Malicious URL Detection with Advanced Machine Learning and Optimization-Supported Deep Learning Models

This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimizatio...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 18; p. 10090
Main Authors Türk, Fuat, Kılıçaslan, Mahmut
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app151810090

Cover

Abstract This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Harris Hawk Optimizer (HHO) were employed. Both multiclass and binary classification tasks were addressed using classic machine learning algorithms such as LightGBM, XGBoost, and Random Forest, as well as deep learning models including LSTM, CNN, and hybrid CNN+LSTM architectures, with optimization support also integrated into these models. The experimental results reveal that the ELECTRA-based deep learning model achieved outstanding accuracy and F1-scores of up to 99% in both multiclass and binary scenarios. Although optimization-supported hybrid models also improved performance, the language-model-based ELECTRA architecture demonstrated a significant superiority over classical and optimized approaches. The findings indicate that optimization algorithms are effective in feature selection and enhancing model performance, yet next-generation language models clearly set a new benchmark in malicious URL detection.
AbstractList This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Harris Hawk Optimizer (HHO) were employed. Both multiclass and binary classification tasks were addressed using classic machine learning algorithms such as LightGBM, XGBoost, and Random Forest, as well as deep learning models including LSTM, CNN, and hybrid CNN+LSTM architectures, with optimization support also integrated into these models. The experimental results reveal that the ELECTRA-based deep learning model achieved outstanding accuracy and F1-scores of up to 99% in both multiclass and binary scenarios. Although optimization-supported hybrid models also improved performance, the language-model-based ELECTRA architecture demonstrated a significant superiority over classical and optimized approaches. The findings indicate that optimization algorithms are effective in feature selection and enhancing model performance, yet next-generation language models clearly set a new benchmark in malicious URL detection.
Audience Academic
Author Kılıçaslan, Mahmut
Türk, Fuat
Author_xml – sequence: 1
  givenname: Fuat
  orcidid: 0000-0001-8159-360X
  surname: Türk
  fullname: Türk, Fuat
– sequence: 2
  givenname: Mahmut
  orcidid: 0000-0003-1117-7736
  surname: Kılıçaslan
  fullname: Kılıçaslan, Mahmut
BookMark eNp9kUtv1DAQgCNUpJbSW39AJK6kjOP4dVy1FCrtqhLQczTrx9arrB0cp1X763EJgp7wHGyNvvk0nnlXHYUYbFWdE7igVMEnHEfCiCQACt5UJy0I3tCOiKNX7-PqbJr2UI4itKAnldvg4LWP81TffVvXVzZbnX0M9aPP9_XKPGDQ1tQb1Pc-2HptMQUfdjUGU9-O2R_8M77wzfd5HGPKhb2ydvwHbqKxw_S-eutwmOzZn_u0urv-_OPya7O-_XJzuVo3mnKWG6EUBem4cQaVowBy23WaSEOJZFsE6AhnLeO8MMg7bRknSjOjHFNSSKCn1c3iNRH3_Zj8AdNTH9H3vxMx7XpM2evB9gQEkS0TBlzRCinRMKE63NrWaRCuuJrFNYcRnx5xGP4KCfQvM-9fz7zwHxZ-TPHnbKfc7-OcQvluT1vWdQI4tIW6WKgdliZ8cDEn1CWMPXhdVup8ya8kE5RxRkgp-LgU6BSnKVn3_y5-AYbgnrk
Cites_doi 10.1007/s11227-024-06908-x
10.3390/s23208499
10.1016/j.asoc.2024.112540
10.3390/electronics11223647
10.1162/EVCO_r_00180
10.3390/s23073467
10.1007/s11276-025-03960-0
10.1038/s41598-025-00269-y
10.1016/j.inffus.2024.102638
10.1016/j.iot.2022.100615
10.1016/j.eswa.2025.127636
10.1109/ACCESS.2025.3543738
10.1038/s41598-020-68771-z
10.1007/s11831-022-09780-1
10.1109/CINE63708.2024.10881598
10.1109/34.709601
10.1016/j.eswa.2025.127183
10.1016/j.comcom.2022.12.027
10.1007/s11276-024-03700-w
10.1109/ICDATE58146.2023.10248584
10.1016/j.comnet.2024.110707
10.1109/ICICS63486.2024.10638299
10.3390/info11050243
10.3390/computers14030107
10.1142/S1469026823500025
10.1002/widm.1124
10.1007/s10586-024-04655-5
10.1109/ICDSE.2012.6282329
10.1109/ACCESS.2023.3348071
10.1109/ACCESS.2024.3412331
10.1109/RIVF60135.2023.10471782
10.1162/neco.1997.9.8.1735
10.1007/s12553-021-00552-8
10.1016/j.cose.2022.102964
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app151810090
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_10718257d0f041788ad5794abe2fc07f
10.3390/app151810090
A857356511
10_3390_app151810090
GeographicLocations New York
GeographicLocations_xml – name: New York
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c365t-799308f6dfda9f3008b44c18d3185ba00416525668f6a64ce5619c5d9f5987803
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Fri Oct 03 12:51:54 EDT 2025
Fri Sep 19 05:59:09 EDT 2025
Mon Oct 06 17:21:31 EDT 2025
Mon Oct 20 16:52:32 EDT 2025
Thu Oct 16 04:48:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-799308f6dfda9f3008b44c18d3185ba00416525668f6a64ce5619c5d9f5987803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1117-7736
0000-0001-8159-360X
OpenAccessLink https://doaj.org/article/10718257d0f041788ad5794abe2fc07f
PQID 3254470602
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_10718257d0f041788ad5794abe2fc07f
unpaywall_primary_10_3390_app151810090
proquest_journals_3254470602
gale_infotracacademiconefile_A857356511
crossref_primary_10_3390_app151810090
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lavanya (ref_12) 2023; 22
Nayak (ref_13) 2025; 13
Haq (ref_31) 2024; 12
Gupta (ref_8) 2024; 81
ref_36
ref_35
Shehab (ref_40) 2022; 29
Bozkir (ref_41) 2023; 124
ref_11
Bonyadi (ref_39) 2017; 25
Tashtoush (ref_7) 2024; 27
Patgiri (ref_1) 2023; 200
Rafsanjani (ref_15) 2024; 12
ref_19
ref_18
Hilal (ref_2) 2023; 74
ref_17
ref_37
Branke (ref_38) 2014; 4
Zheng (ref_32) 2025; 281
Liu (ref_16) 2024; 253
Hochreiter (ref_28) 1997; 9
Raja (ref_6) 2023; 5
Alsowail (ref_3) 2025; 31
Zaimi (ref_4) 2025; 81
Ho (ref_25) 1998; 20
Chaudhary (ref_26) 2016; 3
ref_23
ref_22
Alsaedi (ref_5) 2023; 12
ref_21
Ahmetoglu (ref_24) 2022; 20
ref_20
Asif (ref_33) 2025; 276
(ref_14) 2024; 30
ref_29
Liu (ref_9) 2025; 113
Do (ref_10) 2025; 169
ref_27
Almomani (ref_34) 2025; 4
Hiriyannaiah (ref_30) 2021; 11
References_xml – volume: 81
  start-page: 438
  year: 2025
  ident: ref_4
  article-title: An enhanced mechanism for malicious URL detection using deep learning and DistilBERT-based feature extraction
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-024-06908-x
– ident: ref_18
  doi: 10.3390/s23208499
– volume: 169
  start-page: 112540
  year: 2025
  ident: ref_10
  article-title: Detection of malicious URLs using Temporal Convolutional Network and Multi-Head Self-Attention mechanism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112540
– ident: ref_19
  doi: 10.3390/electronics11223647
– volume: 5
  start-page: 28
  year: 2023
  ident: ref_6
  article-title: Structural Analysis of URL For Malicious URL Detection Using Machine Learning
  publication-title: J. Adv. Appl. Sci. Res.
– volume: 81
  start-page: 4853
  year: 2024
  ident: ref_8
  article-title: A Hybrid CNN-Brown-Bear Optimization Framework for Enhanced Detection of URL Phishing Attacks
  publication-title: Comput. Mater. Contin.
– volume: 25
  start-page: 1
  year: 2017
  ident: ref_39
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_r_00180
– ident: ref_11
  doi: 10.3390/s23073467
– volume: 31
  start-page: 3785
  year: 2025
  ident: ref_3
  article-title: Anomaly detection based capsnet for malicious Url detection system
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-025-03960-0
– ident: ref_36
  doi: 10.1038/s41598-025-00269-y
– ident: ref_37
– volume: 113
  start-page: 102638
  year: 2025
  ident: ref_9
  article-title: PMANet: Malicious URL detection via post-trained language model guided multi-level feature attention network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102638
– volume: 20
  start-page: 100615
  year: 2022
  ident: ref_24
  article-title: A comprehensive review on detection of cyber-attacks: Data sets, methods, challenges, and future research directions
  publication-title: Internet Things
  doi: 10.1016/j.iot.2022.100615
– volume: 281
  start-page: 127636
  year: 2025
  ident: ref_32
  article-title: Accelerating Federated Learning with genetic algorithm enhancements
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.127636
– volume: 74
  start-page: 607
  year: 2023
  ident: ref_2
  article-title: Malicious url classification using artificial fish swarm optimization and deep learning
  publication-title: Comput. Mater. Contin.
– volume: 13
  start-page: 33308
  year: 2025
  ident: ref_13
  article-title: Enhancing Phishing Detection: A Machine Learning Approach with Feature Selection and Deep Learning Models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3543738
– ident: ref_23
  doi: 10.1038/s41598-020-68771-z
– volume: 29
  start-page: 5579
  year: 2022
  ident: ref_40
  article-title: Harris hawks optimization algorithm: Variants and applications
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-022-09780-1
– ident: ref_22
  doi: 10.1109/CINE63708.2024.10881598
– volume: 20
  start-page: 832
  year: 1998
  ident: ref_25
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 276
  start-page: 127183
  year: 2025
  ident: ref_33
  article-title: OSEN-IoT: An optimized stack ensemble network with genetic algorithm for robust intrusion detection in heterogeneous IoT networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.127183
– volume: 200
  start-page: 30
  year: 2023
  ident: ref_1
  article-title: deepBF: Malicious URL detection using learned bloom filter and evolutionary deep learning
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.12.027
– volume: 30
  start-page: 7543
  year: 2024
  ident: ref_14
  article-title: Detection of malicious URLs using machine learning
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-024-03700-w
– ident: ref_20
  doi: 10.1109/ICDATE58146.2023.10248584
– volume: 253
  start-page: 110707
  year: 2024
  ident: ref_16
  article-title: TransURL: Improving malicious URL detection with multi-layer Transformer encoding and multi-scale pyramid features
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2024.110707
– ident: ref_21
  doi: 10.1109/ICICS63486.2024.10638299
– volume: 12
  start-page: 190240
  year: 2024
  ident: ref_31
  article-title: Efficiently Learning an Encoder that Classifies Token Replacements and Masked Permuted Network-Based BIGRU Attention Classifier for Enhancing Sentiment Classification of Scientific Text
  publication-title: IEEE Access
– ident: ref_29
  doi: 10.3390/info11050243
– ident: ref_35
  doi: 10.3390/computers14030107
– volume: 22
  start-page: 2350002
  year: 2023
  ident: ref_12
  article-title: malicious software detection based on URL-API intensity feature selection using deep spectral neural classification for improving host security
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026823500025
– volume: 3
  start-page: 215
  year: 2016
  ident: ref_26
  article-title: An improved random forest classifier for multi-class classification
  publication-title: Inf. Process. Agric.
– volume: 4
  start-page: 178
  year: 2014
  ident: ref_38
  article-title: Evolutionary algorithms
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1124
– volume: 27
  start-page: 13717
  year: 2024
  ident: ref_7
  article-title: Exploring low-level statistical features of n-grams in phishing URLs: A comparative analysis with high-level features
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04655-5
– ident: ref_27
  doi: 10.1109/ICDSE.2012.6282329
– volume: 12
  start-page: 7271
  year: 2023
  ident: ref_5
  article-title: Multi-modal features representation-based convolutional neural network model for malicious website detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3348071
– volume: 12
  start-page: 85001
  year: 2024
  ident: ref_15
  article-title: Enhancing malicious URL detection: A novel framework leveraging priority coefficient and feature evaluation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3412331
– ident: ref_17
  doi: 10.1109/RIVF60135.2023.10471782
– volume: 4
  start-page: 296
  year: 2025
  ident: ref_34
  article-title: Enhance URL Defacement Attack Detection Using Particle Swarm Optimization and Machine Learning
  publication-title: J. Comput. Cogn. Eng.
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_28
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 11
  start-page: 663
  year: 2021
  ident: ref_30
  article-title: A comparative study and analysis of LSTM deep neural networks for heartbeats classification
  publication-title: Health Technol.
  doi: 10.1007/s12553-021-00552-8
– volume: 124
  start-page: 102964
  year: 2023
  ident: ref_41
  article-title: GramBeddings: A new neural network for URL based identification of phishing web pages through n-gram embeddings
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2022.102964
SSID ssj0000913810
Score 2.331555
Snippet This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 10090
SubjectTerms Accuracy
Algorithms
Analysis
Classification
Computational linguistics
Cybercrime
Cybersecurity
Data mining
Datasets
Deep learning
Efficiency
ELECTRA model
Feature selection
Internet fraud
Language processing
Machine learning
Malware
malware detection
Mathematical optimization
Methods
Natural language interfaces
optimization algorithms
Optimization techniques
Phishing
URLs
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLSAGiiVDzwPFtk4TuwDQtuXKsQuqGKl3iI_4l6W7LKbCvHvmck625Uq9Ro5luWxZz7b33wD8Na4oEurBcfoqnhupOXKlJ6L1LlMG-W9pATn8aS4nObfruX1Dkz6XBiiVfY-sXPUfu7ojvyzIC0tknrJvi7-cKoaRa-rfQkNE0sr-C-dxNgj2M1IGWsAuyfnk59Xm1sXUsFUw3TNgBd43qd3Ygx6-C0lt7wVmzoJ__uOeg8e3zYL8--vmc22ItHFM3gaISQbrW2-Dzt1cwB7W8KCB7Aft-yKfYy60p-eQxgj5nbEeWXTq-_srG47GlbD6C6WjSIZgI07emXNovLqDTONZz_Qs_yOKZucKoESR9djH_XiriHVVZutXsD04vzX6SWPZRa4E4VseYkQJVWh8MEbHQSCApvnbqg8JVZbQ4pchURkVGAbU-SuRsilnfQ6SK1KlYqXMGjmTX0IrNTSytQXNmDo90aoLNTSqJAbrbwVNoF3_QRXi7WaRoWnEDJEtW2IBE5o9jdtSAO7-zBf3lRxS-GPGFfR4_g04BDxKG-8RO9ibJ0Fl5YhgQ9ku4p2ars0zsSEAxwqaV5VIyVLgXh2OEzgqDdvFbfwqrpbcAm835j8wWG_erif1_Ako-rBHUPtCAbt8rZ-g5Cmtcdxnf4Hogv0Vw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0UGgBESjIh_I6uMrGcWIft9CqQmxBiJXKKfKTQ7fpqpsVgl_fmay3LFQCrpETjex5fBPPfAOwb1zUtdWCY3RVvDTScmVqz0XuXKGN8l5Sg_P4tDqZlO_P5NkG7K96Ydbu7wWm43SNizFJDREKYGK-WUlE3APYnJx-Gn2luXGYhnN0xPWypv3WK79Fm56U_7br3YI7i3Zmfnw30-labDm-B0crqZYlJecHi84euJ9_EDb-S-z7sJ3AJRsttWEHNkK7C1trlIO7sJOMec5eJ8bpNw8gjhGNO6qGZZPPH9i70PUFWi2jv7RslMoE2LgvvAwscbJ-Y6b17CP6nIvUzMlpRihV73r8Rpj9WkgT16bzhzA5Pvry9oSnAQzciUp2vEbwkqtY-eiNjgLhgi1LN1SeWq6tIa6uSiJmqnCNqUoXEIxpJ72OUqta5eIRDNrLNjwGVmtpZe4rGxEUeCNUEYM0KpZGK2-FzeDF6qCa2ZJno8H8hDazWd_MDA7pFG_WEDt2_wB3v0nGhi9ixEVf5POIImKSb7xEv2NsKKLL65jBK9KBhmy4uzLOpFYEFJXYsJqRkrVApDscZrC3UpMmGfe8EUTrRqxDRQYvb1Tnr2I_-d-FT-FuQROG-yq2PRh0V4vwDGFPZ58nrb8G6Hz7rg
  priority: 102
  providerName: Unpaywall
Title Malicious URL Detection with Advanced Machine Learning and Optimization-Supported Deep Learning Models
URI https://www.proquest.com/docview/3254470602
https://doi.org/10.3390/app151810090
https://doaj.org/article/10718257d0f041788ad5794abe2fc07f
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOUAPiBZQA2XlA89DpCSOE_u4hS4VYpeqYqVyivzsZRtW3VRV_z0ziVsiIdFLj7Esa-R5xzPfALzVNqjaKJ6id5VpqYVJpa5dyjNrC6Wlc4IanOeL6mhZfjsVp6NRX1QTNsADDxeHWo3WE-XKZSErc0zYtBMoQ9r4ItisDmR9M6lGyVRvg1VO0FVDpTvHvJ7eg9G54VpG5nfkg3qo_n8N8jY8vmzX-vpKr1YjjzN7Bk9jqMimA4k78MC3u7A9AhDchZ2omhv2MeJHf3oOYY6xtaXaVrY8-c6--K4vt2oZ_XNl0_joz-Z9GaVnEWH1jOnWsR9oQc5ja2ZKEz-pFtfhGX79dyPNT1ttXsBydvjz81EaxymklleiS2sMRTIZKhecVoGj8zdlaXPpqIHaaELeqgRGQBXu0VVpPYZWygqnglCylhl_CVvt79bvAauVMCJzlQno4p3msgheaBlKraQz3CTw7uaCm_WAmtFgtkGMaMaMSOCAbv92D2Fd9wsoAU2UgOYuCUjgA_GuIY3sLrTVsbEASSVsq2YqRc0xbs3zBPZv2NtEVd00nEDaCEOoSOD9Lcv_S_ar-yD7NTwpaJZwX6-2D1vdxaV_gwFOZybwUM6-TuDRweHi-GTSSzZ-LRfH019_AN_o-fI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QLSACBTqA-XjEJGN48Q-VGj7pS3dXVDVlXoLjh33smSX3VRV_xy_jZmss10JqbdeI8eyPPa8sf3mDcAHbZzKCsVDRFcZJloUodSZDXlkTKy0tFZQgvNgmPZGyfcrcbUGf9tcGKJVtj6xcdR2YuiO_CsnLS2Seom_Tf-EVDWKXlfbEhral1awB43EmE_sOC_vbvEINz84O0Z778fx6cnlUS_0VQZCw1NRhxkidCRdap3VynHExCJJTEdayisuNAlSpQIDgxTb6DQxJUYcygirnMDzuow49vsENhKeKDz8bRyeDH9eLG95SHVTdqIF455zFdG7NIIsfosIBlawsCkZ8D8wbMHmTTXVd7d6PF5BvtPn8MyHrKy7WGPbsFZWO7C1ImS4A9veRczZZ69j_eUFuAHG-IY4tmx00WfHZd3QvipGd7-s68kHbNDQOUvmlV6vma4s-4Ge7LdPEQ2p8ihxgi32UU7vG1Idt_H8JYweZcJfwXo1qcrXwDIlChHZtHAYaljNZexKoaVLtJK24EUA--0E59OFekeOpx4yRL5qiAAOafaXbUhzu_kwmV3nfgvjj4jj6OFs5HCImZTaCvRmuihjZ6LMBfCJbJeTZ6hn2mif4IBDJY2tvCtFxjF-7nQC2G3Nm3uXMc_vF3gAH5cmf3DYbx7uZw82e5eDft4_G56_hacxVS5u2HG7sF7Pbsp3GE7VxXu_Zhn8euxt8g_BFy8q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgE9IFpABAr4QPk4RM3GceIcEFpYlpZ2C0Ks1FvwZy9LdtlNVfWv8euYyTrblZB66zVyLMtjzxvbb94AvFLGl4UueYzoKuNMCR1LVdiYJ8akpZLWCkpwHp3kB-Ps66k43YC_XS4M0So7n9g6ajs1dEe-z0lLi6Re0n0faBHfB8MPsz8xVZCil9aunMZyiRy5yws8vi3eHw7Q1ntpOvz889NBHCoMxIbnookLROdE-tx6q0rPEQ91lpmetJRTrBWJUeUCg4Ic26g8Mw6jjdIIW3qBZ3WZcOz3FtwuSMWdstSHX1b3O6S3KXvJkmvPeZnQizTCK35LCADWULAtFvA_JGzB3fN6pi4v1GSyhnnDB3A_BKusv1xd27Dh6h3YWpMw3IHt4BwW7G1QsH73EPwIo3tD7Fo2_nHMBq5pCV81o1tf1g-0AzZqiZyOBY3XM6Zqy76hD_sdkkNjqjlKbGCLfbjZVUOq4DZZPILxjUz3Y9isp7V7AqwohRaJzbXHIMMqLlPvhJI-U6W0musI9roJrmZL3Y4KzztkiGrdEBF8pNlftSG17fbDdH5Whc2LPyKCo2-zicchFlIqK9CPKe1Sb5LCR_CGbFeRT2jmyqiQ2oBDJXWtqi9FwTFy7vUi2O3MWwVnsaiulnYEr1cmv3bYT6_v5yXcwc1RHR-eHD2DeymVLG5pcbuw2czP3XOMoxr9ol2wDH7d9A75B2dXLMQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0UGgBESjIh_I6uMrGcWIft9CqQmxBiJXKKfKTQ7fpqpsVgl_fmay3LFQCrpETjex5fBPPfAOwb1zUtdWCY3RVvDTScmVqz0XuXKGN8l5Sg_P4tDqZlO_P5NkG7K96Ydbu7wWm43SNizFJDREKYGK-WUlE3APYnJx-Gn2luXGYhnN0xPWypv3WK79Fm56U_7br3YI7i3Zmfnw30-labDm-B0crqZYlJecHi84euJ9_EDb-S-z7sJ3AJRsttWEHNkK7C1trlIO7sJOMec5eJ8bpNw8gjhGNO6qGZZPPH9i70PUFWi2jv7RslMoE2LgvvAwscbJ-Y6b17CP6nIvUzMlpRihV73r8Rpj9WkgT16bzhzA5Pvry9oSnAQzciUp2vEbwkqtY-eiNjgLhgi1LN1SeWq6tIa6uSiJmqnCNqUoXEIxpJ72OUqta5eIRDNrLNjwGVmtpZe4rGxEUeCNUEYM0KpZGK2-FzeDF6qCa2ZJno8H8hDazWd_MDA7pFG_WEDt2_wB3v0nGhi9ixEVf5POIImKSb7xEv2NsKKLL65jBK9KBhmy4uzLOpFYEFJXYsJqRkrVApDscZrC3UpMmGfe8EUTrRqxDRQYvb1Tnr2I_-d-FT-FuQROG-yq2PRh0V4vwDGFPZ58nrb8G6Hz7rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malicious+URL+Detection+with+Advanced+Machine+Learning+and+Optimization-Supported+Deep+Learning+Models&rft.jtitle=Applied+sciences&rft.au=Fuat+T%C3%BCrk&rft.au=Mahmut+K%C4%B1l%C4%B1%C3%A7aslan&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=18&rft.spage=10090&rft_id=info:doi/10.3390%2Fapp151810090&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_10718257d0f041788ad5794abe2fc07f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon