Fuzzy C-means and fuzzy swarm for fuzzy clustering problem

► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in some cases. ► Hybrid fuzzy c-means and fuzzy particle swarm optimization can achieve the best results. Fuzzy clustering is an important problem...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 38; no. 3; pp. 1835 - 1838
Main Authors Izakian, Hesam, Abraham, Ajith
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2011
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2010.07.112

Cover

Abstract ► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in some cases. ► Hybrid fuzzy c-means and fuzzy particle swarm optimization can achieve the best results. Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results.
AbstractList Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results.
► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in some cases. ► Hybrid fuzzy c-means and fuzzy particle swarm optimization can achieve the best results. Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results.
Author Izakian, Hesam
Abraham, Ajith
Author_xml – sequence: 1
  givenname: Hesam
  surname: Izakian
  fullname: Izakian, Hesam
  email: hesam.izakian@gmail.com
  organization: Department of Computer Engineering, University Of Isfahan, Iran
– sequence: 2
  givenname: Ajith
  surname: Abraham
  fullname: Abraham, Ajith
  email: ajith.abraham@ieee.org
  organization: Machine Intelligence Research Labs, MIR-Labs, Washington, USA
BookMark eNp9kD1PwzAQhi1UJNrCH2DKBkuCP5LYRiyoooBUiQVmy3HOyFU-ip2A2l-PSzsxdDrd-X3u5GeGJl3fAULXBGcEk_JunUH40RnFcYB5Rgg9Q1MiOEtLLtkETbEseJoTnl-gWQhrjAnHmE_R_XLc7bbJIm1BdyHRXZ3Yv0lc59vE9v7Ym2YMA3jXfSYb31cNtJfo3OomwNWxztHH8ul98ZKu3p5fF4-r1LCyGFJZiNLWTNAcS0mpIVjQWhdUghUVSF1bgPhaWVPiqtK1zomVotBE1qbIqWFzdHPYG-9-jRAG1bpgoGl0B_0YlMhlzlnBREzenkzGPxOCWclkjIpD1Pg-BA9WGTfowfXd4LVrFMFqL1at1V6s2otVmKsoNqL0H7rxrtV-exp6OEAQTX078CoYB52B2nkwg6p7dwr_BUholAI
CitedBy_id crossref_primary_10_1016_j_asoc_2012_07_007
crossref_primary_10_1109_JSTARS_2015_2398835
crossref_primary_10_1016_j_eswa_2016_02_009
crossref_primary_10_1016_j_rico_2022_100190
crossref_primary_10_48084_etasr_745
crossref_primary_10_1016_j_sigpro_2014_08_042
crossref_primary_10_1049_iet_ipr_2012_0410
crossref_primary_10_1007_s12652_018_0941_x
crossref_primary_10_1007_s10044_014_0376_8
crossref_primary_10_1051_matecconf_20166106004
crossref_primary_10_1007_s11053_020_09798_x
crossref_primary_10_1016_j_compenvurbsys_2015_10_009
crossref_primary_10_1016_j_ejor_2015_07_059
crossref_primary_10_1016_j_eswa_2014_03_042
crossref_primary_10_1111_coin_12297
crossref_primary_10_12720_jcm_11_12_1106_1113
crossref_primary_10_1109_TFUZZ_2019_2945241
crossref_primary_10_1080_23311916_2018_1513304
crossref_primary_10_1109_TAES_2022_3195478
crossref_primary_10_1016_j_future_2017_08_060
crossref_primary_10_1108_IMDS_05_2017_0175
crossref_primary_10_3390_math9233114
crossref_primary_10_1109_JSTARS_2018_2854865
crossref_primary_10_1016_j_jrmge_2023_09_030
crossref_primary_10_1109_TEVC_2018_2878536
crossref_primary_10_3390_s19183975
crossref_primary_10_1016_j_neucom_2017_10_036
crossref_primary_10_1016_j_matcom_2025_02_012
crossref_primary_10_1109_TFUZZ_2022_3148823
crossref_primary_10_1007_s00500_019_04605_z
crossref_primary_10_1016_j_jneumeth_2025_110424
crossref_primary_10_1038_s41598_022_20015_y
crossref_primary_10_1007_s00521_017_2874_2
crossref_primary_10_1007_s42452_020_2417_9
crossref_primary_10_1016_j_trc_2014_12_001
crossref_primary_10_1007_s00521_012_1050_y
crossref_primary_10_1007_s00521_019_04128_6
crossref_primary_10_1016_j_omega_2018_05_006
crossref_primary_10_1080_08839514_2014_862772
crossref_primary_10_1007_s13198_017_0681_x
crossref_primary_10_1088_1742_6596_978_1_012027
crossref_primary_10_1007_s00521_019_04035_w
crossref_primary_10_1016_j_seta_2022_102620
crossref_primary_10_1016_j_asoc_2014_08_036
crossref_primary_10_1109_ACCESS_2020_3007498
crossref_primary_10_1007_s10489_015_0705_7
crossref_primary_10_1007_s41066_023_00446_2
crossref_primary_10_35860_iarej_1096573
crossref_primary_10_1016_j_procs_2022_09_326
crossref_primary_10_1007_s11276_017_1635_6
crossref_primary_10_1016_j_ijdrr_2020_101801
crossref_primary_10_1016_j_neucom_2017_03_068
crossref_primary_10_1007_s40815_021_01226_3
crossref_primary_10_1016_j_ins_2012_08_023
crossref_primary_10_1007_s11431_015_5896_y
crossref_primary_10_1016_j_dsp_2013_07_005
crossref_primary_10_1109_TIE_2021_3080212
crossref_primary_10_2174_1573405616666210104111218
crossref_primary_10_3390_math11051085
crossref_primary_10_1080_15732479_2016_1227854
crossref_primary_10_1016_j_proeng_2012_07_266
crossref_primary_10_1080_10916466_2016_1233247
crossref_primary_10_1080_1206212X_2019_1662984
crossref_primary_10_1016_j_compbiomed_2022_106405
crossref_primary_10_1007_s13042_024_02105_7
crossref_primary_10_1016_j_mri_2014_05_003
crossref_primary_10_1016_j_eswa_2020_114121
crossref_primary_10_1109_TFUZZ_2020_2990100
crossref_primary_10_1080_00207543_2022_2105763
crossref_primary_10_4018_ijsir_2014070101
crossref_primary_10_1016_j_eswa_2013_12_037
crossref_primary_10_1007_s41060_023_00474_w
crossref_primary_10_1016_j_eswa_2025_126474
crossref_primary_10_3390_ijerph191912821
crossref_primary_10_32329_uad_898187
crossref_primary_10_1007_s10489_021_02801_9
crossref_primary_10_1007_s10586_024_04721_y
crossref_primary_10_1016_j_bbe_2024_08_009
crossref_primary_10_1016_j_bspc_2024_106931
crossref_primary_10_2174_1573405614666180719142536
crossref_primary_10_1016_j_knosys_2016_01_001
crossref_primary_10_9717_kmms_2013_16_7_810
crossref_primary_10_1155_2014_916371
crossref_primary_10_3233_JIFS_169991
crossref_primary_10_1088_1742_6596_1229_1_012020
crossref_primary_10_3390_bioengineering11050466
crossref_primary_10_3390_math12030453
crossref_primary_10_1016_j_datak_2022_102050
crossref_primary_10_1016_j_neucom_2014_01_032
crossref_primary_10_1016_j_eswa_2014_07_026
crossref_primary_10_4018_IJGHPC_2019100104
crossref_primary_10_1016_j_asoc_2015_01_023
crossref_primary_10_1016_j_patrec_2017_02_015
crossref_primary_10_1155_2014_368628
crossref_primary_10_1080_13683500_2018_1467883
crossref_primary_10_1016_j_energy_2019_01_044
crossref_primary_10_1088_1742_6596_978_1_012019
crossref_primary_10_1108_BIJ_03_2018_0074
crossref_primary_10_1016_j_eswa_2017_02_037
crossref_primary_10_1007_s10044_018_0744_x
crossref_primary_10_2339_politeknik_778630
crossref_primary_10_1016_S1570_6672_11_60220_1
crossref_primary_10_4028_www_scientific_net_AMR_989_994_1641
crossref_primary_10_1007_s00500_023_08460_x
crossref_primary_10_1007_s13198_020_00968_x
crossref_primary_10_1155_2019_6812754
crossref_primary_10_1155_2020_1386839
crossref_primary_10_1007_s00500_018_3124_y
crossref_primary_10_1109_ACCESS_2020_3011668
crossref_primary_10_1371_journal_pone_0267009
crossref_primary_10_1016_j_eswa_2017_09_049
crossref_primary_10_1155_2013_459503
crossref_primary_10_1016_j_ssci_2020_104828
crossref_primary_10_1016_j_eswa_2015_12_034
crossref_primary_10_1016_j_tre_2015_03_005
crossref_primary_10_1016_j_swevo_2012_02_001
crossref_primary_10_3390_su16219244
crossref_primary_10_1016_j_eswa_2015_04_032
crossref_primary_10_1016_j_eswa_2023_119655
crossref_primary_10_1016_j_neunet_2016_04_006
crossref_primary_10_1016_j_autcon_2019_102997
crossref_primary_10_1016_j_eswa_2011_06_049
crossref_primary_10_1007_s00521_018_3891_5
crossref_primary_10_1007_s00521_023_08970_7
crossref_primary_10_1016_j_neucom_2014_02_027
crossref_primary_10_3390_agriculture11090848
crossref_primary_10_1016_j_compchemeng_2017_04_003
crossref_primary_10_1007_s00521_015_1849_4
crossref_primary_10_1007_s11431_017_9185_6
crossref_primary_10_1016_j_asoc_2022_109397
crossref_primary_10_1016_j_knosys_2018_06_007
crossref_primary_10_3390_electronics10232891
crossref_primary_10_1016_j_eswa_2017_01_059
crossref_primary_10_1142_S0218001420500226
crossref_primary_10_1016_j_compchemeng_2018_01_013
crossref_primary_10_33395_sinkron_v4i1_10238
crossref_primary_10_12973_eurasia_2017_01048a
crossref_primary_10_1109_TFUZZ_2022_3203506
crossref_primary_10_1016_j_fss_2015_01_021
crossref_primary_10_1016_j_scitotenv_2022_160933
crossref_primary_10_1142_S2196888824400013
crossref_primary_10_1016_j_eswa_2023_120377
crossref_primary_10_1016_j_asoc_2012_12_024
crossref_primary_10_1007_s13369_014_1424_9
crossref_primary_10_12677_AAM_2021_104104
crossref_primary_10_1038_s41598_023_29932_y
Cites_doi 10.1109/CIT.2004.1357292
10.1109/FUZZY.2006.1681773
10.1016/j.eswa.2009.02.003
10.1109/ICMLC.2007.4370833
10.1109/91.388178
10.1109/ISITAE.2007.4409243
10.1016/j.eswa.2007.11.045
10.1109/ETTandGRS.2008.375
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2010.07.112
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 1838
ExternalDocumentID 10_1016_j_eswa_2010_07_112
S0957417410007402
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c365t-9586fd382409922c1082da529ef8be9adfee382bfc60bbada41f985a19dc542c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sat Sep 27 23:32:09 EDT 2025
Sun Sep 28 06:03:01 EDT 2025
Wed Oct 01 03:51:26 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 23 02:30:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Particle swarm optimization
Fuzzy clustering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-9586fd382409922c1082da529ef8be9adfee382bfc60bbada41f985a19dc542c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1701103639
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_849473538
proquest_miscellaneous_1701103639
crossref_citationtrail_10_1016_j_eswa_2010_07_112
crossref_primary_10_1016_j_eswa_2010_07_112
elsevier_sciencedirect_doi_10_1016_j_eswa_2010_07_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bezdek, J. (1974).
Kennedy, Eberhart (b0040) 2001
Webb (b0005) 2002
ZHAO, B. (2007). An ant colony clustering algorithm. In
(pp. 796–800). IEEE CS Press.
Runkler, T. A., & Katz, C. (2006). Fuzzy clustering by particle swarm optimization. In
Liu, H.C., Yih, J.M., Wu, D. B., & Liu, S.W. (2008). Fuzzy C-mean clustering algorithms based on Picard iteration and particle swarm optimization. In
(pp. 3933–3938). Hong Kong.
Hathway, Bezdek (b0020) 1995
(pp. 601–608). Canada.
(pp. 1942–1948).
Li, L., Liu, X., & Xu, M. (2007). A novel fuzzy clustering based on particle swarm optimization. In
(pp. 88–90).
Gan, Wu, Yang (b0065) 2009
Yang, Sun, Zhang (b0070) 2009
Tan, Steinbach, Kumar (b0010) 2005
Alpaydin (b0015) 2004
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
Ph.D. thesis. Ithaca, NY: Cornell University.
(pp. 838–842).
Pang, W., Wang, K., Zhou, C., & Dong, L. (2004). Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In
Tan (10.1016/j.eswa.2010.07.112_b0010) 2005
Alpaydin (10.1016/j.eswa.2010.07.112_b0015) 2004
Hathway (10.1016/j.eswa.2010.07.112_b0020) 1995
Webb (10.1016/j.eswa.2010.07.112_b0005) 2002
Yang (10.1016/j.eswa.2010.07.112_b0070) 2009
10.1016/j.eswa.2010.07.112_b0075
10.1016/j.eswa.2010.07.112_b0030
Kennedy (10.1016/j.eswa.2010.07.112_b0040) 2001
10.1016/j.eswa.2010.07.112_b0050
10.1016/j.eswa.2010.07.112_b0035
10.1016/j.eswa.2010.07.112_b0045
10.1016/j.eswa.2010.07.112_b0055
Gan (10.1016/j.eswa.2010.07.112_b0065) 2009
10.1016/j.eswa.2010.07.112_b0025
References_xml – year: 2002
  ident: b0005
  article-title: Statistical pattern recognition
– reference: (pp. 796–800). IEEE CS Press.
– reference: Runkler, T. A., & Katz, C. (2006). Fuzzy clustering by particle swarm optimization. In
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
– reference: Liu, H.C., Yih, J.M., Wu, D. B., & Liu, S.W. (2008). Fuzzy C-mean clustering algorithms based on Picard iteration and particle swarm optimization. In
– reference: Bezdek, J. (1974).
– year: 2004
  ident: b0015
  article-title: Introduction to machine learning
– reference: (pp. 88–90).
– start-page: 1615
  year: 2009
  end-page: 1620
  ident: b0065
  article-title: A genetic fuzzy k-modes algorithm for clustering categorical data
  publication-title: Expert Systems with Applications
– reference: (pp. 601–608). Canada.
– reference: Li, L., Liu, X., & Xu, M. (2007). A novel fuzzy clustering based on particle swarm optimization. In
– year: 2005
  ident: b0010
  article-title: Introduction to data mining
– reference: ZHAO, B. (2007). An ant colony clustering algorithm. In
– year: 2001
  ident: b0040
  article-title: Swarm intelligence
– reference: (pp. 1942–1948).
– start-page: 9847
  year: 2009
  end-page: 9852
  ident: b0070
  article-title: An efficient hybrid data clustering method based on K-harmonic means, and particle swarm optimization
  publication-title: Expert Systems with Applications
– reference: Pang, W., Wang, K., Zhou, C., & Dong, L. (2004). Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In
– reference: . Ph.D. thesis. Ithaca, NY: Cornell University.
– reference: (pp. 3933–3938). Hong Kong.
– start-page: 241
  year: 1995
  end-page: 245
  ident: b0020
  article-title: Optimization of clustering criteria by reformulation
  publication-title: IEEE transactions on Fuzzy Systems
– reference: (pp. 838–842).
– year: 2002
  ident: 10.1016/j.eswa.2010.07.112_b0005
– year: 2004
  ident: 10.1016/j.eswa.2010.07.112_b0015
– ident: 10.1016/j.eswa.2010.07.112_b0035
  doi: 10.1109/CIT.2004.1357292
– year: 2005
  ident: 10.1016/j.eswa.2010.07.112_b0010
– ident: 10.1016/j.eswa.2010.07.112_b0045
  doi: 10.1109/FUZZY.2006.1681773
– start-page: 9847
  issue: 36
  year: 2009
  ident: 10.1016/j.eswa.2010.07.112_b0070
  article-title: An efficient hybrid data clustering method based on K-harmonic means, and particle swarm optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.003
– ident: 10.1016/j.eswa.2010.07.112_b0050
  doi: 10.1109/ICMLC.2007.4370833
– start-page: 241
  year: 1995
  ident: 10.1016/j.eswa.2010.07.112_b0020
  article-title: Optimization of clustering criteria by reformulation
  publication-title: IEEE transactions on Fuzzy Systems
  doi: 10.1109/91.388178
– ident: 10.1016/j.eswa.2010.07.112_b0055
  doi: 10.1109/ISITAE.2007.4409243
– start-page: 1615
  issue: 36
  year: 2009
  ident: 10.1016/j.eswa.2010.07.112_b0065
  article-title: A genetic fuzzy k-modes algorithm for clustering categorical data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.11.045
– ident: 10.1016/j.eswa.2010.07.112_b0075
  doi: 10.1109/ETTandGRS.2008.375
– ident: 10.1016/j.eswa.2010.07.112_b0030
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.eswa.2010.07.112_b0025
– year: 2001
  ident: 10.1016/j.eswa.2010.07.112_b0040
SSID ssj0017007
Score 2.447505
Snippet ► Fuzzy c-means is sensitive to initialization and is easily trapped in local optima. ► Fuzzy Particle swarm optimization can find more efficient results in...
Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1835
SubjectTerms Algorithms
Clustering
Expert systems
Fuzzy
Fuzzy clustering
Fuzzy logic
Fuzzy set theory
Optimization
Particle swarm optimization
Title Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
URI https://dx.doi.org/10.1016/j.eswa.2010.07.112
https://www.proquest.com/docview/1701103639
https://www.proquest.com/docview/849473538
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5y_iOBN6pouaVNvYzim4i462C2kSQqTrRvbiriDf7svbTpQ2A5CL00TGl6a9700L9-H0C0EqTKihoH3g7UJVYHxEpjfXqANSUngK17IdL72w96APg_ZsIY61VkYm1bpfH_p0wtv7UqazprN2WjUfIPgAOAQrgIHC0JJSiOrYnD_vU7zsPRzUcm3F3m2tjs4U-Z4mcWndOldkT1Mswmc_rjpAnu6B2jPBY24XfbrENVMdoT2K0EG7ObnMXro5qvVF-54EwMIhGWmcVqUQAfmEwzxqbtX49wSJABsYacoc4IG3cf3Ts9z4gieaoVs6cWMh6lucUBkSy2rCGC5liyITcoTE0udGgNPk1SFfpJILSlJY84kibViNFCtU1TPppk5Q5hyKbXiJCI6ppKFiS8ZUREEOor6iqUNRCqrCOWYw62AxVhUKWIfwlpSWEsKP4JVRdBAd-s2s5I3Y2ttVhlb_Bp9AY59a7ubamQETAu71yEzM80XwtLME7tJHTcQ3lCH09gKL7f4-T9ff4F2y1_MNiXtEtWX89xcQYyyTK6Lj_Aa7bSfXnr9H-IJ5dY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD3rxW5yfEbxJXdMlTepNhmPq9KKD3UKaD1C2OuaG6MG_3Zc2FRT0IPTS9IWGl773e2lefg-hEwhSFaeWgfeDtQnViY1ysO8oMZY4ksRalGU6b-_S3oBeD9mwgTr1WRifVhl8f-XTS28dWlpBm63J42PrHoIDgEO4Shz0hJKLlCXcr8DOPr7yPDz_HK8I93jkxcPJmSrJy768qpDfxf1pmt_Q6YefLsGnu4ZWQtSIL6qBraOGLTbQal2RAQcD3UTn3fn7-xvuRGMLEIRVYbArW2AA0zGGADXc69HcMyQAbuFQUmYLDbqXD51eFKojRLqdslmUMZE60xYAyZ5bVhMAc6NYklkncpsp46yFp7nTaZznyihKXCaYIpnRjCa6vY0WiufC7iBMhVJGC8KJyahiaR4rRjSHSEfTWDPXRKTWitSBOtxXsBjJOkfsSXpNSq9JGXNYViRNdPrVZ1IRZ_wpzWply2_TL8Gz_9nvuJ4ZCXbhNztUYZ_nL9LzzBO_S501Ef5FRtDMV15ui91_vv4ILfUebvuyf3V3s4eWq__NPj9tHy3MpnN7AAHLLD8sP8hPRybnaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+C-means+and+fuzzy+swarm+for+fuzzy+clustering+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Izakian%2C+Hesam&rft.au=Abraham%2C+Ajith&rft.date=2011-03-01&rft.issn=0957-4174&rft.volume=38&rft.issue=3&rft.spage=1835&rft.epage=1838&rft_id=info:doi/10.1016%2Fj.eswa.2010.07.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2010_07_112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon