Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in some cases. ► Hybrid fuzzy c-means and fuzzy particle swarm optimization can achieve the best results. Fuzzy clustering is an important problem...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 38; no. 3; pp. 1835 - 1838 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.03.2011
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2010.07.112 | 
Cover
| Abstract | ► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in some cases. ► Hybrid fuzzy c-means and fuzzy particle swarm optimization can achieve the best results.
Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results. | 
    
|---|---|
| AbstractList | Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results. ► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in some cases. ► Hybrid fuzzy c-means and fuzzy particle swarm optimization can achieve the best results. Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results.  | 
    
| Author | Izakian, Hesam Abraham, Ajith  | 
    
| Author_xml | – sequence: 1 givenname: Hesam surname: Izakian fullname: Izakian, Hesam email: hesam.izakian@gmail.com organization: Department of Computer Engineering, University Of Isfahan, Iran – sequence: 2 givenname: Ajith surname: Abraham fullname: Abraham, Ajith email: ajith.abraham@ieee.org organization: Machine Intelligence Research Labs, MIR-Labs, Washington, USA  | 
    
| BookMark | eNp9kD1PwzAQhi1UJNrCH2DKBkuCP5LYRiyoooBUiQVmy3HOyFU-ip2A2l-PSzsxdDrd-X3u5GeGJl3fAULXBGcEk_JunUH40RnFcYB5Rgg9Q1MiOEtLLtkETbEseJoTnl-gWQhrjAnHmE_R_XLc7bbJIm1BdyHRXZ3Yv0lc59vE9v7Ym2YMA3jXfSYb31cNtJfo3OomwNWxztHH8ul98ZKu3p5fF4-r1LCyGFJZiNLWTNAcS0mpIVjQWhdUghUVSF1bgPhaWVPiqtK1zomVotBE1qbIqWFzdHPYG-9-jRAG1bpgoGl0B_0YlMhlzlnBREzenkzGPxOCWclkjIpD1Pg-BA9WGTfowfXd4LVrFMFqL1at1V6s2otVmKsoNqL0H7rxrtV-exp6OEAQTX078CoYB52B2nkwg6p7dwr_BUholAI | 
    
| CitedBy_id | crossref_primary_10_1016_j_asoc_2012_07_007 crossref_primary_10_1109_JSTARS_2015_2398835 crossref_primary_10_1016_j_eswa_2016_02_009 crossref_primary_10_1016_j_rico_2022_100190 crossref_primary_10_48084_etasr_745 crossref_primary_10_1016_j_sigpro_2014_08_042 crossref_primary_10_1049_iet_ipr_2012_0410 crossref_primary_10_1007_s12652_018_0941_x crossref_primary_10_1007_s10044_014_0376_8 crossref_primary_10_1051_matecconf_20166106004 crossref_primary_10_1007_s11053_020_09798_x crossref_primary_10_1016_j_compenvurbsys_2015_10_009 crossref_primary_10_1016_j_ejor_2015_07_059 crossref_primary_10_1016_j_eswa_2014_03_042 crossref_primary_10_1111_coin_12297 crossref_primary_10_12720_jcm_11_12_1106_1113 crossref_primary_10_1109_TFUZZ_2019_2945241 crossref_primary_10_1080_23311916_2018_1513304 crossref_primary_10_1109_TAES_2022_3195478 crossref_primary_10_1016_j_future_2017_08_060 crossref_primary_10_1108_IMDS_05_2017_0175 crossref_primary_10_3390_math9233114 crossref_primary_10_1109_JSTARS_2018_2854865 crossref_primary_10_1016_j_jrmge_2023_09_030 crossref_primary_10_1109_TEVC_2018_2878536 crossref_primary_10_3390_s19183975 crossref_primary_10_1016_j_neucom_2017_10_036 crossref_primary_10_1016_j_matcom_2025_02_012 crossref_primary_10_1109_TFUZZ_2022_3148823 crossref_primary_10_1007_s00500_019_04605_z crossref_primary_10_1016_j_jneumeth_2025_110424 crossref_primary_10_1038_s41598_022_20015_y crossref_primary_10_1007_s00521_017_2874_2 crossref_primary_10_1007_s42452_020_2417_9 crossref_primary_10_1016_j_trc_2014_12_001 crossref_primary_10_1007_s00521_012_1050_y crossref_primary_10_1007_s00521_019_04128_6 crossref_primary_10_1016_j_omega_2018_05_006 crossref_primary_10_1080_08839514_2014_862772 crossref_primary_10_1007_s13198_017_0681_x crossref_primary_10_1088_1742_6596_978_1_012027 crossref_primary_10_1007_s00521_019_04035_w crossref_primary_10_1016_j_seta_2022_102620 crossref_primary_10_1016_j_asoc_2014_08_036 crossref_primary_10_1109_ACCESS_2020_3007498 crossref_primary_10_1007_s10489_015_0705_7 crossref_primary_10_1007_s41066_023_00446_2 crossref_primary_10_35860_iarej_1096573 crossref_primary_10_1016_j_procs_2022_09_326 crossref_primary_10_1007_s11276_017_1635_6 crossref_primary_10_1016_j_ijdrr_2020_101801 crossref_primary_10_1016_j_neucom_2017_03_068 crossref_primary_10_1007_s40815_021_01226_3 crossref_primary_10_1016_j_ins_2012_08_023 crossref_primary_10_1007_s11431_015_5896_y crossref_primary_10_1016_j_dsp_2013_07_005 crossref_primary_10_1109_TIE_2021_3080212 crossref_primary_10_2174_1573405616666210104111218 crossref_primary_10_3390_math11051085 crossref_primary_10_1080_15732479_2016_1227854 crossref_primary_10_1016_j_proeng_2012_07_266 crossref_primary_10_1080_10916466_2016_1233247 crossref_primary_10_1080_1206212X_2019_1662984 crossref_primary_10_1016_j_compbiomed_2022_106405 crossref_primary_10_1007_s13042_024_02105_7 crossref_primary_10_1016_j_mri_2014_05_003 crossref_primary_10_1016_j_eswa_2020_114121 crossref_primary_10_1109_TFUZZ_2020_2990100 crossref_primary_10_1080_00207543_2022_2105763 crossref_primary_10_4018_ijsir_2014070101 crossref_primary_10_1016_j_eswa_2013_12_037 crossref_primary_10_1007_s41060_023_00474_w crossref_primary_10_1016_j_eswa_2025_126474 crossref_primary_10_3390_ijerph191912821 crossref_primary_10_32329_uad_898187 crossref_primary_10_1007_s10489_021_02801_9 crossref_primary_10_1007_s10586_024_04721_y crossref_primary_10_1016_j_bbe_2024_08_009 crossref_primary_10_1016_j_bspc_2024_106931 crossref_primary_10_2174_1573405614666180719142536 crossref_primary_10_1016_j_knosys_2016_01_001 crossref_primary_10_9717_kmms_2013_16_7_810 crossref_primary_10_1155_2014_916371 crossref_primary_10_3233_JIFS_169991 crossref_primary_10_1088_1742_6596_1229_1_012020 crossref_primary_10_3390_bioengineering11050466 crossref_primary_10_3390_math12030453 crossref_primary_10_1016_j_datak_2022_102050 crossref_primary_10_1016_j_neucom_2014_01_032 crossref_primary_10_1016_j_eswa_2014_07_026 crossref_primary_10_4018_IJGHPC_2019100104 crossref_primary_10_1016_j_asoc_2015_01_023 crossref_primary_10_1016_j_patrec_2017_02_015 crossref_primary_10_1155_2014_368628 crossref_primary_10_1080_13683500_2018_1467883 crossref_primary_10_1016_j_energy_2019_01_044 crossref_primary_10_1088_1742_6596_978_1_012019 crossref_primary_10_1108_BIJ_03_2018_0074 crossref_primary_10_1016_j_eswa_2017_02_037 crossref_primary_10_1007_s10044_018_0744_x crossref_primary_10_2339_politeknik_778630 crossref_primary_10_1016_S1570_6672_11_60220_1 crossref_primary_10_4028_www_scientific_net_AMR_989_994_1641 crossref_primary_10_1007_s00500_023_08460_x crossref_primary_10_1007_s13198_020_00968_x crossref_primary_10_1155_2019_6812754 crossref_primary_10_1155_2020_1386839 crossref_primary_10_1007_s00500_018_3124_y crossref_primary_10_1109_ACCESS_2020_3011668 crossref_primary_10_1371_journal_pone_0267009 crossref_primary_10_1016_j_eswa_2017_09_049 crossref_primary_10_1155_2013_459503 crossref_primary_10_1016_j_ssci_2020_104828 crossref_primary_10_1016_j_eswa_2015_12_034 crossref_primary_10_1016_j_tre_2015_03_005 crossref_primary_10_1016_j_swevo_2012_02_001 crossref_primary_10_3390_su16219244 crossref_primary_10_1016_j_eswa_2015_04_032 crossref_primary_10_1016_j_eswa_2023_119655 crossref_primary_10_1016_j_neunet_2016_04_006 crossref_primary_10_1016_j_autcon_2019_102997 crossref_primary_10_1016_j_eswa_2011_06_049 crossref_primary_10_1007_s00521_018_3891_5 crossref_primary_10_1007_s00521_023_08970_7 crossref_primary_10_1016_j_neucom_2014_02_027 crossref_primary_10_3390_agriculture11090848 crossref_primary_10_1016_j_compchemeng_2017_04_003 crossref_primary_10_1007_s00521_015_1849_4 crossref_primary_10_1007_s11431_017_9185_6 crossref_primary_10_1016_j_asoc_2022_109397 crossref_primary_10_1016_j_knosys_2018_06_007 crossref_primary_10_3390_electronics10232891 crossref_primary_10_1016_j_eswa_2017_01_059 crossref_primary_10_1142_S0218001420500226 crossref_primary_10_1016_j_compchemeng_2018_01_013 crossref_primary_10_33395_sinkron_v4i1_10238 crossref_primary_10_12973_eurasia_2017_01048a crossref_primary_10_1109_TFUZZ_2022_3203506 crossref_primary_10_1016_j_fss_2015_01_021 crossref_primary_10_1016_j_scitotenv_2022_160933 crossref_primary_10_1142_S2196888824400013 crossref_primary_10_1016_j_eswa_2023_120377 crossref_primary_10_1016_j_asoc_2012_12_024 crossref_primary_10_1007_s13369_014_1424_9 crossref_primary_10_12677_AAM_2021_104104 crossref_primary_10_1038_s41598_023_29932_y  | 
    
| Cites_doi | 10.1109/CIT.2004.1357292 10.1109/FUZZY.2006.1681773 10.1016/j.eswa.2009.02.003 10.1109/ICMLC.2007.4370833 10.1109/91.388178 10.1109/ISITAE.2007.4409243 10.1016/j.eswa.2007.11.045 10.1109/ETTandGRS.2008.375 10.1109/ICNN.1995.488968  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2010 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2010 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2010.07.112 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 1838 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2010_07_112 S0957417410007402  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c365t-9586fd382409922c1082da529ef8be9adfee382bfc60bbada41f985a19dc542c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Sat Sep 27 23:32:09 EDT 2025 Sun Sep 28 06:03:01 EDT 2025 Wed Oct 01 03:51:26 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 23 02:30:23 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Particle swarm optimization Fuzzy clustering  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c365t-9586fd382409922c1082da529ef8be9adfee382bfc60bbada41f985a19dc542c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PQID | 1701103639 | 
    
| PQPubID | 23500 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | proquest_miscellaneous_849473538 proquest_miscellaneous_1701103639 crossref_citationtrail_10_1016_j_eswa_2010_07_112 crossref_primary_10_1016_j_eswa_2010_07_112 elsevier_sciencedirect_doi_10_1016_j_eswa_2010_07_112  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-03-01 | 
    
| PublicationDateYYYYMMDD | 2011-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2011 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Bezdek, J. (1974). Kennedy, Eberhart (b0040) 2001 Webb (b0005) 2002 ZHAO, B. (2007). An ant colony clustering algorithm. In (pp. 796–800). IEEE CS Press. Runkler, T. A., & Katz, C. (2006). Fuzzy clustering by particle swarm optimization. In Liu, H.C., Yih, J.M., Wu, D. B., & Liu, S.W. (2008). Fuzzy C-mean clustering algorithms based on Picard iteration and particle swarm optimization. In (pp. 3933–3938). Hong Kong. Hathway, Bezdek (b0020) 1995 (pp. 601–608). Canada. (pp. 1942–1948). Li, L., Liu, X., & Xu, M. (2007). A novel fuzzy clustering based on particle swarm optimization. In (pp. 88–90). Gan, Wu, Yang (b0065) 2009 Yang, Sun, Zhang (b0070) 2009 Tan, Steinbach, Kumar (b0010) 2005 Alpaydin (b0015) 2004 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Ph.D. thesis. Ithaca, NY: Cornell University. (pp. 838–842). Pang, W., Wang, K., Zhou, C., & Dong, L. (2004). Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In Tan (10.1016/j.eswa.2010.07.112_b0010) 2005 Alpaydin (10.1016/j.eswa.2010.07.112_b0015) 2004 Hathway (10.1016/j.eswa.2010.07.112_b0020) 1995 Webb (10.1016/j.eswa.2010.07.112_b0005) 2002 Yang (10.1016/j.eswa.2010.07.112_b0070) 2009 10.1016/j.eswa.2010.07.112_b0075 10.1016/j.eswa.2010.07.112_b0030 Kennedy (10.1016/j.eswa.2010.07.112_b0040) 2001 10.1016/j.eswa.2010.07.112_b0050 10.1016/j.eswa.2010.07.112_b0035 10.1016/j.eswa.2010.07.112_b0045 10.1016/j.eswa.2010.07.112_b0055 Gan (10.1016/j.eswa.2010.07.112_b0065) 2009 10.1016/j.eswa.2010.07.112_b0025  | 
    
| References_xml | – year: 2002 ident: b0005 article-title: Statistical pattern recognition – reference: (pp. 796–800). IEEE CS Press. – reference: Runkler, T. A., & Katz, C. (2006). Fuzzy clustering by particle swarm optimization. In – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In – reference: Liu, H.C., Yih, J.M., Wu, D. B., & Liu, S.W. (2008). Fuzzy C-mean clustering algorithms based on Picard iteration and particle swarm optimization. In – reference: Bezdek, J. (1974). – year: 2004 ident: b0015 article-title: Introduction to machine learning – reference: (pp. 88–90). – start-page: 1615 year: 2009 end-page: 1620 ident: b0065 article-title: A genetic fuzzy k-modes algorithm for clustering categorical data publication-title: Expert Systems with Applications – reference: (pp. 601–608). Canada. – reference: Li, L., Liu, X., & Xu, M. (2007). A novel fuzzy clustering based on particle swarm optimization. In – year: 2005 ident: b0010 article-title: Introduction to data mining – reference: ZHAO, B. (2007). An ant colony clustering algorithm. In – year: 2001 ident: b0040 article-title: Swarm intelligence – reference: (pp. 1942–1948). – start-page: 9847 year: 2009 end-page: 9852 ident: b0070 article-title: An efficient hybrid data clustering method based on K-harmonic means, and particle swarm optimization publication-title: Expert Systems with Applications – reference: Pang, W., Wang, K., Zhou, C., & Dong, L. (2004). Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In – reference: . Ph.D. thesis. Ithaca, NY: Cornell University. – reference: (pp. 3933–3938). Hong Kong. – start-page: 241 year: 1995 end-page: 245 ident: b0020 article-title: Optimization of clustering criteria by reformulation publication-title: IEEE transactions on Fuzzy Systems – reference: (pp. 838–842). – year: 2002 ident: 10.1016/j.eswa.2010.07.112_b0005 – year: 2004 ident: 10.1016/j.eswa.2010.07.112_b0015 – ident: 10.1016/j.eswa.2010.07.112_b0035 doi: 10.1109/CIT.2004.1357292 – year: 2005 ident: 10.1016/j.eswa.2010.07.112_b0010 – ident: 10.1016/j.eswa.2010.07.112_b0045 doi: 10.1109/FUZZY.2006.1681773 – start-page: 9847 issue: 36 year: 2009 ident: 10.1016/j.eswa.2010.07.112_b0070 article-title: An efficient hybrid data clustering method based on K-harmonic means, and particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.02.003 – ident: 10.1016/j.eswa.2010.07.112_b0050 doi: 10.1109/ICMLC.2007.4370833 – start-page: 241 year: 1995 ident: 10.1016/j.eswa.2010.07.112_b0020 article-title: Optimization of clustering criteria by reformulation publication-title: IEEE transactions on Fuzzy Systems doi: 10.1109/91.388178 – ident: 10.1016/j.eswa.2010.07.112_b0055 doi: 10.1109/ISITAE.2007.4409243 – start-page: 1615 issue: 36 year: 2009 ident: 10.1016/j.eswa.2010.07.112_b0065 article-title: A genetic fuzzy k-modes algorithm for clustering categorical data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.11.045 – ident: 10.1016/j.eswa.2010.07.112_b0075 doi: 10.1109/ETTandGRS.2008.375 – ident: 10.1016/j.eswa.2010.07.112_b0030 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.eswa.2010.07.112_b0025 – year: 2001 ident: 10.1016/j.eswa.2010.07.112_b0040  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.447505 | 
    
| Snippet | ► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in... Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1835 | 
    
| SubjectTerms | Algorithms Clustering Expert systems Fuzzy Fuzzy clustering Fuzzy logic Fuzzy set theory Optimization Particle swarm optimization  | 
    
| Title | Fuzzy C-means and fuzzy swarm for fuzzy clustering problem | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2010.07.112 https://www.proquest.com/docview/1701103639 https://www.proquest.com/docview/849473538  | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5y_iOBN6pouaVNvYzim4i462C2kSQqTrRvbiriDf7svbTpQ2A5CL00TGl6a9700L9-H0C0EqTKihoH3g7UJVYHxEpjfXqANSUngK17IdL72w96APg_ZsIY61VkYm1bpfH_p0wtv7UqazprN2WjUfIPgAOAQrgIHC0JJSiOrYnD_vU7zsPRzUcm3F3m2tjs4U-Z4mcWndOldkT1Mswmc_rjpAnu6B2jPBY24XfbrENVMdoT2K0EG7ObnMXro5qvVF-54EwMIhGWmcVqUQAfmEwzxqbtX49wSJABsYacoc4IG3cf3Ts9z4gieaoVs6cWMh6lucUBkSy2rCGC5liyITcoTE0udGgNPk1SFfpJILSlJY84kibViNFCtU1TPppk5Q5hyKbXiJCI6ppKFiS8ZUREEOor6iqUNRCqrCOWYw62AxVhUKWIfwlpSWEsKP4JVRdBAd-s2s5I3Y2ttVhlb_Bp9AY59a7ubamQETAu71yEzM80XwtLME7tJHTcQ3lCH09gKL7f4-T9ff4F2y1_MNiXtEtWX89xcQYyyTK6Lj_Aa7bSfXnr9H-IJ5dY | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD3rxW5yfEbxJXdMlTepNhmPq9KKD3UKaD1C2OuaG6MG_3Zc2FRT0IPTS9IWGl773e2lefg-hEwhSFaeWgfeDtQnViY1ysO8oMZY4ksRalGU6b-_S3oBeD9mwgTr1WRifVhl8f-XTS28dWlpBm63J42PrHoIDgEO4Shz0hJKLlCXcr8DOPr7yPDz_HK8I93jkxcPJmSrJy768qpDfxf1pmt_Q6YefLsGnu4ZWQtSIL6qBraOGLTbQal2RAQcD3UTn3fn7-xvuRGMLEIRVYbArW2AA0zGGADXc69HcMyQAbuFQUmYLDbqXD51eFKojRLqdslmUMZE60xYAyZ5bVhMAc6NYklkncpsp46yFp7nTaZznyihKXCaYIpnRjCa6vY0WiufC7iBMhVJGC8KJyahiaR4rRjSHSEfTWDPXRKTWitSBOtxXsBjJOkfsSXpNSq9JGXNYViRNdPrVZ1IRZ_wpzWply2_TL8Gz_9nvuJ4ZCXbhNztUYZ_nL9LzzBO_S501Ef5FRtDMV15ui91_vv4ILfUebvuyf3V3s4eWq__NPj9tHy3MpnN7AAHLLD8sP8hPRybnaw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+C-means+and+fuzzy+swarm+for+fuzzy+clustering+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Izakian%2C+Hesam&rft.au=Abraham%2C+Ajith&rft.date=2011-03-01&rft.issn=0957-4174&rft.volume=38&rft.issue=3&rft.spage=1835&rft.epage=1838&rft_id=info:doi/10.1016%2Fj.eswa.2010.07.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2010_07_112 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |