A single microfluidic chip with dual surface properties for protein drug delivery
[Display omitted] Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and...
Saved in:
Published in | International journal of pharmaceutics Vol. 521; no. 1-2; pp. 84 - 91 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-5173 1873-3476 1873-3476 |
DOI | 10.1016/j.ijpharm.2017.02.026 |
Cover
Abstract | [Display omitted]
Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. |
---|---|
AbstractList | Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip.Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. [Display omitted] Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. |
Author | Bokharaei, Mehrdad Häfeli, Urs O. Saatchi, Katayoun |
Author_xml | – sequence: 1 givenname: Mehrdad surname: Bokharaei fullname: Bokharaei, Mehrdad – sequence: 2 givenname: Katayoun surname: Saatchi fullname: Saatchi, Katayoun – sequence: 3 givenname: Urs O. surname: Häfeli fullname: Häfeli, Urs O. email: urs.hafeli@ubc.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28213275$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtrHDEQhEWwideb_IQEHXOZtR47koYcgjF2YjCYQHIWGqnH28u8Imkc_O-jZTc55GIoKBqqiua7JGfjNAIhHzjbcMbV1X6D-3nn4rARjOsNE0XqDVlxo2Ult1qdkRWT2lQ11_KCXKa0Z4wpweVbciFMcaHrFfl-TROOTz3QAX2cun7BgJ76Hc70N-YdDYvraVpi5zzQOU4zxIyQaDfFw5kBRxri8kQD9PgM8eUdOe9cn-D9ydfk593tj5tv1cPj1_ub64fKS1XnyrRcsZozJ7h2jRa6abTTjDPZtUZ4p4JsQbZBC-WlVMJsjQuat51ruWFbIdfk03G3fPFrgZTtgMlD37sRpiVZblTTqLopPNbk4ym6tAMEO0ccXHyxfzGUQH0MFAQpRej-RTizB9x2b0-47QG3ZaJIld7n_3oes8s4jTk67F9tfzm2oWB6Rog2eYTRQ8AIPtsw4SsLfwB00Z5g |
CitedBy_id | crossref_primary_10_1016_j_ijpharm_2020_119669 crossref_primary_10_3390_app11093734 crossref_primary_10_1088_1361_6528_ab6236 crossref_primary_10_1016_j_ijpharm_2020_119401 crossref_primary_10_1016_j_jconrel_2021_03_019 crossref_primary_10_1016_j_ces_2024_120273 crossref_primary_10_1155_2023_3648247 crossref_primary_10_1080_10717544_2021_1905739 crossref_primary_10_1016_j_addr_2021_04_006 crossref_primary_10_1016_j_snb_2017_12_034 crossref_primary_10_1002_elps_202300056 |
Cites_doi | 10.1002/jps.21344 10.1016/j.ijpharm.2008.08.015 10.1016/j.ijpharm.2014.06.012 10.1126/science.1109164 10.1557/mrs2007.145 10.1109/84.679393 10.1103/PhysRevLett.92.054503 10.1016/j.coph.2014.08.003 10.1208/s12248-009-9081-8 10.1016/S0142-9612(00)00115-0 10.1063/1.2397023 10.1021/ja401960f 10.1021/la101868w 10.1002/smll.200900569 10.1155/2011/527437 10.1002/anie.200701358 10.1115/1.2175171 10.1016/j.ijpharm.2004.04.013 10.1016/j.jconrel.2004.08.006 10.1039/b706549c 10.1021/bm9010722 10.1016/j.cej.2003.11.019 10.1016/S0142-9612(00)00178-2 10.1007/s10404-014-1381-3 10.1002/smll.200500087 10.1039/c2sm25953b 10.1007/s10404-015-1693-y 10.1021/la0480336 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ijpharm.2017.02.026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3476 |
EndPage | 91 |
ExternalDocumentID | 28213275 10_1016_j_ijpharm_2017_02_026 S0378517317301072 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSZ T5K TEORI ~02 ~G- .GJ 29J 3O- 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMT HVGLF HZ~ R2- SEW SPT SSH WUQ ZXP CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD |
ID | FETCH-LOGICAL-c365t-8b160510a217a9727997a70103fb82ca6d3be3bd726c3362848ad71bfab180423 |
IEDL.DBID | .~1 |
ISSN | 0378-5173 1873-3476 |
IngestDate | Sun Sep 28 12:16:08 EDT 2025 Wed Feb 19 01:56:37 EST 2025 Thu Apr 24 22:58:44 EDT 2025 Tue Jul 01 00:29:11 EDT 2025 Fri Feb 23 02:29:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Protein encapsulation Micromixer Double emulsion Microfluidics Flow focusing Drug loaded microspheres |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-8b160510a217a9727997a70103fb82ca6d3be3bd726c3362848ad71bfab180423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28213275 |
PQID | 1869965987 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1869965987 pubmed_primary_28213275 crossref_primary_10_1016_j_ijpharm_2017_02_026 crossref_citationtrail_10_1016_j_ijpharm_2017_02_026 elsevier_sciencedirect_doi_10_1016_j_ijpharm_2017_02_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of pharmaceutics |
PublicationTitleAlternate | Int J Pharm |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Abbaspourrad, Carroll, Kim, Weitz (bib0010) 2013; 135 Katou, Wandrey, Gander (bib0080) 2008; 364 Pessi, Santos, Miroshnyk, Yliruusi, Weitz, Mirza (bib0120) 2014; 472 Balncher, Jonoes (bib0035) 2001 Determan, Trewyn, Lin, Nilsen-Hamilton, Narasimhan (bib0055) 2004; 100 Abate, Weitz (bib0005) 2009; 5 Fuerstman, Lai, Thurlow, Shevkoplyas, Stone, Whitesides (bib0065) 2007; 7 Seiffert, Romanowsky, Weitz (bib0130) 2010; 26 Freiberg, Zhu (bib0060) 2004; 282 Bahrami, Yovanovich, Culham (bib0030) 2006; 128 Martin-Banderas, Flores-Mosquera, Riesco-Chueca, Rodriguez-Gil, Cebolla, Chavez, Ganan-Calvo (bib0095) 2005; 1 Nisisako, Torii, Higuchi (bib0105) 2004; 101 Lawrence, Besir (bib0085) 2009; 30 Schneider, Zhao, Jackson, Chapman, Dykes, Häfeli (bib0125) 2008; 97 Okushima, Nisisako, Torii, Higuchi (bib0110) 2004; 20 Martin-Banderas, Gonzalez-Prieto, Rodriguez-Gil, Fernandez-Arevalo, Flores-Mosquera, Chavez, Ganan-Calvo (bib0100) 2011; 2011 Srinivasan, Houston, Howe, Maboudian (bib0135) 1998; 7 Arndt, Koristka, Bartsch, Bachmann (bib0025) 2012 Anna, Mayer (bib0020) 2006; 18 Chu, Utada, Shah, Kim, Weitz (bib0045) 2007; 46 Yang, Chung, Ng (bib0155) 2001; 22 Utada, Chu, Fernandez-Nieves, Link, Holtze, Weitz (bib0145) 2007; 32 Adams, Kodger, Kim, Shum, Franke, Weitz (bib0015) 2012; 8 Häfeli, Saatchi, Elischer, Misri, Bokharaei, Labiris, Stoeber (bib0070) 2010; 11 Jain (bib0075) 2000; 21 Deng, Mou, Wang, Ju, Xie, Chu (bib0050) 2014; 17 Pai, Tilton, Przybycien (bib0115) 2009; 11 Link, Anna, Weitz, Stone (bib0090) 2004; 92 Bokharaei, Schneider, Dutz, Stone, Mefford, Häfeli (bib0040) 2016; 20 Utada, Lorenceau, Link, Kaplan, Stone, Weitz (bib0140) 2005; 308 Wang, Zhang, Chu (bib0150) 2014; 18 Fuerstman (10.1016/j.ijpharm.2017.02.026_bib0065) 2007; 7 Nisisako (10.1016/j.ijpharm.2017.02.026_bib0105) 2004; 101 Seiffert (10.1016/j.ijpharm.2017.02.026_bib0130) 2010; 26 Bokharaei (10.1016/j.ijpharm.2017.02.026_bib0040) 2016; 20 Abbaspourrad (10.1016/j.ijpharm.2017.02.026_bib0010) 2013; 135 Freiberg (10.1016/j.ijpharm.2017.02.026_bib0060) 2004; 282 Anna (10.1016/j.ijpharm.2017.02.026_bib0020) 2006; 18 Jain (10.1016/j.ijpharm.2017.02.026_bib0075) 2000; 21 Link (10.1016/j.ijpharm.2017.02.026_bib0090) 2004; 92 Pai (10.1016/j.ijpharm.2017.02.026_bib0115) 2009; 11 Deng (10.1016/j.ijpharm.2017.02.026_bib0050) 2014; 17 Okushima (10.1016/j.ijpharm.2017.02.026_bib0110) 2004; 20 Srinivasan (10.1016/j.ijpharm.2017.02.026_bib0135) 1998; 7 Balncher (10.1016/j.ijpharm.2017.02.026_bib0035) 2001 Martin-Banderas (10.1016/j.ijpharm.2017.02.026_bib0100) 2011; 2011 Lawrence (10.1016/j.ijpharm.2017.02.026_bib0085) 2009; 30 Adams (10.1016/j.ijpharm.2017.02.026_bib0015) 2012; 8 Katou (10.1016/j.ijpharm.2017.02.026_bib0080) 2008; 364 Pessi (10.1016/j.ijpharm.2017.02.026_bib0120) 2014; 472 Häfeli (10.1016/j.ijpharm.2017.02.026_bib0070) 2010; 11 Yang (10.1016/j.ijpharm.2017.02.026_bib0155) 2001; 22 Bahrami (10.1016/j.ijpharm.2017.02.026_bib0030) 2006; 128 Martin-Banderas (10.1016/j.ijpharm.2017.02.026_bib0095) 2005; 1 Arndt (10.1016/j.ijpharm.2017.02.026_bib0025) 2012 Determan (10.1016/j.ijpharm.2017.02.026_bib0055) 2004; 100 Schneider (10.1016/j.ijpharm.2017.02.026_bib0125) 2008; 97 Wang (10.1016/j.ijpharm.2017.02.026_bib0150) 2014; 18 Abate (10.1016/j.ijpharm.2017.02.026_bib0005) 2009; 5 Utada (10.1016/j.ijpharm.2017.02.026_bib0145) 2007; 32 Chu (10.1016/j.ijpharm.2017.02.026_bib0045) 2007; 46 Utada (10.1016/j.ijpharm.2017.02.026_bib0140) 2005; 308 |
References_xml | – volume: 282 start-page: 1 year: 2004 end-page: 18 ident: bib0060 article-title: Polymer microspheres for controlled drug release publication-title: Int. J. Pharm. – volume: 101 start-page: 23 year: 2004 end-page: 29 ident: bib0105 article-title: Novel microreactors for functional polymer beads publication-title: Chem. Eng. J. – volume: 135 start-page: 7744 year: 2013 end-page: 7750 ident: bib0010 article-title: Polymer microcapsules with programmable active release publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 702 year: 2007 end-page: 708 ident: bib0145 article-title: Dripping, jetting, drops, and wetting: the magic of microfluidics publication-title: MRS Bull. – volume: 11 start-page: 561 year: 2010 end-page: 567 ident: bib0070 article-title: Lung perfusion imaging with monosized biodegradable microspheres publication-title: Biomacromolecules – volume: 364 start-page: 45 year: 2008 end-page: 53 ident: bib0080 article-title: Kinetics of solvent extraction/evaporation process for PLGA microparticle fabrication publication-title: Int. J. Pharm. – volume: 21 start-page: 2475 year: 2000 end-page: 2490 ident: bib0075 article-title: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices publication-title: Biomaterials – volume: 97 start-page: 4943 year: 2008 end-page: 4954 ident: bib0125 article-title: Use of hydrodynamic flow focusing for the generation of biodegradable camptothecin-loaded polymer microspheres publication-title: J. Pharm. Sci. – start-page: 49 year: 2012 end-page: 53 ident: bib0025 article-title: Native polyacrylamide gels publication-title: Protein Electrophoresis: Methods and Protocols – volume: 7 start-page: 252 year: 1998 end-page: 260 ident: bib0135 article-title: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines publication-title: J. Microelectromech. Syst. – volume: 1 start-page: 688 year: 2005 end-page: 692 ident: bib0095 article-title: Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles publication-title: Small – volume: 472 start-page: 82 year: 2014 end-page: 87 ident: bib0120 article-title: Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery publication-title: Int. J. Pharm. – volume: 7 start-page: 1479 year: 2007 end-page: 1489 ident: bib0065 article-title: The pressure drop along rectangular microchannels containing bubbles publication-title: Lab Chip – volume: 100 start-page: 97 year: 2004 end-page: 109 ident: bib0055 article-title: Encapsulation, stabilization, and release of BSA-FITC from polyanhydride microspheres publication-title: J. Control. Release – volume: 22 start-page: 231 year: 2001 end-page: 241 ident: bib0155 article-title: Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method publication-title: Biomaterials – volume: 128 start-page: 632 year: 2006 end-page: 637 ident: bib0030 article-title: Pressure drop of fully developed, laminar flow in rough microtubes publication-title: J. Fluids Eng. Trans. ASME – volume: 26 start-page: 14842 year: 2010 end-page: 14847 ident: bib0130 article-title: Janus microgels produced from functional precursor polymers publication-title: Langmuir – volume: 11 start-page: 88 year: 2009 end-page: 98 ident: bib0115 article-title: Poly(ethylene glycol)-modified proteins: implications for poly(lactide-co-glycolide)-based microsphere delivery publication-title: AAPS J. – volume: 20 start-page: 14 year: 2016 ident: bib0040 article-title: Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation publication-title: Microfluid. Nanofluid. – volume: 92 year: 2004 ident: bib0090 article-title: Geometrically mediated breakup of drops in microfluidic devices publication-title: Phys. Rev. Lett. – volume: 18 start-page: 35 year: 2014 end-page: 41 ident: bib0150 article-title: Microfluidic approach for encapsulation via double emulsions publication-title: Curr. Opin. Pharmacol. – volume: 308 start-page: 537 year: 2005 end-page: 541 ident: bib0140 article-title: Monodisperse double emulsions generated from a microcapillary device publication-title: Science – volume: 8 start-page: 10719 year: 2012 end-page: 10724 ident: bib0015 article-title: Single step emulsification for the generation of multi-component double emulsions publication-title: Soft Matter – volume: 18 year: 2006 ident: bib0020 article-title: Microscale tipstreaming in a microfluidic flow focusing device publication-title: Phys. Fluids – volume: 46 start-page: 8970 year: 2007 end-page: 8974 ident: bib0045 article-title: Controllable monodisperse multiple emulsions publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 2030 year: 2009 end-page: 2032 ident: bib0005 article-title: High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics publication-title: Small – volume: 17 start-page: 967 year: 2014 end-page: 972 ident: bib0050 article-title: Multiple emulsion formation from controllable drop pairs in microfluidics publication-title: Microfluid. Nanofluid. – volume: 30 start-page: e1350 year: 2009 ident: bib0085 article-title: Staining of proteins in gels with Coomassie G-250 without organic solvent and acetic acid publication-title: J. Visualized Exp. JoVE – volume: 20 start-page: 9905 year: 2004 end-page: 9908 ident: bib0110 article-title: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices publication-title: Langmuir – start-page: 145 year: 2001 end-page: 162 ident: bib0035 publication-title: Metastasis Research Protocols, Volume 1: Analysis of Cells and Tissues – volume: 2011 start-page: 527437 year: 2011 ident: bib0100 article-title: Application of flow focusing to the break-up of a magnetite suspension jet for the production of paramagnetic microparticles publication-title: J. Nanomater. – volume: 97 start-page: 4943 year: 2008 ident: 10.1016/j.ijpharm.2017.02.026_bib0125 article-title: Use of hydrodynamic flow focusing for the generation of biodegradable camptothecin-loaded polymer microspheres publication-title: J. Pharm. Sci. doi: 10.1002/jps.21344 – volume: 364 start-page: 45 year: 2008 ident: 10.1016/j.ijpharm.2017.02.026_bib0080 article-title: Kinetics of solvent extraction/evaporation process for PLGA microparticle fabrication publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.08.015 – volume: 472 start-page: 82 year: 2014 ident: 10.1016/j.ijpharm.2017.02.026_bib0120 article-title: Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.06.012 – volume: 308 start-page: 537 year: 2005 ident: 10.1016/j.ijpharm.2017.02.026_bib0140 article-title: Monodisperse double emulsions generated from a microcapillary device publication-title: Science doi: 10.1126/science.1109164 – volume: 32 start-page: 702 year: 2007 ident: 10.1016/j.ijpharm.2017.02.026_bib0145 article-title: Dripping, jetting, drops, and wetting: the magic of microfluidics publication-title: MRS Bull. doi: 10.1557/mrs2007.145 – volume: 7 start-page: 252 year: 1998 ident: 10.1016/j.ijpharm.2017.02.026_bib0135 article-title: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines publication-title: J. Microelectromech. Syst. doi: 10.1109/84.679393 – volume: 92 year: 2004 ident: 10.1016/j.ijpharm.2017.02.026_bib0090 article-title: Geometrically mediated breakup of drops in microfluidic devices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.054503 – volume: 18 start-page: 35 year: 2014 ident: 10.1016/j.ijpharm.2017.02.026_bib0150 article-title: Microfluidic approach for encapsulation via double emulsions publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2014.08.003 – volume: 11 start-page: 88 year: 2009 ident: 10.1016/j.ijpharm.2017.02.026_bib0115 article-title: Poly(ethylene glycol)-modified proteins: implications for poly(lactide-co-glycolide)-based microsphere delivery publication-title: AAPS J. doi: 10.1208/s12248-009-9081-8 – volume: 21 start-page: 2475 year: 2000 ident: 10.1016/j.ijpharm.2017.02.026_bib0075 article-title: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00115-0 – volume: 18 year: 2006 ident: 10.1016/j.ijpharm.2017.02.026_bib0020 article-title: Microscale tipstreaming in a microfluidic flow focusing device publication-title: Phys. Fluids doi: 10.1063/1.2397023 – volume: 30 start-page: e1350 year: 2009 ident: 10.1016/j.ijpharm.2017.02.026_bib0085 article-title: Staining of proteins in gels with Coomassie G-250 without organic solvent and acetic acid publication-title: J. Visualized Exp. JoVE – volume: 135 start-page: 7744 year: 2013 ident: 10.1016/j.ijpharm.2017.02.026_bib0010 article-title: Polymer microcapsules with programmable active release publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401960f – volume: 26 start-page: 14842 year: 2010 ident: 10.1016/j.ijpharm.2017.02.026_bib0130 article-title: Janus microgels produced from functional precursor polymers publication-title: Langmuir doi: 10.1021/la101868w – volume: 5 start-page: 2030 year: 2009 ident: 10.1016/j.ijpharm.2017.02.026_bib0005 article-title: High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics publication-title: Small doi: 10.1002/smll.200900569 – volume: 2011 start-page: 527437 year: 2011 ident: 10.1016/j.ijpharm.2017.02.026_bib0100 article-title: Application of flow focusing to the break-up of a magnetite suspension jet for the production of paramagnetic microparticles publication-title: J. Nanomater. doi: 10.1155/2011/527437 – volume: 46 start-page: 8970 year: 2007 ident: 10.1016/j.ijpharm.2017.02.026_bib0045 article-title: Controllable monodisperse multiple emulsions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701358 – volume: 128 start-page: 632 year: 2006 ident: 10.1016/j.ijpharm.2017.02.026_bib0030 article-title: Pressure drop of fully developed, laminar flow in rough microtubes publication-title: J. Fluids Eng. Trans. ASME doi: 10.1115/1.2175171 – volume: 282 start-page: 1 year: 2004 ident: 10.1016/j.ijpharm.2017.02.026_bib0060 article-title: Polymer microspheres for controlled drug release publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2004.04.013 – start-page: 145 year: 2001 ident: 10.1016/j.ijpharm.2017.02.026_bib0035 – volume: 100 start-page: 97 year: 2004 ident: 10.1016/j.ijpharm.2017.02.026_bib0055 article-title: Encapsulation, stabilization, and release of BSA-FITC from polyanhydride microspheres publication-title: J. Control. Release doi: 10.1016/j.jconrel.2004.08.006 – volume: 7 start-page: 1479 year: 2007 ident: 10.1016/j.ijpharm.2017.02.026_bib0065 article-title: The pressure drop along rectangular microchannels containing bubbles publication-title: Lab Chip doi: 10.1039/b706549c – volume: 11 start-page: 561 year: 2010 ident: 10.1016/j.ijpharm.2017.02.026_bib0070 article-title: Lung perfusion imaging with monosized biodegradable microspheres publication-title: Biomacromolecules doi: 10.1021/bm9010722 – volume: 101 start-page: 23 year: 2004 ident: 10.1016/j.ijpharm.2017.02.026_bib0105 article-title: Novel microreactors for functional polymer beads publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2003.11.019 – volume: 22 start-page: 231 year: 2001 ident: 10.1016/j.ijpharm.2017.02.026_bib0155 article-title: Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00178-2 – volume: 17 start-page: 967 year: 2014 ident: 10.1016/j.ijpharm.2017.02.026_bib0050 article-title: Multiple emulsion formation from controllable drop pairs in microfluidics publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-014-1381-3 – start-page: 49 year: 2012 ident: 10.1016/j.ijpharm.2017.02.026_bib0025 article-title: Native polyacrylamide gels – volume: 1 start-page: 688 year: 2005 ident: 10.1016/j.ijpharm.2017.02.026_bib0095 article-title: Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles publication-title: Small doi: 10.1002/smll.200500087 – volume: 8 start-page: 10719 year: 2012 ident: 10.1016/j.ijpharm.2017.02.026_bib0015 article-title: Single step emulsification for the generation of multi-component double emulsions publication-title: Soft Matter doi: 10.1039/c2sm25953b – volume: 20 start-page: 14 year: 2016 ident: 10.1016/j.ijpharm.2017.02.026_bib0040 article-title: Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-015-1693-y – volume: 20 start-page: 9905 year: 2004 ident: 10.1016/j.ijpharm.2017.02.026_bib0110 article-title: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices publication-title: Langmuir doi: 10.1021/la0480336 |
SSID | ssj0006213 |
Score | 2.2879148 |
Snippet | [Display omitted]
Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in... Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 84 |
SubjectTerms | Animals Cattle Double emulsion Drug Delivery Systems - methods Drug loaded microspheres Flow focusing Lab-On-A-Chip Devices Microfluidics Microfluidics - methods Micromixer Polyesters - administration & dosage Polyesters - chemistry Protein encapsulation Serum Albumin, Bovine - administration & dosage Serum Albumin, Bovine - chemistry Surface Properties |
Title | A single microfluidic chip with dual surface properties for protein drug delivery |
URI | https://dx.doi.org/10.1016/j.ijpharm.2017.02.026 https://www.ncbi.nlm.nih.gov/pubmed/28213275 https://www.proquest.com/docview/1869965987 |
Volume | 521 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5EL17E3boxgngybdPMlmMRpSqKooK3YbZoSo2hbQ69-Nudl8UiKIKQS0KGhHlv3jLzve8hdMysJUTZMNAxkGo7SgLtEr_cNaGKJt4hKChOvrllgydy9UyfF9BZUwsDsMra9lc2vbTW9ZNOPZudPE07D92obCzvHaBX0i4HO0wIB11vf8xhHqxXt0j22RK8Pa_i6Qzb6TAHgmhAePGSuhM4Fn72T7_Fn6UfulhFK3UAifvVP66hBZeto5O7ioF6doof5wVVk1N8gu_m3NSzDXTfx7A5MHL4DZB4yahIbWqweU1zDFuyGEqz8KQYJ8o4nMNO_RgoV7GPbXHJ6ZBm2I6LF2zdCCAds030dHH-eDYI6q4KgYkYnQZChwxWovLJiIp9-BLHXHFo95Bo0TOK2Ui7SFveYyby7k0QoSwPdaJ0KABFs4UWs_fM7SCsQkdiFhtKTEREEgrh4oTEcEhsQ8JpC5FmLqWpKceh88VINtiyoaxFIEEEstvzF2uh9tewvOLc-GuAaAQlvymP9H7hr6FHjWClX1hwWqIy915MJPTqArZFwVtou5L419_4PNVn8Zzu_v_De2gZ7uBgKqT7aHE6LtyBj2-m-rBU4EO01L-8Htx-AurM-gs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CekgvpU36cNukGyg5RbZl7UvHEBKcJyl1ILdlX0plXEXY1sGX_vbO6BETaAgUdJK0SOzMzmP3m28I-S68Z8z4OLIpkmoHziIbMljulnHDM3AIBouTr67F-Jad3_G7DXLc1cIgrLK1_Y1Nr611e2fQzuagzPPBz2FSN5YHBwhKOpRgh18xbHMASt3_s8Z5iFHbIxnSJXx9XcYzmPbzaYkM0QjxkjV3J5Is_NtBPReA1o7o9C1500aQ9Kj5yXdkIxTb5OCmoaBeHdLJuqJqcUgP6M2anHq1Q34cUdwdmAX6G6F42azKfe6o-5WXFPdkKdZm0UU1z4wLtMSt-jlyrlIIbmlN6pAX1M-re-rDDDEdq_fk9vRkcjyO2rYKkUsEX0bKxgKXooFsxKQQv6SpNBL7PWRWjZwRPrEhsV6OhEvAvymmjJexzYyNFcJoPpDN4qEInwg1cWCpSB1nLmEqi5UKacZSPCX2MZO8R1g3l9q1nOPY-mKmO3DZVLci0CgCPRzBJXqk_zisbEg3XhqgOkHpJ9qjwTG8NHS_E6yGlYXHJaYID9VCY7MupFtUskc-NhJ__BtIVCGNl_zz_3_4G9kaT64u9eXZ9cUX8hqf4ClVzL-SzeW8CrsQ7CztXq3MfwGMA_uU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single+microfluidic+chip+with+dual+surface+properties+for+protein+drug+delivery&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Bokharaei%2C+Mehrdad&rft.au=Saatchi%2C+Katayoun&rft.au=H%C3%A4feli%2C+Urs+O.&rft.date=2017-04-15&rft.pub=Elsevier+B.V&rft.issn=0378-5173&rft.eissn=1873-3476&rft.volume=521&rft.issue=1-2&rft.spage=84&rft.epage=91&rft_id=info:doi/10.1016%2Fj.ijpharm.2017.02.026&rft.externalDocID=S0378517317301072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon |