Robust 3-D Path Following Control Framework for Magnetic Helical Millirobots Subject to Fluid Flow and Input Saturation

Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbanc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 12; pp. 7629 - 7641
Main Authors Qi, Zhaoyang, Cai, Mingxue, Hao, Bo, Cao, Yanfei, Su, Lin, Liu, Xurui, Chan, Kai Fung, Yang, Chenguang, Zhang, Li
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2024.3439708

Cover

Abstract Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time.
AbstractList Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time.
Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time.Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time.
Author Hao, Bo
Qi, Zhaoyang
Chan, Kai Fung
Cao, Yanfei
Zhang, Li
Liu, Xurui
Su, Lin
Cai, Mingxue
Yang, Chenguang
Author_xml – sequence: 1
  givenname: Zhaoyang
  orcidid: 0000-0002-2736-5347
  surname: Qi
  fullname: Qi, Zhaoyang
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
– sequence: 2
  givenname: Mingxue
  orcidid: 0000-0002-8430-5930
  surname: Cai
  fullname: Cai, Mingxue
  organization: Shenzhen Institute of Advanced Technology (SIAT), Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Bo
  surname: Hao
  fullname: Hao, Bo
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
– sequence: 4
  givenname: Yanfei
  orcidid: 0000-0001-6835-6837
  surname: Cao
  fullname: Cao, Yanfei
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
– sequence: 5
  givenname: Lin
  surname: Su
  fullname: Su, Lin
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
– sequence: 6
  givenname: Xurui
  surname: Liu
  fullname: Liu, Xurui
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
– sequence: 7
  givenname: Kai Fung
  orcidid: 0000-0001-5820-0089
  surname: Chan
  fullname: Chan, Kai Fung
  organization: Chow Yuk Ho Technology Centre for Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 8
  givenname: Chenguang
  orcidid: 0000-0001-5255-5559
  surname: Yang
  fullname: Yang, Chenguang
  email: cyang@ieee.org
  organization: Department of Computer Science, University of Liverpool, Liverpool, U.K
– sequence: 9
  givenname: Li
  orcidid: 0000-0003-1152-8962
  surname: Zhang
  fullname: Zhang, Li
  email: lizhang@mae.cuhk.edu.hk
  organization: Department of Mechanical and Automation Engineering, Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39208045$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNUbK39AYJILr2ZNR-TmeRSV9cWWhRbL7waMpkzNTWbbPPBsP_eWXctUsEcSA7hfc5L3jxHRz54QOglJQtKiXp7s_z-fsEIqxe85qol8gk6YbSRFWOtOHrom_YYnaV0R-Yl5ysln6FjrhiRpBYnaPoa-pIy5tUH_EXnH3gVnAuT9bd4GXyOweFV1GuYQvyJxxDxlb71kK3B5-Cs0Q5fWedsDH3ICV-X_g5MxjnglSt2mPcwYe0HfOE3JeNrnUvU2Qb_Aj0dtUtwdjhP0bfVx5vleXX5-dPF8t1lZXgjciVHzkZRC8JZ2zfcKDlINoCpOSXE8H4uKgXMj2nFqBsKWrSjpmNv2KA0pfwUsf3c4jd6O2nnuk20ax23HSXdLsgum23f7YLsDkHO0Js9tInhvkDK3domA85pD6GkjhOlWqU4F7P09UFa-jUMD8P_JDwL6F5gYkgpwviP_-4jH_u3jxhj8-_YctTW_Zd8tSctAPzl1AjFaM1_AVXpqO8
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_matdes_2025_113707
Cites_doi 10.1126/sciadv.abq8573
10.1109/TASE.2019.2947071
10.1109/TRO.2023.3263773
10.1109/JPROC.2022.3165713
10.1038/545406a
10.1002/asjc.2249
10.1080/00207179.2021.1941264
10.1109/tase.2024.3379226
10.1109/TMECH.2017.2756110
10.1038/s42256-022-00482-8
10.1126/sciadv.adi6724
10.1016/j.automatica.2004.01.021
10.1109/TMECH.2023.3254663
10.1016/j.matt.2021.10.010
10.1016/j.cej.2024.150584
10.1109/TCYB.2017.2720801
10.1016/j.automatica.2018.03.033
10.1080/0020717031000099029
10.1126/scirobotics.aaz3867
10.1163/016918611X568620
10.1021/acsnano.1c07830
10.1109/9.362899
10.1109/TRO.2020.2988636
10.1109/TAC.2012.2199178
10.1109/TRO.2014.2380591
10.1007/978-0-8176-4893-0
10.1016/j.automatica.2021.109554
10.1109/TASE.2022.3228547
10.1109/TCYB.2022.3199213
10.1126/scirobotics.aat8829
10.1109/TMECH.2021.3054927
10.1109/LRA.2020.2969159
10.1126/scirobotics.abi8017
10.1109/TCYB.2022.3168030
10.1021/acs.chemrev.0c01234
10.1146/annurev-bioeng-010510103409
10.1109/TRO.2017.2765673
10.1002/rnc.1624
10.1109/TIE.2019.2912781
10.1109/TMECH.2021.3066211
10.1109/TAC.2012.2186179
10.1126/scirobotics.aaq1155
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1109/TCYB.2024.3439708
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 7641
ExternalDocumentID 10.1109/tcyb.2024.3439708
39208045
10_1109_TCYB_2024_3439708
10659214
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Croucher Foundation
  grantid: CAS20403
– fundername: Research Impact Fund
  grantid: R4015-21
– fundername: Research Grants Council (RGC) of Hong Kong
– fundername: National Natural Science Foundation of China
  grantid: 62473360
– fundername: Research Fellow Scheme
  grantid: RFS2122-4S03
– fundername: Royal Society International Exchanges
  grantid: IES\R2\232111
– fundername: CUHK Internal Grants
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c365t-8f32f5450327b63c98d82dec43100c3b3b3185e08075fa61ea57fa1fbc2d9a113
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 07 10:49:43 EDT 2025
Sat Sep 27 19:17:54 EDT 2025
Sun Apr 06 01:21:28 EDT 2025
Wed Oct 01 01:36:48 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Aug 27 03:05:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-8f32f5450327b63c98d82dec43100c3b3b3185e08075fa61ea57fa1fbc2d9a113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5820-0089
0000-0001-5255-5559
0000-0001-6835-6837
0000-0002-8430-5930
0000-0002-2736-5347
0000-0003-1152-8962
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10659214
PMID 39208045
PQID 3099799335
PQPubID 23479
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCYB_2024_3439708
unpaywall_primary_10_1109_tcyb_2024_3439708
pubmed_primary_39208045
ieee_primary_10659214
crossref_citationtrail_10_1109_TCYB_2024_3439708
proquest_miscellaneous_3099799335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref43
ref28
Hardy (ref41) 1952
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1126/sciadv.abq8573
– ident: ref23
  doi: 10.1109/TASE.2019.2947071
– ident: ref16
  doi: 10.1109/TRO.2023.3263773
– ident: ref9
  doi: 10.1109/JPROC.2022.3165713
– ident: ref17
  doi: 10.1038/545406a
– ident: ref40
  doi: 10.1002/asjc.2249
– ident: ref33
  doi: 10.1080/00207179.2021.1941264
– ident: ref20
  doi: 10.1109/tase.2024.3379226
– ident: ref39
  doi: 10.1109/TMECH.2017.2756110
– ident: ref18
  doi: 10.1038/s42256-022-00482-8
– ident: ref11
  doi: 10.1126/sciadv.adi6724
– ident: ref34
  doi: 10.1016/j.automatica.2004.01.021
– ident: ref15
  doi: 10.1109/TMECH.2023.3254663
– ident: ref12
  doi: 10.1016/j.matt.2021.10.010
– ident: ref10
  doi: 10.1016/j.cej.2024.150584
– ident: ref27
  doi: 10.1109/TCYB.2017.2720801
– ident: ref42
  doi: 10.1016/j.automatica.2018.03.033
– ident: ref35
  doi: 10.1080/0020717031000099029
– ident: ref7
  doi: 10.1126/scirobotics.aaz3867
– ident: ref31
  doi: 10.1163/016918611X568620
– ident: ref8
  doi: 10.1021/acsnano.1c07830
– ident: ref19
  doi: 10.1109/9.362899
– ident: ref22
  doi: 10.1109/TRO.2020.2988636
– ident: ref32
  doi: 10.1109/TAC.2012.2199178
– ident: ref13
  doi: 10.1109/TRO.2014.2380591
– ident: ref43
  doi: 10.1007/978-0-8176-4893-0
– ident: ref30
  doi: 10.1016/j.automatica.2021.109554
– ident: ref24
  doi: 10.1109/TASE.2022.3228547
– ident: ref5
  doi: 10.1109/TCYB.2022.3199213
– ident: ref4
  doi: 10.1126/scirobotics.aat8829
– ident: ref28
  doi: 10.1109/TMECH.2021.3054927
– ident: ref21
  doi: 10.1109/LRA.2020.2969159
– ident: ref1
  doi: 10.1126/scirobotics.abi8017
– ident: ref29
  doi: 10.1109/TCYB.2022.3168030
– ident: ref2
  doi: 10.1021/acs.chemrev.0c01234
– ident: ref26
  doi: 10.1146/annurev-bioeng-010510103409
– volume-title: Inequalities
  year: 1952
  ident: ref41
– ident: ref14
  doi: 10.1109/TRO.2017.2765673
– ident: ref25
  doi: 10.1002/rnc.1624
– ident: ref37
  doi: 10.1109/TIE.2019.2912781
– ident: ref38
  doi: 10.1109/TMECH.2021.3066211
– ident: ref36
  doi: 10.1109/TAC.2012.2186179
– ident: ref6
  doi: 10.1126/scirobotics.aaq1155
SSID ssj0000816898
Score 2.39487
Snippet Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7629
SubjectTerms 3-D path tracking
Convergence
flow rates
Frequency control
helical millirobots
Kinematics
magnetic actuation
Navigation
Robots
Saturation magnetization
Vectors
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ta9QwGA9y-6B-0E2nnjqJ4Adf6NkmTdp-3E7LFDaG7mD7VJI0leHRHmvKMf96n6fNHbc5RCmUliYlL7_0-aXPGyFvslRkcVKpoLSpCWLLYElV_VWqyyQNrVLojXx0LA9n8dczceaDRaMvzKb-Pgqzj85cadjFsXjCUXSiW--WFEC7R2Rrdnyyf47J4yIJs836bLH-OhFeg3nrO67JoD6pym388j6529ULdbVU8_mGzMkfDtZabR-qEE1Nfk46pyfm141Ajv_UnW3ywDNPuj9AZYfcsfUjsuPXdkvf-gDU7x6T5bdGd62jPPhET4Ah0hzA0ixByNHpYNlO85VNFwXSS4_UjxqdISkIMZx0ih6GF5eNblxL4dOE_3qoa2g-7y5KODdLquqSfqkXnaPfMbRoj49dMss_n04PA5-gITBcChekFWcVULCQs0RLbrK0TFlpTYxaA8M1HEAHbIgBjyslI6sEwCKqtGFlpqKIPyGjuqntM0ITbkSVCKmsLmOmjQ4TllYmSkJrpYyzMQlXU1YYH70ck2jMi34XE2bF6fT8oMChLfzQjsn7dZXFELrjb4V3EQcbBVHfHMVj8noFjAIWHmpTVG2bri04-hwDu-NiTJ4OiFnXBtIJnY7hyYc1hP5oA2LhWhue_1fpF-Qe3g6mNS_JyF12dg8IktOv_NL4DXZcBVI
  priority: 102
  providerName: Unpaywall
Title Robust 3-D Path Following Control Framework for Magnetic Helical Millirobots Subject to Fluid Flow and Input Saturation
URI https://ieeexplore.ieee.org/document/10659214
https://www.ncbi.nlm.nih.gov/pubmed/39208045
https://www.proquest.com/docview/3099799335
https://doi.org/10.1109/tcyb.2024.3439708
UnpaywallVersion publishedVersion
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQAHoNBCeFRG4sBDWZw4D-dYFqKC1FUFXak9RbbjoIpVsuomWpVfz4yTrJanUKTIB1tyNN9kPnteAC8yGWdRWim_tNL4kQ1RpSo3krpMJbdKUTby8Sw5mkefzuKzIVnd5cJYa13wmZ3Q0Pnyy8Z0dFWGGk5OQGpbfT2VSZ-stblQcR0kXO_bEAc-0op08GIGPHt7Oj1_h6fBMJoIMsGc-vQhNUC-RIlMWybJ9Vj5E928DTe7eqmu1mqx2DJB-V2YjZvvI0--TbpWT8z3X-o6_vfX3YM7Axllhz16duGare_D7qDuK_ZyqEn96gGsPze6W7VM-O_ZCZJGliN-mjXaPTbtg91ZPoZ5MeTB7Fh9rSk_kqFdIxwwSjq8uGx0064Y_q3o-oe1DcsX3UWJ72bNVF2yj_Wya9kXqjbqILMH8_zD6fTIH3o2-EYkcevLSoQVsjIuwlQnwmSylGFpTUSOBCM0PsgQLKcayJVKAqtiREpQaROWmQoCsQ87dVPbR8BSYeIqjRNldRmF2miehrIyQcqtTZIo84CPYivMUNCc-mosCnew4VlBQi9I6MUgdA9eb5Ys-2oe_5q8R0LamtjLx4PnIzgK1EVysKjaNt2qEJSGjIRPxB487FGzWT2CzYM3Gxj9tofWXOmf9vD4L3t4ArdoWh9X8xR22svOPkN21OoDpxUHcGM-Ozk8_wG0Gwja
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h9lA40BYKhKeROPBQliR2XseyEG2hu0Kwlcopsh0HVaySVTfRqvx6ZpxktTyFIkU-2JKj-Sbz2fMCeJYmYSriUrqFSbQrTIAqVdpRooo48YyUlI08nUWTM_H-PDzvk9VtLowxxgafmRENrS-_qHVLV2Wo4eQEpLbVu6EQIuzStTZXKraHhO1-G-DARWIR935M30tfz8df3uB5MBAjTkbYo059SA6QMVEq05ZRsl1W_kQ4b8BeWy3l1VouFltGKNuH2bD9Lvbk26ht1Eh__6Wy439_3wHc7OkoO-7wcwjXTHULDnuFX7HnfVXqF7dh_alW7aph3H3LPiJtZBkiqF6j5WPjLtydZUOgF0MmzKbya0UZkgwtGyGBUdrhxWWt6mbF8H9FF0CsqVm2aC8KfNdrJquCnVTLtmGfqd6oBc0RnGXv5uOJ23dtcDWPwsZNSh6UyMs8HsQq4jpNiiQojBbkStBc4YMcwXhUBbmUkW9kiFjxS6WDIpW-z-_ATlVX5h6wmOuwjMNIGlWIQGnlxUFSaj_2jIkikTrgDWLLdV_SnDprLHJ7tPHSnISek9DzXugOvNwsWXb1PP41-YiEtDWxk48DTwdw5KiN5GKRlanbVc4pERkpHw8duNuhZrN6AJsDrzYw-m0Pjb5SP-3h_l_28AT2JvPpaX56MvvwAK7Tki7K5iHsNJeteYRcqVGPrYb8AGAeCnc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ta9QwGA9y-6B-0E2nnjqJ4Adf6NkmTdp-3E7LFDaG7mD7VJI0leHRHmvKMf96n6fNHbc5RCmUliYlL7_0-aXPGyFvslRkcVKpoLSpCWLLYElV_VWqyyQNrVLojXx0LA9n8dczceaDRaMvzKb-Pgqzj85cadjFsXjCUXSiW--WFEC7R2Rrdnyyf47J4yIJs836bLH-OhFeg3nrO67JoD6pym388j6529ULdbVU8_mGzMkfDtZabR-qEE1Nfk46pyfm141Ajv_UnW3ywDNPuj9AZYfcsfUjsuPXdkvf-gDU7x6T5bdGd62jPPhET4Ah0hzA0ixByNHpYNlO85VNFwXSS4_UjxqdISkIMZx0ih6GF5eNblxL4dOE_3qoa2g-7y5KODdLquqSfqkXnaPfMbRoj49dMss_n04PA5-gITBcChekFWcVULCQs0RLbrK0TFlpTYxaA8M1HEAHbIgBjyslI6sEwCKqtGFlpqKIPyGjuqntM0ITbkSVCKmsLmOmjQ4TllYmSkJrpYyzMQlXU1YYH70ck2jMi34XE2bF6fT8oMChLfzQjsn7dZXFELrjb4V3EQcbBVHfHMVj8noFjAIWHmpTVG2bri04-hwDu-NiTJ4OiFnXBtIJnY7hyYc1hP5oA2LhWhue_1fpF-Qe3g6mNS_JyF12dg8IktOv_NL4DXZcBVI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+3-D+Path+Following+Control+Framework+for+Magnetic+Helical+Millirobots+Subject+to+Fluid+Flow+and+Input+Saturation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Qi%2C+Zhaoyang&rft.au=Cai%2C+Mingxue&rft.au=Hao%2C+Bo&rft.au=Cao%2C+Yanfei&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=54&rft.issue=12&rft.spage=7629&rft.epage=7641&rft_id=info:doi/10.1109%2FTCYB.2024.3439708&rft_id=info%3Apmid%2F39208045&rft.externalDocID=10659214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon