Malicious URL Detection with Advanced Machine Learning and Optimization-Supported Deep Learning Models
This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimizatio...
Saved in:
| Published in | Applied sciences Vol. 15; no. 18; p. 10090 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app151810090 |
Cover
| Abstract | This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Harris Hawk Optimizer (HHO) were employed. Both multiclass and binary classification tasks were addressed using classic machine learning algorithms such as LightGBM, XGBoost, and Random Forest, as well as deep learning models including LSTM, CNN, and hybrid CNN+LSTM architectures, with optimization support also integrated into these models. The experimental results reveal that the ELECTRA-based deep learning model achieved outstanding accuracy and F1-scores of up to 99% in both multiclass and binary scenarios. Although optimization-supported hybrid models also improved performance, the language-model-based ELECTRA architecture demonstrated a significant superiority over classical and optimized approaches. The findings indicate that optimization algorithms are effective in feature selection and enhancing model performance, yet next-generation language models clearly set a new benchmark in malicious URL detection. |
|---|---|
| AbstractList | This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Harris Hawk Optimizer (HHO) were employed. Both multiclass and binary classification tasks were addressed using classic machine learning algorithms such as LightGBM, XGBoost, and Random Forest, as well as deep learning models including LSTM, CNN, and hybrid CNN+LSTM architectures, with optimization support also integrated into these models. The experimental results reveal that the ELECTRA-based deep learning model achieved outstanding accuracy and F1-scores of up to 99% in both multiclass and binary scenarios. Although optimization-supported hybrid models also improved performance, the language-model-based ELECTRA architecture demonstrated a significant superiority over classical and optimized approaches. The findings indicate that optimization algorithms are effective in feature selection and enhancing model performance, yet next-generation language models clearly set a new benchmark in malicious URL detection. |
| Audience | Academic |
| Author | Kılıçaslan, Mahmut Türk, Fuat |
| Author_xml | – sequence: 1 givenname: Fuat orcidid: 0000-0001-8159-360X surname: Türk fullname: Türk, Fuat – sequence: 2 givenname: Mahmut orcidid: 0000-0003-1117-7736 surname: Kılıçaslan fullname: Kılıçaslan, Mahmut |
| BookMark | eNp9kUtv1DAQgCNUpJbSW39AJK6kjOP4dVy1FCrtqhLQczTrx9arrB0cp1X763EJgp7wHGyNvvk0nnlXHYUYbFWdE7igVMEnHEfCiCQACt5UJy0I3tCOiKNX7-PqbJr2UI4itKAnldvg4LWP81TffVvXVzZbnX0M9aPP9_XKPGDQ1tQb1Pc-2HptMQUfdjUGU9-O2R_8M77wzfd5HGPKhb2ydvwHbqKxw_S-eutwmOzZn_u0urv-_OPya7O-_XJzuVo3mnKWG6EUBem4cQaVowBy23WaSEOJZFsE6AhnLeO8MMg7bRknSjOjHFNSSKCn1c3iNRH3_Zj8AdNTH9H3vxMx7XpM2evB9gQEkS0TBlzRCinRMKE63NrWaRCuuJrFNYcRnx5xGP4KCfQvM-9fz7zwHxZ-TPHnbKfc7-OcQvluT1vWdQI4tIW6WKgdliZ8cDEn1CWMPXhdVup8ya8kE5RxRkgp-LgU6BSnKVn3_y5-AYbgnrk |
| Cites_doi | 10.1007/s11227-024-06908-x 10.3390/s23208499 10.1016/j.asoc.2024.112540 10.3390/electronics11223647 10.1162/EVCO_r_00180 10.3390/s23073467 10.1007/s11276-025-03960-0 10.1038/s41598-025-00269-y 10.1016/j.inffus.2024.102638 10.1016/j.iot.2022.100615 10.1016/j.eswa.2025.127636 10.1109/ACCESS.2025.3543738 10.1038/s41598-020-68771-z 10.1007/s11831-022-09780-1 10.1109/CINE63708.2024.10881598 10.1109/34.709601 10.1016/j.eswa.2025.127183 10.1016/j.comcom.2022.12.027 10.1007/s11276-024-03700-w 10.1109/ICDATE58146.2023.10248584 10.1016/j.comnet.2024.110707 10.1109/ICICS63486.2024.10638299 10.3390/info11050243 10.3390/computers14030107 10.1142/S1469026823500025 10.1002/widm.1124 10.1007/s10586-024-04655-5 10.1109/ICDSE.2012.6282329 10.1109/ACCESS.2023.3348071 10.1109/ACCESS.2024.3412331 10.1109/RIVF60135.2023.10471782 10.1162/neco.1997.9.8.1735 10.1007/s12553-021-00552-8 10.1016/j.cose.2022.102964 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app151810090 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_10718257d0f041788ad5794abe2fc07f 10.3390/app151810090 A857356511 10_3390_app151810090 |
| GeographicLocations | New York |
| GeographicLocations_xml | – name: New York |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c365t-799308f6dfda9f3008b44c18d3185ba00416525668f6a64ce5619c5d9f5987803 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:51:54 EDT 2025 Fri Sep 19 05:59:09 EDT 2025 Mon Oct 06 17:21:31 EDT 2025 Mon Oct 20 16:52:32 EDT 2025 Thu Oct 16 04:48:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-799308f6dfda9f3008b44c18d3185ba00416525668f6a64ce5619c5d9f5987803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1117-7736 0000-0001-8159-360X |
| OpenAccessLink | https://doaj.org/article/10718257d0f041788ad5794abe2fc07f |
| PQID | 3254470602 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_10718257d0f041788ad5794abe2fc07f unpaywall_primary_10_3390_app151810090 proquest_journals_3254470602 gale_infotracacademiconefile_A857356511 crossref_primary_10_3390_app151810090 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lavanya (ref_12) 2023; 22 Nayak (ref_13) 2025; 13 Haq (ref_31) 2024; 12 Gupta (ref_8) 2024; 81 ref_36 ref_35 Shehab (ref_40) 2022; 29 Bozkir (ref_41) 2023; 124 ref_11 Bonyadi (ref_39) 2017; 25 Tashtoush (ref_7) 2024; 27 Patgiri (ref_1) 2023; 200 Rafsanjani (ref_15) 2024; 12 ref_19 ref_18 Hilal (ref_2) 2023; 74 ref_17 ref_37 Branke (ref_38) 2014; 4 Zheng (ref_32) 2025; 281 Liu (ref_16) 2024; 253 Hochreiter (ref_28) 1997; 9 Raja (ref_6) 2023; 5 Alsowail (ref_3) 2025; 31 Zaimi (ref_4) 2025; 81 Ho (ref_25) 1998; 20 Chaudhary (ref_26) 2016; 3 ref_23 ref_22 Alsaedi (ref_5) 2023; 12 ref_21 Ahmetoglu (ref_24) 2022; 20 ref_20 Asif (ref_33) 2025; 276 (ref_14) 2024; 30 ref_29 Liu (ref_9) 2025; 113 Do (ref_10) 2025; 169 ref_27 Almomani (ref_34) 2025; 4 Hiriyannaiah (ref_30) 2021; 11 |
| References_xml | – volume: 81 start-page: 438 year: 2025 ident: ref_4 article-title: An enhanced mechanism for malicious URL detection using deep learning and DistilBERT-based feature extraction publication-title: J. Supercomput. doi: 10.1007/s11227-024-06908-x – ident: ref_18 doi: 10.3390/s23208499 – volume: 169 start-page: 112540 year: 2025 ident: ref_10 article-title: Detection of malicious URLs using Temporal Convolutional Network and Multi-Head Self-Attention mechanism publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112540 – ident: ref_19 doi: 10.3390/electronics11223647 – volume: 5 start-page: 28 year: 2023 ident: ref_6 article-title: Structural Analysis of URL For Malicious URL Detection Using Machine Learning publication-title: J. Adv. Appl. Sci. Res. – volume: 81 start-page: 4853 year: 2024 ident: ref_8 article-title: A Hybrid CNN-Brown-Bear Optimization Framework for Enhanced Detection of URL Phishing Attacks publication-title: Comput. Mater. Contin. – volume: 25 start-page: 1 year: 2017 ident: ref_39 article-title: Particle swarm optimization for single objective continuous space problems: A review publication-title: Evol. Comput. doi: 10.1162/EVCO_r_00180 – ident: ref_11 doi: 10.3390/s23073467 – volume: 31 start-page: 3785 year: 2025 ident: ref_3 article-title: Anomaly detection based capsnet for malicious Url detection system publication-title: Wirel. Netw. doi: 10.1007/s11276-025-03960-0 – ident: ref_36 doi: 10.1038/s41598-025-00269-y – ident: ref_37 – volume: 113 start-page: 102638 year: 2025 ident: ref_9 article-title: PMANet: Malicious URL detection via post-trained language model guided multi-level feature attention network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102638 – volume: 20 start-page: 100615 year: 2022 ident: ref_24 article-title: A comprehensive review on detection of cyber-attacks: Data sets, methods, challenges, and future research directions publication-title: Internet Things doi: 10.1016/j.iot.2022.100615 – volume: 281 start-page: 127636 year: 2025 ident: ref_32 article-title: Accelerating Federated Learning with genetic algorithm enhancements publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.127636 – volume: 74 start-page: 607 year: 2023 ident: ref_2 article-title: Malicious url classification using artificial fish swarm optimization and deep learning publication-title: Comput. Mater. Contin. – volume: 13 start-page: 33308 year: 2025 ident: ref_13 article-title: Enhancing Phishing Detection: A Machine Learning Approach with Feature Selection and Deep Learning Models publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3543738 – ident: ref_23 doi: 10.1038/s41598-020-68771-z – volume: 29 start-page: 5579 year: 2022 ident: ref_40 article-title: Harris hawks optimization algorithm: Variants and applications publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09780-1 – ident: ref_22 doi: 10.1109/CINE63708.2024.10881598 – volume: 20 start-page: 832 year: 1998 ident: ref_25 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 276 start-page: 127183 year: 2025 ident: ref_33 article-title: OSEN-IoT: An optimized stack ensemble network with genetic algorithm for robust intrusion detection in heterogeneous IoT networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.127183 – volume: 200 start-page: 30 year: 2023 ident: ref_1 article-title: deepBF: Malicious URL detection using learned bloom filter and evolutionary deep learning publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.12.027 – volume: 30 start-page: 7543 year: 2024 ident: ref_14 article-title: Detection of malicious URLs using machine learning publication-title: Wirel. Netw. doi: 10.1007/s11276-024-03700-w – ident: ref_20 doi: 10.1109/ICDATE58146.2023.10248584 – volume: 253 start-page: 110707 year: 2024 ident: ref_16 article-title: TransURL: Improving malicious URL detection with multi-layer Transformer encoding and multi-scale pyramid features publication-title: Comput. Netw. doi: 10.1016/j.comnet.2024.110707 – ident: ref_21 doi: 10.1109/ICICS63486.2024.10638299 – volume: 12 start-page: 190240 year: 2024 ident: ref_31 article-title: Efficiently Learning an Encoder that Classifies Token Replacements and Masked Permuted Network-Based BIGRU Attention Classifier for Enhancing Sentiment Classification of Scientific Text publication-title: IEEE Access – ident: ref_29 doi: 10.3390/info11050243 – ident: ref_35 doi: 10.3390/computers14030107 – volume: 22 start-page: 2350002 year: 2023 ident: ref_12 article-title: malicious software detection based on URL-API intensity feature selection using deep spectral neural classification for improving host security publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026823500025 – volume: 3 start-page: 215 year: 2016 ident: ref_26 article-title: An improved random forest classifier for multi-class classification publication-title: Inf. Process. Agric. – volume: 4 start-page: 178 year: 2014 ident: ref_38 article-title: Evolutionary algorithms publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1124 – volume: 27 start-page: 13717 year: 2024 ident: ref_7 article-title: Exploring low-level statistical features of n-grams in phishing URLs: A comparative analysis with high-level features publication-title: Clust. Comput. doi: 10.1007/s10586-024-04655-5 – ident: ref_27 doi: 10.1109/ICDSE.2012.6282329 – volume: 12 start-page: 7271 year: 2023 ident: ref_5 article-title: Multi-modal features representation-based convolutional neural network model for malicious website detection publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3348071 – volume: 12 start-page: 85001 year: 2024 ident: ref_15 article-title: Enhancing malicious URL detection: A novel framework leveraging priority coefficient and feature evaluation publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3412331 – ident: ref_17 doi: 10.1109/RIVF60135.2023.10471782 – volume: 4 start-page: 296 year: 2025 ident: ref_34 article-title: Enhance URL Defacement Attack Detection Using Particle Swarm Optimization and Machine Learning publication-title: J. Comput. Cogn. Eng. – volume: 9 start-page: 1735 year: 1997 ident: ref_28 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 11 start-page: 663 year: 2021 ident: ref_30 article-title: A comparative study and analysis of LSTM deep neural networks for heartbeats classification publication-title: Health Technol. doi: 10.1007/s12553-021-00552-8 – volume: 124 start-page: 102964 year: 2023 ident: ref_41 article-title: GramBeddings: A new neural network for URL based identification of phishing web pages through n-gram embeddings publication-title: Comput. Secur. doi: 10.1016/j.cose.2022.102964 |
| SSID | ssj0000913810 |
| Score | 2.331555 |
| Snippet | This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 10090 |
| SubjectTerms | Accuracy Algorithms Analysis Classification Computational linguistics Cybercrime Cybersecurity Data mining Datasets Deep learning Efficiency ELECTRA model Feature selection Internet fraud Language processing Machine learning Malware malware detection Mathematical optimization Methods Natural language interfaces optimization algorithms Optimization techniques Phishing URLs |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLSAGiiVDzwPFtk4TuwDQtuXKsQuqGKl3iI_4l6W7LKbCvHvmck625Uq9Ro5luWxZz7b33wD8Na4oEurBcfoqnhupOXKlJ6L1LlMG-W9pATn8aS4nObfruX1Dkz6XBiiVfY-sXPUfu7ojvyzIC0tknrJvi7-cKoaRa-rfQkNE0sr-C-dxNgj2M1IGWsAuyfnk59Xm1sXUsFUw3TNgBd43qd3Ygx6-C0lt7wVmzoJ__uOeg8e3zYL8--vmc22ItHFM3gaISQbrW2-Dzt1cwB7W8KCB7Aft-yKfYy60p-eQxgj5nbEeWXTq-_srG47GlbD6C6WjSIZgI07emXNovLqDTONZz_Qs_yOKZucKoESR9djH_XiriHVVZutXsD04vzX6SWPZRa4E4VseYkQJVWh8MEbHQSCApvnbqg8JVZbQ4pchURkVGAbU-SuRsilnfQ6SK1KlYqXMGjmTX0IrNTSytQXNmDo90aoLNTSqJAbrbwVNoF3_QRXi7WaRoWnEDJEtW2IBE5o9jdtSAO7-zBf3lRxS-GPGFfR4_g04BDxKG-8RO9ibJ0Fl5YhgQ9ku4p2ars0zsSEAxwqaV5VIyVLgXh2OEzgqDdvFbfwqrpbcAm835j8wWG_erif1_Ako-rBHUPtCAbt8rZ-g5Cmtcdxnf4Hogv0Vw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0UGgBESjIh_I6uMrGcWIft9CqQmxBiJXKKfKTQ7fpqpsVgl_fmay3LFQCrpETjex5fBPPfAOwb1zUtdWCY3RVvDTScmVqz0XuXKGN8l5Sg_P4tDqZlO_P5NkG7K96Ydbu7wWm43SNizFJDREKYGK-WUlE3APYnJx-Gn2luXGYhnN0xPWypv3WK79Fm56U_7br3YI7i3Zmfnw30-labDm-B0crqZYlJecHi84euJ9_EDb-S-z7sJ3AJRsttWEHNkK7C1trlIO7sJOMec5eJ8bpNw8gjhGNO6qGZZPPH9i70PUFWi2jv7RslMoE2LgvvAwscbJ-Y6b17CP6nIvUzMlpRihV73r8Rpj9WkgT16bzhzA5Pvry9oSnAQzciUp2vEbwkqtY-eiNjgLhgi1LN1SeWq6tIa6uSiJmqnCNqUoXEIxpJ72OUqta5eIRDNrLNjwGVmtpZe4rGxEUeCNUEYM0KpZGK2-FzeDF6qCa2ZJno8H8hDazWd_MDA7pFG_WEDt2_wB3v0nGhi9ixEVf5POIImKSb7xEv2NsKKLL65jBK9KBhmy4uzLOpFYEFJXYsJqRkrVApDscZrC3UpMmGfe8EUTrRqxDRQYvb1Tnr2I_-d-FT-FuQROG-yq2PRh0V4vwDGFPZ58nrb8G6Hz7rg priority: 102 providerName: Unpaywall |
| Title | Malicious URL Detection with Advanced Machine Learning and Optimization-Supported Deep Learning Models |
| URI | https://www.proquest.com/docview/3254470602 https://doi.org/10.3390/app151810090 https://doaj.org/article/10718257d0f041788ad5794abe2fc07f |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOUAPiBZQA2XlA89DpCSOE_u4hS4VYpeqYqVyivzsZRtW3VRV_z0ziVsiIdFLj7Esa-R5xzPfALzVNqjaKJ6id5VpqYVJpa5dyjNrC6Wlc4IanOeL6mhZfjsVp6NRX1QTNsADDxeHWo3WE-XKZSErc0zYtBMoQ9r4ItisDmR9M6lGyVRvg1VO0FVDpTvHvJ7eg9G54VpG5nfkg3qo_n8N8jY8vmzX-vpKr1YjjzN7Bk9jqMimA4k78MC3u7A9AhDchZ2omhv2MeJHf3oOYY6xtaXaVrY8-c6--K4vt2oZ_XNl0_joz-Z9GaVnEWH1jOnWsR9oQc5ja2ZKEz-pFtfhGX79dyPNT1ttXsBydvjz81EaxymklleiS2sMRTIZKhecVoGj8zdlaXPpqIHaaELeqgRGQBXu0VVpPYZWygqnglCylhl_CVvt79bvAauVMCJzlQno4p3msgheaBlKraQz3CTw7uaCm_WAmtFgtkGMaMaMSOCAbv92D2Fd9wsoAU2UgOYuCUjgA_GuIY3sLrTVsbEASSVsq2YqRc0xbs3zBPZv2NtEVd00nEDaCEOoSOD9Lcv_S_ar-yD7NTwpaJZwX6-2D1vdxaV_gwFOZybwUM6-TuDRweHi-GTSSzZ-LRfH019_AN_o-fI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QLSACBTqA-XjEJGN48Q-VGj7pS3dXVDVlXoLjh33smSX3VRV_xy_jZmss10JqbdeI8eyPPa8sf3mDcAHbZzKCsVDRFcZJloUodSZDXlkTKy0tFZQgvNgmPZGyfcrcbUGf9tcGKJVtj6xcdR2YuiO_CsnLS2Seom_Tf-EVDWKXlfbEhral1awB43EmE_sOC_vbvEINz84O0Z778fx6cnlUS_0VQZCw1NRhxkidCRdap3VynHExCJJTEdayisuNAlSpQIDgxTb6DQxJUYcygirnMDzuow49vsENhKeKDz8bRyeDH9eLG95SHVTdqIF455zFdG7NIIsfosIBlawsCkZ8D8wbMHmTTXVd7d6PF5BvtPn8MyHrKy7WGPbsFZWO7C1ImS4A9veRczZZ69j_eUFuAHG-IY4tmx00WfHZd3QvipGd7-s68kHbNDQOUvmlV6vma4s-4Ge7LdPEQ2p8ihxgi32UU7vG1Idt_H8JYweZcJfwXo1qcrXwDIlChHZtHAYaljNZexKoaVLtJK24EUA--0E59OFekeOpx4yRL5qiAAOafaXbUhzu_kwmV3nfgvjj4jj6OFs5HCImZTaCvRmuihjZ6LMBfCJbJeTZ6hn2mif4IBDJY2tvCtFxjF-7nQC2G3Nm3uXMc_vF3gAH5cmf3DYbx7uZw82e5eDft4_G56_hacxVS5u2HG7sF7Pbsp3GE7VxXu_Zhn8euxt8g_BFy8q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgE9IFpABAr4QPk4RM3GceIcEFpYlpZ2C0Ks1FvwZy9LdtlNVfWv8euYyTrblZB66zVyLMtjzxvbb94AvFLGl4UueYzoKuNMCR1LVdiYJ8akpZLWCkpwHp3kB-Ps66k43YC_XS4M0So7n9g6ajs1dEe-z0lLi6Re0n0faBHfB8MPsz8xVZCil9aunMZyiRy5yws8vi3eHw7Q1ntpOvz889NBHCoMxIbnookLROdE-tx6q0rPEQ91lpmetJRTrBWJUeUCg4Ic26g8Mw6jjdIIW3qBZ3WZcOz3FtwuSMWdstSHX1b3O6S3KXvJkmvPeZnQizTCK35LCADWULAtFvA_JGzB3fN6pi4v1GSyhnnDB3A_BKusv1xd27Dh6h3YWpMw3IHt4BwW7G1QsH73EPwIo3tD7Fo2_nHMBq5pCV81o1tf1g-0AzZqiZyOBY3XM6Zqy76hD_sdkkNjqjlKbGCLfbjZVUOq4DZZPILxjUz3Y9isp7V7AqwohRaJzbXHIMMqLlPvhJI-U6W0musI9roJrmZL3Y4KzztkiGrdEBF8pNlftSG17fbDdH5Whc2LPyKCo2-zicchFlIqK9CPKe1Sb5LCR_CGbFeRT2jmyqiQ2oBDJXWtqi9FwTFy7vUi2O3MWwVnsaiulnYEr1cmv3bYT6_v5yXcwc1RHR-eHD2DeymVLG5pcbuw2czP3XOMoxr9ol2wDH7d9A75B2dXLMQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0UGgBESjIh_I6uMrGcWIft9CqQmxBiJXKKfKTQ7fpqpsVgl_fmay3LFQCrpETjex5fBPPfAOwb1zUtdWCY3RVvDTScmVqz0XuXKGN8l5Sg_P4tDqZlO_P5NkG7K96Ydbu7wWm43SNizFJDREKYGK-WUlE3APYnJx-Gn2luXGYhnN0xPWypv3WK79Fm56U_7br3YI7i3Zmfnw30-labDm-B0crqZYlJecHi84euJ9_EDb-S-z7sJ3AJRsttWEHNkK7C1trlIO7sJOMec5eJ8bpNw8gjhGNO6qGZZPPH9i70PUFWi2jv7RslMoE2LgvvAwscbJ-Y6b17CP6nIvUzMlpRihV73r8Rpj9WkgT16bzhzA5Pvry9oSnAQzciUp2vEbwkqtY-eiNjgLhgi1LN1SeWq6tIa6uSiJmqnCNqUoXEIxpJ72OUqta5eIRDNrLNjwGVmtpZe4rGxEUeCNUEYM0KpZGK2-FzeDF6qCa2ZJno8H8hDazWd_MDA7pFG_WEDt2_wB3v0nGhi9ixEVf5POIImKSb7xEv2NsKKLL65jBK9KBhmy4uzLOpFYEFJXYsJqRkrVApDscZrC3UpMmGfe8EUTrRqxDRQYvb1Tnr2I_-d-FT-FuQROG-yq2PRh0V4vwDGFPZ58nrb8G6Hz7rg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malicious+URL+Detection+with+Advanced+Machine+Learning+and+Optimization-Supported+Deep+Learning+Models&rft.jtitle=Applied+sciences&rft.au=Fuat+T%C3%BCrk&rft.au=Mahmut+K%C4%B1l%C4%B1%C3%A7aslan&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=18&rft.spage=10090&rft_id=info:doi/10.3390%2Fapp151810090&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_10718257d0f041788ad5794abe2fc07f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |