doi: 10.1134/S0001433813030109 – volume: 12 start-page: 42 year: 2023 ident: ref_11 article-title: Measurement of Ambient Particulate Matter (PM1.0, PM2.5 and PM10) in Khulna City of Bangladesh and Their Implications for Human Health publication-title: Environ. Syst. Res. doi: 10.1186/s40068-023-00327-2 – volume: 183 start-page: 108924 year: 2020 ident: ref_9 article-title: Fine Particulate Air Pollution and Human Mortality: 25+ Years of Cohort Studies publication-title: Environ. Res. doi: 10.1016/j.envres.2019.108924 – volume: 15 start-page: 639 year: 2022 ident: ref_40 article-title: Estimating Cloud Condensation Nuclei Concentrations from CALIPSO Lidar Measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-639-2022 – volume: 267 start-page: 112732 year: 2021 ident: ref_6 article-title: The Influence of Forest Fire Aerosol and Air Temperature on Glacier Albedo, Western North America publication-title: Remote Sens Environ. doi: 10.1016/j.rse.2021.112732 – ident: ref_27 doi: 10.3390/atmos14050894 – volume: 40 start-page: 5304 year: 2006 ident: ref_12 article-title: Comparison of Spatial and Temporal Variations of Aerosol Optical Thickness and Particulate Matter over Europe publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.04.044 – volume: 16 start-page: 6025 year: 2023 ident: ref_33 article-title: Combined Sun-Photometer–Lidar Inversion: Lessons Learned during the Earlinet/Actris COVID-19 Campaign publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-16-6025-2023 – volume: 175 start-page: 3325 year: 2018 ident: ref_23 article-title: UAS as a Support for Atmospheric Aerosols Research: Case Study publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-018-1767-3 – volume: 22 start-page: 518 year: 2005 ident: ref_24 article-title: Microphysical Aerosol Parameters from Multiwavelength Lidar publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.22.000518 – volume: 5 start-page: 1513 year: 2012 ident: ref_21 article-title: An Empirical Model of Optical and Radiative Characteristics of the Tropospheric Aerosol over West Siberia in Summer publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-5-1513-2012 – ident: ref_28 doi: 10.3390/atmos13060981 – volume: 8 start-page: 55 year: 2020 ident: ref_1 article-title: The Effect of Aerosols to Climate Change and Society publication-title: J. Geosci. Environ. Prot. – volume: 24 start-page: 1691 year: 2009 ident: ref_45 article-title: Introduction of the GSI into the NCEP Global Data Assimilation System publication-title: Weather Forecast doi: 10.1175/2009WAF2222201.1 – volume: 12 start-page: 4849 year: 2019 ident: ref_32 article-title: Dust Mass, Cloud Condensation Nuclei, and Ice-Nucleating Particle Profiling with Polarization Lidar: Updated POLIPHON Conversion Factors from Global AERONET Analysis publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-4849-2019 – volume: 26 start-page: 1994 year: 2009 ident: ref_38 article-title: The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm publication-title: J. Atmos. Ocean Technol. doi: 10.1175/2009JTECHA1231.1 – volume: 103 start-page: 13859 year: 1998 ident: ref_49 article-title: Dynamic Aerosol Model: Urban/Industrial Aerosol publication-title: J. Geophys. Res. Atmos. doi: 10.1029/98JD00994 – volume: 73 start-page: 4221 year: 2016 ident: ref_4 article-title: Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-16-0037.1 – volume: 19 start-page: 317 year: 2018 ident: ref_10 article-title: Physical and Chemical Characteristics of PM2.5 and Its Toxicity to Human Bronchial Cells BEAS-2B in the Winter and Summer publication-title: J. Zhejiang Univ. Sci. B doi: 10.1631/jzus.B1700123 – volume: 21 start-page: 9269 year: 2021 ident: ref_30 article-title: Overview of the SLOPE I and II Campaigns: Aerosol Properties Retrieved with Lidar and Sun–Sky Photometer Measurements publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-9269-2021 – volume: 11 start-page: 6107 year: 2018 ident: ref_36 article-title: The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-6107-2018 – volume: 96 start-page: 2059 year: 2015 ident: ref_44 article-title: NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-14-00110.1 – volume: 721 start-page: 137699 year: 2020 ident: ref_39 article-title: Ten-Year Global Particulate Mass Concentration Derived from Space-Borne CALIPSO Lidar Observations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137699 – volume: 22 start-page: 7143 year: 2022 ident: ref_48 article-title: Evaluation of Aerosol Number Concentrations from CALIPSO with ATom Airborne in Situ Measurements publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-7143-2022 – volume: 11 start-page: 2739 year: 2018 ident: ref_50 article-title: MOPSMAP v1.0: A Versatile Tool for the Modeling of Aerosol Optical Properties publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-2739-2018 – ident: ref_34 doi: 10.3390/toxics11100813 – volume: 11 start-page: 4129 year: 2018 ident: ref_47 article-title: CALIPSO Lidar Level 3 Aerosol Profile Product: Version 3 Algorithm Design publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-4129-2018 – volume: 186 start-page: 152 year: 2016 ident: ref_16 article-title: Satellite-Based Ground PM2.5 Estimation Using Timely Structure Adaptive Modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.027 |
| SSID | ssj0000493234 |
| Score | 2.2895694 |
| Snippet | The present work aims to develop a regional Middle Urals Aerosol model (MUrA model) based on the joint analysis of long-term ground-based photometric... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 48 |
| SubjectTerms | AERONET Aerosol particles Aerosol Robotic Network Aerosols Air trajectories Aircraft Algorithms Altitude Atmosphere Atmospheric aerosols Atmospheric models Atmospheric particulates Attenuation coefficients CALIPSO CALIPSO (Pathfinder satellite) Clouds Environmental aspects Extinction coefficient Global aerosols HYSPLIT Inverse problems Lidar Lidar measurements Meteorological satellites Middle Urals Particle size Radiation regional aerosol model Regional development Remote sensing Satellite observation Satellites Smoke Software packages Wave attenuation Wavelength |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLrSHikerBijyAcEpIg_bsY9hBUKgBallJW6Wn6hVSFa7QVX_fcdOgEVIcOkxUWSPZjyebyb2NwgdcM9IbjOSisqKlOjcg88JlRYV9eG3VpXFw5jTK3Y-Ixe39Hal1Vc4EzbQAw-KO4YA6jk1LPckJ8ZRLgwNvauFFgqmj9d8My5WkqnfA-4ti5IMpJol5PXHqr_vloB-AkMafxGEIlf_6x35E1p_aOfq7x_VNCsh52wDfR6xIq4HGTfRB9duoWQKMLdbxGo4PsST5hdgzvi0jS5r_MPdxeIerh1M3TU4NDtrMEBTDFAPT2M9As8WsOrwCUQwi7sWT2rI739e4-lzwXD5Bc3OTm8m5-nYLSE1JaN9qqpK08LYQilHBM-0t6o0inJrqTWh0y3EauEqBQYBzKAz4kpivMi19blmvPyK1tqudd8QJsRWhmnGtKfEC6-4cBxGgngPDpu7BB0-qk_OB1IMCclE0LN8oecEnQTlPn0UuKzjC7CwHC0s37Nwgo6CaWTwuH6hjBovDoCsgbtK1hXPIO2DzSRBe4_Wk6MrLmUhAiRhEKphoCeLvi33zv-Qexd9LAABDfWaPbTWLx7cd0Awvd6Pi_Uf4eDr1w priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeFcsFOQDKqc068R27BNKV1TlsaUCViqnyM-qIk1WSRYEv55xki0UJIQ4JnIsW_PwN-PJNwg9E55TYmc0kpmVEdXEg81JFSUZ8-FaK5v1xZiLY360pK9P2elYm9OOZZUQip_3TjoB_YsoTdOYsJjEVMQr6198GRNJJAvs5oJSeh1tcQZQfIK2lscn-afQUG7z6cCrmUJoH6vuom4BAAWSNHHlHOrp-v90ytvoxrpaqW9fVVn-cuoc3h5aq7Y9WWEoNvm8v-70vvn-G5Xjf2_oDro14lGcDwp0F11z1T00XQCUrps-44738Lw8B1zbP91Hb3L83p31CUScO9hbXeLQUK3EAH8xwEm86HMeeNmAZuMDOCUtris8z9--OvnwDi9-JiXbB2h5-PLj_CgaOzJEJuWsi1SWaZYYmyjlqBQz7a1KjWLCWmZN6KYLeEC6TIHQAZfoGXUpNV4SbT3RXKQ7aFLVlXuIMKU2M1xzrj2jXnolpBMwE2AKcArETdHeRj7FaiDeKCBgCYIsrghyig6C9C4HBb7s_kXdnBWj-RUAw7xghhNPCTWOCWlY6IAutVSgxDDJ8yD7Ilh11yijxp8TYK2BH6vIMzGD0BIc1hTtbtSjGM29LRIZYA8HOAATXarM39f96J9HPkY3E4BSQ-JnF026Zu2eABTq9NNR4X8AsikBaw priority: 102 providerName: Unpaywall |
| Title | A Regional Aerosol Model for the Middle Urals Based on CALIPSO Measurements |
| URI | https://www.proquest.com/docview/2918536303 https://www.mdpi.com/2073-4433/15/1/48/pdf?version=1703918444 https://doaj.org/article/399f85c61f414ce589c565419b9aecc8 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: ADMLS dateStart: 20110701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbp5tD2UPqk26ZBh5KeTPyQZOlQindJCC27DWkX0pPQMwRce-t1KP33HWntTUMhRxszFvP8ZiTNIPSee0Yym5JElFYkRGcebE6oJC-pD9taZRoPYy6W7GxFPl_Syz20HO_ChGOVo0-Mjtq2JtTIj3MRIgsDj_tp_SsJU6PC7uo4QkMNoxXsx9hi7AHaz0NnrAnan50szy92VRfAw0VekG2zzQLy_WPV_2w3gIpC5zR-JzjFHv7_e-rH6OFNs1Z_fqu6_icUnT5FTwYMiaut0J-hPdc8R9MFwN-2i1VyfITn9TVg0fj0An2p8IW7ikU_XDn4dVvjMAStxgBZMUBAvIh1CrzqQBvxDCKbxW2D5xXk_d--4sVtIXHzEq1OT77Pz5JhikJiCkb7RJWlprmxuVKOCJ5qb1VhFOXWUmvCBFyI4cKVCgQFWEKnxBXEeJFp6zPNePEKTZq2ca8RJsSWhmnGtKfEC6-4cBwoAQ4AQ87cFB2N7JPrbbMMCUlG4LO8w-cpmgXm7j4KPa7ji7a7koPJSIBOnlPDMk8yYhzlwtAwtVxooUDxgMiHIBoZLLHvlFHDhQJYa-hpJauSp5AOgpOZooNRenIw0Y28VSggtJPo_et-cz-ht-hRDphnW6E5QJO-u3HvALP0-nBQxMOY88PTanle_fgLAQXshw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygcEE-xUMAHKKeoediJfajQbmm1yzZLVbpSb8bPCikkSzZV1T_Hb2OcTbZUSL31mCiaJPP8ZmzPIPSBuZREJiQBzwwPiIoc2ByXQZxR55e1srDdjJnP0vGcfD2n5xvoT38Wxm-r7H1i66hNpX2NfC_mPrKk4HE_L34HfmqUX13tR2jIbrSC2W9bjHUHO6b2-gpSuOX-5AvI-2McHx2eHYyDbspAoJOUNoHMMkVjbWIpLeEsVM7IREvKjKFG-wmxEOO4zST8CMRaFRKbEO14pIyLVMoSoPsAbZGEcEj-tkaHs5PTdZUH8HcSJ2TV3DNJeLgnm1_VElCY79TGbgXDdmbA_5HhEdq-LBfy-koWxT-h7-gJetxhVjxcKdlTtGHLZ2iQA9yu6rYqj3fxQfETsG979RxNh_jUXrRFRjy08OqqwH7oWoEBImOAnDhv6yJ4XoP24xFEUoOrEgO7Jiffv-H8pnC5fIHm98LPl2izrEr7CmFCTKZTlabKUeK4k4xbBpQAd4DjiOwA7fbsE4tVcw4BSY3ns7jF5wEaeeauH_I9tdsbVX0hOhMVANUcozqNHImItpRxTf2UdK64BEUHIp-8aIS3_KaWWnYHGOBbfQ8tMcxYCOknOLUB2umlJzqXsBQ3CgyE1hK9-7tf303oPdoen-XH4ngym75BD2PAW6vq0A7abOpL-xbwUqPedUqJ0Y_7toO_IlcoHw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVuJxQDxFoMAeoJys-LFr7x4qlLSNGkJCVIjU23afFZKxg-Oq6l_kVzHr2CkVUm892rLG9uzMN9_O7s4g9IG5lEQmJAHPDA-Iihz4HJdBnFHnl7WysNmMOZ2lxwvy5ZSebqE_3VkYv62yw8QGqE2pfY68H3MfWVJA3L5rt0XMD0efl78D30HKr7R27TRk22bB7DflxtpDHhN7dQnTudX--BDG_mMcj45-HBwHbceBQCcprQOZZYrG2sRSWsJZqJyRiZaUGUON9t1iId5xm0n4KYi7KiQ2IdrxSBkXqZQlIPce2vGLXwASO8Oj2fxkk_EBLp7ECVkX-kwSHvZl_atcASPzVdvYjcDY9A_4P0o8Qg8uiqW8upR5_k8YHD1Bj1v-igdrg3uKtmzxDPWmQL3LqsnQ4z18kP8EHtxcPUeTAT6x503CEQ8svLrMsW_AlmOgyxjoJ542ORK8qMAT8BCiqsFlgUFd4_n3b3h6ncRcvUCLO9HnS7RdlIV9hTAhJtOpSlPlKHHcScYtA0nAQQBEIttDe536xHJdqEPABMfrWdzQcw8NvXI3D_n62s2NsjoXrbsKoG2OUZ1GjkREW8q4pr5jOldcgtGDkE9-aIRHgbqSWraHGeBbfT0tMchYCFNRALge2u1GT7TwsBLXxgyCNiN6-3e_vl3Qe3Qf_EF8Hc8mb9DDGKjXOlG0i7br6sK-BepUq3etTWJ0dtdu8BevHixO |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeFcsFOQDKqc068R27BNKV1TlsaUCViqnyM-qIk1WSRYEv55xki0UJIQ4JnIsW_PwN-PJNwg9E55TYmc0kpmVEdXEg81JFSUZ8-FaK5v1xZiLY360pK9P2elYm9OOZZUQip_3TjoB_YsoTdOYsJjEVMQr6198GRNJJAvs5oJSeh1tcQZQfIK2lscn-afQUG7z6cCrmUJoH6vuom4BAAWSNHHlHOrp-v90ytvoxrpaqW9fVVn-cuoc3h5aq7Y9WWEoNvm8v-70vvn-G5Xjf2_oDro14lGcDwp0F11z1T00XQCUrps-44738Lw8B1zbP91Hb3L83p31CUScO9hbXeLQUK3EAH8xwEm86HMeeNmAZuMDOCUtris8z9--OvnwDi9-JiXbB2h5-PLj_CgaOzJEJuWsi1SWaZYYmyjlqBQz7a1KjWLCWmZN6KYLeEC6TIHQAZfoGXUpNV4SbT3RXKQ7aFLVlXuIMKU2M1xzrj2jXnolpBMwE2AKcArETdHeRj7FaiDeKCBgCYIsrghyig6C9C4HBb7s_kXdnBWj-RUAw7xghhNPCTWOCWlY6IAutVSgxDDJ8yD7Ilh11yijxp8TYK2BH6vIMzGD0BIc1hTtbtSjGM29LRIZYA8HOAATXarM39f96J9HPkY3E4BSQ-JnF026Zu2eABTq9NNR4X8AsikBaw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Regional+Aerosol+Model+for+the+Middle+Urals+Based+on+CALIPSO+Measurements&rft.jtitle=Atmosphere&rft.au=Nagovitsyna%2C+Ekaterina+S&rft.au=Dzholumbetov%2C+Sergey+K&rft.au=Karasev%2C+Alexander+A&rft.au=Poddubny%2C+Vassily+A&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2073-4433&rft.eissn=2073-4433&rft.volume=15&rft.issue=1&rft_id=info:doi/10.3390%2Fatmos15010048&rft.externalDocID=A780871531 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon |