Robust 3-D Path Following Control Framework for Magnetic Helical Millirobots Subject to Fluid Flow and Input Saturation
Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbanc...
        Saved in:
      
    
          | Published in | IEEE transactions on cybernetics Vol. 54; no. 12; pp. 7629 - 7641 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2267 2168-2275 2168-2275  | 
| DOI | 10.1109/TCYB.2024.3439708 | 
Cover
| Abstract | Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time. | 
    
|---|---|
| AbstractList | Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time. Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time.Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time.  | 
    
| Author | Hao, Bo Qi, Zhaoyang Chan, Kai Fung Cao, Yanfei Zhang, Li Liu, Xurui Su, Lin Cai, Mingxue Yang, Chenguang  | 
    
| Author_xml | – sequence: 1 givenname: Zhaoyang orcidid: 0000-0002-2736-5347 surname: Qi fullname: Qi, Zhaoyang organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China – sequence: 2 givenname: Mingxue orcidid: 0000-0002-8430-5930 surname: Cai fullname: Cai, Mingxue organization: Shenzhen Institute of Advanced Technology (SIAT), Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Bo surname: Hao fullname: Hao, Bo organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China – sequence: 4 givenname: Yanfei orcidid: 0000-0001-6835-6837 surname: Cao fullname: Cao, Yanfei organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China – sequence: 5 givenname: Lin surname: Su fullname: Su, Lin organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China – sequence: 6 givenname: Xurui surname: Liu fullname: Liu, Xurui organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China – sequence: 7 givenname: Kai Fung orcidid: 0000-0001-5820-0089 surname: Chan fullname: Chan, Kai Fung organization: Chow Yuk Ho Technology Centre for Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China – sequence: 8 givenname: Chenguang orcidid: 0000-0001-5255-5559 surname: Yang fullname: Yang, Chenguang email: cyang@ieee.org organization: Department of Computer Science, University of Liverpool, Liverpool, U.K – sequence: 9 givenname: Li orcidid: 0000-0003-1152-8962 surname: Zhang fullname: Zhang, Li email: lizhang@mae.cuhk.edu.hk organization: Department of Mechanical and Automation Engineering, Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39208045$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kV1rFDEUhoNUbK39AYJILr2ZNR-TmeRSV9cWWhRbL7waMpkzNTWbbPPBsP_eWXctUsEcSA7hfc5L3jxHRz54QOglJQtKiXp7s_z-fsEIqxe85qol8gk6YbSRFWOtOHrom_YYnaV0R-Yl5ysln6FjrhiRpBYnaPoa-pIy5tUH_EXnH3gVnAuT9bd4GXyOweFV1GuYQvyJxxDxlb71kK3B5-Cs0Q5fWedsDH3ICV-X_g5MxjnglSt2mPcwYe0HfOE3JeNrnUvU2Qb_Aj0dtUtwdjhP0bfVx5vleXX5-dPF8t1lZXgjciVHzkZRC8JZ2zfcKDlINoCpOSXE8H4uKgXMj2nFqBsKWrSjpmNv2KA0pfwUsf3c4jd6O2nnuk20ax23HSXdLsgum23f7YLsDkHO0Js9tInhvkDK3domA85pD6GkjhOlWqU4F7P09UFa-jUMD8P_JDwL6F5gYkgpwviP_-4jH_u3jxhj8-_YctTW_Zd8tSctAPzl1AjFaM1_AVXpqO8 | 
    
| CODEN | ITCEB8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_matdes_2025_113707 | 
    
| Cites_doi | 10.1126/sciadv.abq8573 10.1109/TASE.2019.2947071 10.1109/TRO.2023.3263773 10.1109/JPROC.2022.3165713 10.1038/545406a 10.1002/asjc.2249 10.1080/00207179.2021.1941264 10.1109/tase.2024.3379226 10.1109/TMECH.2017.2756110 10.1038/s42256-022-00482-8 10.1126/sciadv.adi6724 10.1016/j.automatica.2004.01.021 10.1109/TMECH.2023.3254663 10.1016/j.matt.2021.10.010 10.1016/j.cej.2024.150584 10.1109/TCYB.2017.2720801 10.1016/j.automatica.2018.03.033 10.1080/0020717031000099029 10.1126/scirobotics.aaz3867 10.1163/016918611X568620 10.1021/acsnano.1c07830 10.1109/9.362899 10.1109/TRO.2020.2988636 10.1109/TAC.2012.2199178 10.1109/TRO.2014.2380591 10.1007/978-0-8176-4893-0 10.1016/j.automatica.2021.109554 10.1109/TASE.2022.3228547 10.1109/TCYB.2022.3199213 10.1126/scirobotics.aat8829 10.1109/TMECH.2021.3054927 10.1109/LRA.2020.2969159 10.1126/scirobotics.abi8017 10.1109/TCYB.2022.3168030 10.1021/acs.chemrev.0c01234 10.1146/annurev-bioeng-010510103409 10.1109/TRO.2017.2765673 10.1002/rnc.1624 10.1109/TIE.2019.2912781 10.1109/TMECH.2021.3066211 10.1109/TAC.2012.2186179 10.1126/scirobotics.aaq1155  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1109/TCYB.2024.3439708 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 2168-2275 | 
    
| EndPage | 7641 | 
    
| ExternalDocumentID | 10.1109/tcyb.2024.3439708 39208045 10_1109_TCYB_2024_3439708 10659214  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: Croucher Foundation grantid: CAS20403 – fundername: Research Impact Fund grantid: R4015-21 – fundername: Research Grants Council (RGC) of Hong Kong – fundername: National Natural Science Foundation of China grantid: 62473360 – fundername: Research Fellow Scheme grantid: RFS2122-4S03 – fundername: Royal Society International Exchanges grantid: IES\R2\232111 – fundername: CUHK Internal Grants  | 
    
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c365t-8f32f5450327b63c98d82dec43100c3b3b3185e08075fa61ea57fa1fbc2d9a113 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2168-2267 2168-2275  | 
    
| IngestDate | Sun Sep 07 10:49:43 EDT 2025 Sat Sep 27 19:17:54 EDT 2025 Sun Apr 06 01:21:28 EDT 2025 Wed Oct 01 01:36:48 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Wed Aug 27 03:05:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c365t-8f32f5450327b63c98d82dec43100c3b3b3185e08075fa61ea57fa1fbc2d9a113 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-5820-0089 0000-0001-5255-5559 0000-0001-6835-6837 0000-0002-8430-5930 0000-0002-2736-5347 0000-0003-1152-8962  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10659214 | 
    
| PMID | 39208045 | 
    
| PQID | 3099799335 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_primary_10_1109_TCYB_2024_3439708 unpaywall_primary_10_1109_tcyb_2024_3439708 pubmed_primary_39208045 ieee_primary_10659214 crossref_citationtrail_10_1109_TCYB_2024_3439708 proquest_miscellaneous_3099799335  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-01 | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | IEEE transactions on cybernetics | 
    
| PublicationTitleAbbrev | TCYB | 
    
| PublicationTitleAlternate | IEEE Trans Cybern | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref43 ref28 Hardy (ref41) 1952 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref3 doi: 10.1126/sciadv.abq8573 – ident: ref23 doi: 10.1109/TASE.2019.2947071 – ident: ref16 doi: 10.1109/TRO.2023.3263773 – ident: ref9 doi: 10.1109/JPROC.2022.3165713 – ident: ref17 doi: 10.1038/545406a – ident: ref40 doi: 10.1002/asjc.2249 – ident: ref33 doi: 10.1080/00207179.2021.1941264 – ident: ref20 doi: 10.1109/tase.2024.3379226 – ident: ref39 doi: 10.1109/TMECH.2017.2756110 – ident: ref18 doi: 10.1038/s42256-022-00482-8 – ident: ref11 doi: 10.1126/sciadv.adi6724 – ident: ref34 doi: 10.1016/j.automatica.2004.01.021 – ident: ref15 doi: 10.1109/TMECH.2023.3254663 – ident: ref12 doi: 10.1016/j.matt.2021.10.010 – ident: ref10 doi: 10.1016/j.cej.2024.150584 – ident: ref27 doi: 10.1109/TCYB.2017.2720801 – ident: ref42 doi: 10.1016/j.automatica.2018.03.033 – ident: ref35 doi: 10.1080/0020717031000099029 – ident: ref7 doi: 10.1126/scirobotics.aaz3867 – ident: ref31 doi: 10.1163/016918611X568620 – ident: ref8 doi: 10.1021/acsnano.1c07830 – ident: ref19 doi: 10.1109/9.362899 – ident: ref22 doi: 10.1109/TRO.2020.2988636 – ident: ref32 doi: 10.1109/TAC.2012.2199178 – ident: ref13 doi: 10.1109/TRO.2014.2380591 – ident: ref43 doi: 10.1007/978-0-8176-4893-0 – ident: ref30 doi: 10.1016/j.automatica.2021.109554 – ident: ref24 doi: 10.1109/TASE.2022.3228547 – ident: ref5 doi: 10.1109/TCYB.2022.3199213 – ident: ref4 doi: 10.1126/scirobotics.aat8829 – ident: ref28 doi: 10.1109/TMECH.2021.3054927 – ident: ref21 doi: 10.1109/LRA.2020.2969159 – ident: ref1 doi: 10.1126/scirobotics.abi8017 – ident: ref29 doi: 10.1109/TCYB.2022.3168030 – ident: ref2 doi: 10.1021/acs.chemrev.0c01234 – ident: ref26 doi: 10.1146/annurev-bioeng-010510103409 – volume-title: Inequalities year: 1952 ident: ref41 – ident: ref14 doi: 10.1109/TRO.2017.2765673 – ident: ref25 doi: 10.1002/rnc.1624 – ident: ref37 doi: 10.1109/TIE.2019.2912781 – ident: ref38 doi: 10.1109/TMECH.2021.3066211 – ident: ref36 doi: 10.1109/TAC.2012.2186179 – ident: ref6 doi: 10.1126/scirobotics.aaq1155  | 
    
| SSID | ssj0000816898 | 
    
| Score | 2.39487 | 
    
| Snippet | Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving... | 
    
| SourceID | unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 7629 | 
    
| SubjectTerms | 3-D path tracking Convergence flow rates Frequency control helical millirobots Kinematics magnetic actuation Navigation Robots Saturation magnetization Vectors  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ta9QwGA9y-6B-0E2nnjqJ4Adf6NkmTdp-3E7LFDaG7mD7VJI0leHRHmvKMf96n6fNHbc5RCmUliYlL7_0-aXPGyFvslRkcVKpoLSpCWLLYElV_VWqyyQNrVLojXx0LA9n8dczceaDRaMvzKb-Pgqzj85cadjFsXjCUXSiW--WFEC7R2Rrdnyyf47J4yIJs836bLH-OhFeg3nrO67JoD6pym388j6529ULdbVU8_mGzMkfDtZabR-qEE1Nfk46pyfm141Ajv_UnW3ywDNPuj9AZYfcsfUjsuPXdkvf-gDU7x6T5bdGd62jPPhET4Ah0hzA0ixByNHpYNlO85VNFwXSS4_UjxqdISkIMZx0ih6GF5eNblxL4dOE_3qoa2g-7y5KODdLquqSfqkXnaPfMbRoj49dMss_n04PA5-gITBcChekFWcVULCQs0RLbrK0TFlpTYxaA8M1HEAHbIgBjyslI6sEwCKqtGFlpqKIPyGjuqntM0ITbkSVCKmsLmOmjQ4TllYmSkJrpYyzMQlXU1YYH70ck2jMi34XE2bF6fT8oMChLfzQjsn7dZXFELrjb4V3EQcbBVHfHMVj8noFjAIWHmpTVG2bri04-hwDu-NiTJ4OiFnXBtIJnY7hyYc1hP5oA2LhWhue_1fpF-Qe3g6mNS_JyF12dg8IktOv_NL4DXZcBVI priority: 102 providerName: Unpaywall  | 
    
| Title | Robust 3-D Path Following Control Framework for Magnetic Helical Millirobots Subject to Fluid Flow and Input Saturation | 
    
| URI | https://ieeexplore.ieee.org/document/10659214 https://www.ncbi.nlm.nih.gov/pubmed/39208045 https://www.proquest.com/docview/3099799335 https://doi.org/10.1109/tcyb.2024.3439708  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 54 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQAHoNBCeFRG4sBDWZw4D-dYFqKC1FUFXak9RbbjoIpVsuomWpVfz4yTrJanUKTIB1tyNN9kPnteAC8yGWdRWim_tNL4kQ1RpSo3krpMJbdKUTby8Sw5mkefzuKzIVnd5cJYa13wmZ3Q0Pnyy8Z0dFWGGk5OQGpbfT2VSZ-stblQcR0kXO_bEAc-0op08GIGPHt7Oj1_h6fBMJoIMsGc-vQhNUC-RIlMWybJ9Vj5E928DTe7eqmu1mqx2DJB-V2YjZvvI0--TbpWT8z3X-o6_vfX3YM7Axllhz16duGare_D7qDuK_ZyqEn96gGsPze6W7VM-O_ZCZJGliN-mjXaPTbtg91ZPoZ5MeTB7Fh9rSk_kqFdIxwwSjq8uGx0064Y_q3o-oe1DcsX3UWJ72bNVF2yj_Wya9kXqjbqILMH8_zD6fTIH3o2-EYkcevLSoQVsjIuwlQnwmSylGFpTUSOBCM0PsgQLKcayJVKAqtiREpQaROWmQoCsQ87dVPbR8BSYeIqjRNldRmF2miehrIyQcqtTZIo84CPYivMUNCc-mosCnew4VlBQi9I6MUgdA9eb5Ys-2oe_5q8R0LamtjLx4PnIzgK1EVysKjaNt2qEJSGjIRPxB487FGzWT2CzYM3Gxj9tofWXOmf9vD4L3t4ArdoWh9X8xR22svOPkN21OoDpxUHcGM-Ozk8_wG0Gwja | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h9lA40BYKhKeROPBQliR2XseyEG2hu0Kwlcopsh0HVaySVTfRqvx6ZpxktTyFIkU-2JKj-Sbz2fMCeJYmYSriUrqFSbQrTIAqVdpRooo48YyUlI08nUWTM_H-PDzvk9VtLowxxgafmRENrS-_qHVLV2Wo4eQEpLbVu6EQIuzStTZXKraHhO1-G-DARWIR935M30tfz8df3uB5MBAjTkbYo059SA6QMVEq05ZRsl1W_kQ4b8BeWy3l1VouFltGKNuH2bD9Lvbk26ht1Eh__6Wy439_3wHc7OkoO-7wcwjXTHULDnuFX7HnfVXqF7dh_alW7aph3H3LPiJtZBkiqF6j5WPjLtydZUOgF0MmzKbya0UZkgwtGyGBUdrhxWWt6mbF8H9FF0CsqVm2aC8KfNdrJquCnVTLtmGfqd6oBc0RnGXv5uOJ23dtcDWPwsZNSh6UyMs8HsQq4jpNiiQojBbkStBc4YMcwXhUBbmUkW9kiFjxS6WDIpW-z-_ATlVX5h6wmOuwjMNIGlWIQGnlxUFSaj_2jIkikTrgDWLLdV_SnDprLHJ7tPHSnISek9DzXugOvNwsWXb1PP41-YiEtDWxk48DTwdw5KiN5GKRlanbVc4pERkpHw8duNuhZrN6AJsDrzYw-m0Pjb5SP-3h_l_28AT2JvPpaX56MvvwAK7Tki7K5iHsNJeteYRcqVGPrYb8AGAeCnc | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ta9QwGA9y-6B-0E2nnjqJ4Adf6NkmTdp-3E7LFDaG7mD7VJI0leHRHmvKMf96n6fNHbc5RCmUliYlL7_0-aXPGyFvslRkcVKpoLSpCWLLYElV_VWqyyQNrVLojXx0LA9n8dczceaDRaMvzKb-Pgqzj85cadjFsXjCUXSiW--WFEC7R2Rrdnyyf47J4yIJs836bLH-OhFeg3nrO67JoD6pym388j6529ULdbVU8_mGzMkfDtZabR-qEE1Nfk46pyfm141Ajv_UnW3ywDNPuj9AZYfcsfUjsuPXdkvf-gDU7x6T5bdGd62jPPhET4Ah0hzA0ixByNHpYNlO85VNFwXSS4_UjxqdISkIMZx0ih6GF5eNblxL4dOE_3qoa2g-7y5KODdLquqSfqkXnaPfMbRoj49dMss_n04PA5-gITBcChekFWcVULCQs0RLbrK0TFlpTYxaA8M1HEAHbIgBjyslI6sEwCKqtGFlpqKIPyGjuqntM0ITbkSVCKmsLmOmjQ4TllYmSkJrpYyzMQlXU1YYH70ck2jMi34XE2bF6fT8oMChLfzQjsn7dZXFELrjb4V3EQcbBVHfHMVj8noFjAIWHmpTVG2bri04-hwDu-NiTJ4OiFnXBtIJnY7hyYc1hP5oA2LhWhue_1fpF-Qe3g6mNS_JyF12dg8IktOv_NL4DXZcBVI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+3-D+Path+Following+Control+Framework+for+Magnetic+Helical+Millirobots+Subject+to+Fluid+Flow+and+Input+Saturation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Qi%2C+Zhaoyang&rft.au=Cai%2C+Mingxue&rft.au=Hao%2C+Bo&rft.au=Cao%2C+Yanfei&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=54&rft.issue=12&rft.spage=7629&rft.epage=7641&rft_id=info:doi/10.1109%2FTCYB.2024.3439708&rft_id=info%3Apmid%2F39208045&rft.externalDocID=10659214 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |