Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm

•Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by ANFIS–PSO model.•The developed framework could accurately estimate the biomass pyrolysis behavior.•A practical and handy software was designed fo...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 253; pp. 189 - 198
Main Authors Aghbashlo, Mortaza, Tabatabaei, Meisam, Nadian, Mohammad Hossein, Davoodnia, Vandad, Soltanian, Salman
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0016-2361
1873-7153
DOI10.1016/j.fuel.2019.04.169

Cover

Abstract •Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by ANFIS–PSO model.•The developed framework could accurately estimate the biomass pyrolysis behavior.•A practical and handy software was designed for predicting biomass pyrolysis kinetics. In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel production processes. Experimental thermogravimetric analysis (TGA) is usually employed to peruse the pyrolysis kinetics of biomass samples. In addition to that, the main constituents of biomass (i.e., cellulose, hemicellulose, lignin) as well as the process heating rate can excellently reflect its pyrolysis characteristics through modeling techniques. However, the application of statistical and phenomenological models for extremely complex and highly nonlinear phenomena like lignocellulose pyrolysis is challenging. To address this challenge, adaptive network-based fuzzy inference system (ANFIS) was consolidated with particle swarm optimization (PSO) algorithm to prognosticate the kinetic constants of lignocellulose pyrolysis. More specifically, the PSO algorithm was applied to tune membership function parameters of the ANFIS model. Three ANFIS−PSO topologies were designed and trained to estimate the kinetic constants of lignocellulose pyrolysis, i.e., energy of activation, pre-exponential coefficient, and order of reaction. The input variables of the developed models were biomass main constituents and the process heating rate. The developed models could predict the kinetic constants of lignocellulosic biomass pyrolysis with an R2 > 0.970, an MAPE < 3.270%, and an RMSE < 5.006. The pyrolysis behaviors of three different biomass feedstocks (unseen data to the developed models) were adequately prognosticated with an R2 > 0.91 using the developed models, further confirming their fidelity. Overall, the lignocellulose pyrolysis behavior could be reliably and accurately estimated using the trained ANFIS–PSO approaches as an alternative to the TGA measurements. In order to make practical use of the trained models, a handy freely-accessible software platform was designed using the selected ANFIS−PSO models for approximating biomass pyrolysis kinetics.
AbstractList •Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by ANFIS–PSO model.•The developed framework could accurately estimate the biomass pyrolysis behavior.•A practical and handy software was designed for predicting biomass pyrolysis kinetics. In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel production processes. Experimental thermogravimetric analysis (TGA) is usually employed to peruse the pyrolysis kinetics of biomass samples. In addition to that, the main constituents of biomass (i.e., cellulose, hemicellulose, lignin) as well as the process heating rate can excellently reflect its pyrolysis characteristics through modeling techniques. However, the application of statistical and phenomenological models for extremely complex and highly nonlinear phenomena like lignocellulose pyrolysis is challenging. To address this challenge, adaptive network-based fuzzy inference system (ANFIS) was consolidated with particle swarm optimization (PSO) algorithm to prognosticate the kinetic constants of lignocellulose pyrolysis. More specifically, the PSO algorithm was applied to tune membership function parameters of the ANFIS model. Three ANFIS−PSO topologies were designed and trained to estimate the kinetic constants of lignocellulose pyrolysis, i.e., energy of activation, pre-exponential coefficient, and order of reaction. The input variables of the developed models were biomass main constituents and the process heating rate. The developed models could predict the kinetic constants of lignocellulosic biomass pyrolysis with an R2 > 0.970, an MAPE < 3.270%, and an RMSE < 5.006. The pyrolysis behaviors of three different biomass feedstocks (unseen data to the developed models) were adequately prognosticated with an R2 > 0.91 using the developed models, further confirming their fidelity. Overall, the lignocellulose pyrolysis behavior could be reliably and accurately estimated using the trained ANFIS–PSO approaches as an alternative to the TGA measurements. In order to make practical use of the trained models, a handy freely-accessible software platform was designed using the selected ANFIS−PSO models for approximating biomass pyrolysis kinetics.
In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel production processes. Experimental thermogravimetric analysis (TGA) is usually employed to peruse the pyrolysis kinetics of biomass samples. In addition to that, the main constituents of biomass (i.e., cellulose, hemicellulose, lignin) as well as the process heating rate can excellently reflect its pyrolysis characteristics through modeling techniques. However, the application of statistical and phenomenological models for extremely complex and highly nonlinear phenomena like lignocellulose pyrolysis is challenging. To address this challenge, adaptive network-based fuzzy inference system (ANFIS) was consolidated with particle swarm optimization (PSO) algorithm to prognosticate the kinetic constants of lignocellulose pyrolysis. More specifically, the PSO algorithm was applied to tune membership function parameters of the ANFIS model. Three ANFIS−PSO topologies were designed and trained to estimate the kinetic constants of lignocellulose pyrolysis, i.e., energy of activation, pre-exponential coefficient, and order of reaction. The input variables of the developed models were biomass main constituents and the process heating rate. The developed models could predict the kinetic constants of lignocellulosic biomass pyrolysis with an R2 > 0.970, an MAPE < 3.270%, and an RMSE < 5.006. The pyrolysis behaviors of three different biomass feedstocks (unseen data to the developed models) were adequately prognosticated with an R2 > 0.91 using the developed models, further confirming their fidelity. Overall, the lignocellulose pyrolysis behavior could be reliably and accurately estimated using the trained ANFIS–PSO approaches as an alternative to the TGA measurements. In order to make practical use of the trained models, a handy freely-accessible software platform was designed using the selected ANFIS−PSO models for approximating biomass pyrolysis kinetics.
Author Aghbashlo, Mortaza
Tabatabaei, Meisam
Soltanian, Salman
Davoodnia, Vandad
Nadian, Mohammad Hossein
Author_xml – sequence: 1
  givenname: Mortaza
  surname: Aghbashlo
  fullname: Aghbashlo, Mortaza
  email: maghbashlo@ut.ac.ir
  organization: Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
– sequence: 2
  givenname: Meisam
  surname: Tabatabaei
  fullname: Tabatabaei, Meisam
  email: meisam_tabatabaei@abrii.ac.ir
  organization: Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
– sequence: 3
  givenname: Mohammad Hossein
  surname: Nadian
  fullname: Nadian, Mohammad Hossein
  organization: Brain Engineering Research Center, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
– sequence: 4
  givenname: Vandad
  surname: Davoodnia
  fullname: Davoodnia, Vandad
  organization: Brain Engineering Research Center, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
– sequence: 5
  givenname: Salman
  surname: Soltanian
  fullname: Soltanian, Salman
  organization: Biofuel Research Team (BRTeam), Karaj, Iran
BookMark eNp9kEtrGzEURkVwII7TP9CVoGtP9PBIM9BNME0TCE0gyVpopCtHRh65kibgf1-57qoLry5cvnMf5xrNxjgCQl8paSih4nbbuAlCwwjtG7JqqOgv0Jx2ki8lbfkMzUlNLRkX9Apd57wlhMiuXc2Re0lxM8ZcvNHFxxFHh4OvHQMhTCFmb_Dg407njPeHFMMh-4wH-NCfPiY8ZT9u8N2v-8dXvIsWAi7TCBYPB_zy-ox12MTky8fuBl06HTJ8-VcX6P3-x9v6Yfn0_PNxffe0NFy0pR5riBSu75jU3NYLZSd6JiwYaMVAjWSt5oPlQyt6S4BT29NhRY2zhGvnCF-gb6e5-xR_T5CL2sYpjXWlYkwwWTUwWVPslDIp5pzAqX3yO50OihJ19Km26uhTHX0qslLVZ4W6_yDjy19nJWkfzqPfTyjU1z89JJWNh9GA9QlMUTb6c_gf1sKUhQ
CitedBy_id crossref_primary_10_2139_ssrn_3998957
crossref_primary_10_1155_2019_8438639
crossref_primary_10_1038_s41598_024_73329_4
crossref_primary_10_1016_j_jaap_2021_105176
crossref_primary_10_1016_j_jcis_2023_11_150
crossref_primary_10_1016_j_renene_2020_11_122
crossref_primary_10_1016_j_matpr_2022_05_313
crossref_primary_10_1016_j_biortech_2023_128846
crossref_primary_10_1016_j_proci_2022_08_057
crossref_primary_10_1080_15567036_2022_2044412
crossref_primary_10_1016_j_energy_2021_123041
crossref_primary_10_1016_j_enconman_2020_112792
crossref_primary_10_1016_j_renene_2022_06_107
crossref_primary_10_1038_s41598_021_86701_5
crossref_primary_10_1155_2022_6491745
crossref_primary_10_1016_j_energy_2022_125734
crossref_primary_10_1016_j_eswa_2022_116965
crossref_primary_10_1016_j_energy_2023_127752
crossref_primary_10_1515_npprj_2023_0072
crossref_primary_10_2166_wcc_2022_435
crossref_primary_10_1016_j_ijhydene_2020_10_267
crossref_primary_10_1016_j_jclepro_2023_135881
crossref_primary_10_1016_j_jclepro_2022_133025
crossref_primary_10_1007_s10311_024_01767_7
crossref_primary_10_1016_j_cej_2021_129331
crossref_primary_10_1016_j_grets_2024_100077
crossref_primary_10_1016_j_cej_2021_129749
crossref_primary_10_1016_j_fuel_2021_122812
crossref_primary_10_1016_j_renene_2021_11_114
crossref_primary_10_1111_gcbb_12816
crossref_primary_10_1016_j_jclepro_2020_122462
crossref_primary_10_1016_j_jclepro_2020_124089
crossref_primary_10_1016_j_scp_2022_100840
crossref_primary_10_1016_j_energy_2023_129928
crossref_primary_10_1016_j_energy_2023_128316
crossref_primary_10_1016_j_jece_2022_108025
crossref_primary_10_1016_j_rser_2021_111748
crossref_primary_10_1016_j_rser_2021_111902
crossref_primary_10_3390_en18010016
crossref_primary_10_1016_j_energy_2021_121363
crossref_primary_10_3390_ma14216373
crossref_primary_10_1016_j_energy_2023_126816
crossref_primary_10_1016_j_jclepro_2019_117762
crossref_primary_10_1016_j_energy_2023_126817
crossref_primary_10_1007_s10973_023_12631_1
crossref_primary_10_1021_acs_iecr_3c01662
crossref_primary_10_1016_j_ijmecsci_2019_105197
crossref_primary_10_2478_ahr_2022_0020
crossref_primary_10_1016_j_jece_2024_114571
crossref_primary_10_3390_molecules26123727
crossref_primary_10_1016_j_fuel_2022_127123
crossref_primary_10_1016_j_cej_2022_136730
crossref_primary_10_1016_j_enconman_2020_112531
crossref_primary_10_1007_s12649_022_01694_0
crossref_primary_10_1016_j_jclepro_2023_137329
crossref_primary_10_1016_j_rser_2020_110173
crossref_primary_10_1016_j_pecs_2021_100904
crossref_primary_10_3389_fenrg_2021_684234
crossref_primary_10_1002_ese3_961
crossref_primary_10_1021_acs_energyfuels_2c01006
crossref_primary_10_1016_j_fuel_2021_122839
crossref_primary_10_1016_j_psep_2023_01_064
crossref_primary_10_1016_j_chemosphere_2021_132559
crossref_primary_10_3390_en16145302
crossref_primary_10_1016_j_jhazmat_2020_124369
crossref_primary_10_1007_s13369_024_09930_6
crossref_primary_10_1016_j_jaap_2023_106030
crossref_primary_10_1016_j_biortech_2022_128137
crossref_primary_10_1016_j_energy_2023_127177
crossref_primary_10_1016_j_biortech_2021_126215
crossref_primary_10_1016_j_jechem_2023_02_020
crossref_primary_10_1016_j_dche_2023_100103
crossref_primary_10_1016_j_enconman_2022_115613
crossref_primary_10_1016_j_fuel_2022_124344
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119308
crossref_primary_10_1016_j_indcrop_2022_115501
crossref_primary_10_48130_EMST_2023_0009
crossref_primary_10_1007_s11831_024_10185_5
crossref_primary_10_1016_j_energy_2023_127524
crossref_primary_10_1016_j_renene_2021_01_111
crossref_primary_10_1016_j_fuel_2019_116251
crossref_primary_10_1016_j_enconman_2021_115199
crossref_primary_10_33889_IJMEMS_2024_9_1_002
crossref_primary_10_1039_D4GC06034B
crossref_primary_10_1002_bbb_2417
crossref_primary_10_1016_j_energy_2023_129705
Cites_doi 10.1016/j.fuproc.2015.05.013
10.1016/j.jclepro.2017.07.068
10.1002/ep.11954
10.1016/j.jaap.2015.11.010
10.1016/j.energy.2018.02.063
10.1002/bbb.1801
10.1109/21.256541
10.1016/j.energy.2018.02.082
10.1016/j.jclepro.2018.06.245
10.1016/j.fuel.2015.10.118
10.1016/j.enconman.2018.08.050
10.1016/j.indcrop.2012.10.013
10.1016/j.wasman.2017.03.020
10.1016/j.indcrop.2013.03.011
10.1080/15567036.2017.1413453
10.1016/j.energy.2017.05.041
10.1016/j.rser.2017.04.109
10.1016/j.enconman.2016.07.027
10.1016/j.biortech.2017.04.130
10.18331/BRJ2015.1.3.5
10.1016/j.enconman.2013.11.022
10.1016/S0196-8904(03)00177-8
10.1016/j.fuel.2016.12.046
10.1016/j.fuel.2018.02.126
10.1016/j.biortech.2017.12.029
10.1016/j.renene.2014.01.041
10.1016/j.fuel.2018.07.095
10.1016/j.enconman.2018.01.044
10.1016/j.jclepro.2017.08.173
10.1016/j.biortech.2018.01.132
10.1016/j.enconman.2016.07.030
10.1016/j.enconman.2018.11.071
10.1016/S0140-6736(18)32594-7
10.1016/j.wasman.2019.02.029
10.1080/07373937.2015.1036288
10.1016/j.biortech.2017.11.077
10.1016/j.rser.2018.12.056
10.18331/BRJ2018.5.4.2
10.1016/j.fuel.2011.02.003
10.1016/j.biortech.2017.02.119
10.1016/j.enconman.2018.03.057
10.1016/j.renene.2018.06.103
10.1016/j.enconman.2017.09.017
10.1016/S0140-6736(17)32464-9
10.1016/j.enconman.2018.02.086
10.1016/j.biortech.2018.09.021
10.1016/j.jaap.2017.12.007
10.1016/j.enconman.2015.12.047
10.1016/j.joei.2016.09.001
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Oct 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 1, 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2019.04.169
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
EndPage 198
ExternalDocumentID 10_1016_j_fuel_2019_04_169
S0016236119307422
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c365t-71c076f9827a3d785786926dece56b1c725a3bd3b569d0e31d91b41cfd03aff03
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Wed Aug 13 11:30:26 EDT 2025
Wed Oct 01 04:07:34 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Fri Feb 23 02:49:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive network-based fuzzy inference system
Pyrolysis kinetics
Thermogravimetric analysis
Lignocellulosic biomass
Particle swarm optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-71c076f9827a3d785786926dece56b1c725a3bd3b569d0e31d91b41cfd03aff03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2262700127
PQPubID 2045474
PageCount 10
ParticipantIDs proquest_journals_2262700127
crossref_primary_10_1016_j_fuel_2019_04_169
crossref_citationtrail_10_1016_j_fuel_2019_04_169
elsevier_sciencedirect_doi_10_1016_j_fuel_2019_04_169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Luo, Guda, Steele, Mitchell, Yu (b0080) 2016; 112
Mandegari, Farzad, van Rensburg, Görgens (b0100) 2017; 11
Peters (b0105) 2011; 90
Parapati, Guda, Penmetsa, Steele, Tanneru (b0050) 2014; 33
Özsin, Pütün (b0265) 2017; 64
Aghbashlo, Hosseinpour, Tabatabaei, Mojarab (b0170) 2019; 235
Chong, Mong, Ng, Chong, Ani, Lam (b0215) 2019; 180
Odetoye, Onifade, AbuBakar, Titiloye (b0140) 2013; 44
Imran, Bramer, Brem, Seshan (b0090) 2018; 5
Watts, Amann, Arnell, Ayeb-Karlsson, Belesova, Berry (b0020) 2018; 392
Sumathi, Paneerselvam (b0250) 2010
Loy, Yusup, Chin, Gan, Shahbaz, Acda (b0125) 2018; 197
Yaman (b0115) 2004; 45
Önal, Uzun, Pütün (b0095) 2014; 78
Chandrasekaran, Ramachandran, Subbiah (b0230) 2017; 233
Aghbashlo, Tabatabaei, Hosseinpour (b0005) 2018; 164
Aghbashlo, Tabatabaei, Hosseinpour, Rastegari, Ghaziaskar (b0180) 2018; 160
Aghbashlo, Tabatabaei, Khalife, Roodbar Shojaei, Dadak (b0040) 2018; 149
Hosseinpour, Aghbashlo, Tabatabaei (b0165) 2018; 222
Hosseinzadeh-Bandbafha, Tabatabaei, Aghbashlo, Khanali, Demirbas (b0035) 2018; 174
Mandegari, Farzad, Görgens (b0085) 2018; 165
Odetoye, Onifade, AbuBakar, Titiloye (b0070) 2014; 1
Fermoso, Mašek (b0220) 2018; 130
Rajaeifar, Hemayati, Tabatabaei, Aghbashlo, Mahmoudi (b0010) 2019; 103
Aghbashlo, Mandegari, Tabatabaei, Farzad, Mojarab Soufiyan, Görgens (b0045) 2018; 149
Barati, Aghbashlo, Ghanavati, Tabatabaei, Sharifi, Javadirad (b0065) 2017; 151
Kennedy (b0245) 2011
Titiloye, Bakar, Odetoye (b0135) 2013; 47
Liang, Cheng, Si, Cao, Jiang, Han (b0255) 2014; 68
Aghbashlo, Hosseinpour, Tabatabaei, Dadak (b0160) 2017; 132
Aghbashlo, Hosseinpour, Mujumdar (b0145) 2015; 33
Betiku, Odude, Ishola, Bamimore, Osunleke, Okeleye (b0195) 2016; 124
Mohammed, Abakr, Hui, Alaba, Morris, Ibrahim (b0120) 2017; 164
Jang (b0240) 1993; 23
Hosseinpour, Aghbashlo, Tabatabaei, Khalife (b0030) 2016; 124
Farzad, Mandegari, Görgens (b0055) 2017; 239
Watts, Amann, Ayeb-Karlsson, Belesova, Bouley, Boykoff (b0025) 2018; 391
Gupta, Demirbas (b0110) 2010
Lopes, Pereira, Tannous (b0235) 2018; 270
Mishra, Mohanty (b0200) 2018; 251
Sunphorka, Chalermsinsuwan, Piumsomboon (b0150) 2017; 193
Aghbashlo, Tabatabaei, Soltanian, Ghanavati, Dadak (b0060) 2019; 87
Imran, Bramer, Seshan, Brem (b0075) 2016; 117
Uzun, Yaman (b0205) 2017; 90
Miraboutalebi, Kazemi, Bahrami (b0155) 2016; 166
Suleymani, Bemani (b0190) 2018; 40
Balasundram, Ibrahim, Kasmani, Hamid, Isha, Hasbullah (b0130) 2017; 167
Kaur, Gera, Jha, Bhaskar (b0225) 2018; 250
Almasi, Soltanian, Hosseinpour, Aghbashlo, Tabatabaei (b0185) 2018
Yiin, Yusup, Quitain, Uemura, Sasaki, Kida (b0210) 2018; 255
Cortés, Bridgwater (b0260) 2015; 138
Aghbashlo, Hosseinpour, Tabatabaei, Rastegari, Ghaziaskar (b0175) 2018; 130
Rajaeifar, Ghanavati, Dashti, Heijungs, Aghbashlo, Tabatabaei (b0015) 2017; 79
Sunphorka (10.1016/j.fuel.2019.04.169_b0150) 2017; 193
Rajaeifar (10.1016/j.fuel.2019.04.169_b0010) 2019; 103
Aghbashlo (10.1016/j.fuel.2019.04.169_b0060) 2019; 87
Almasi (10.1016/j.fuel.2019.04.169_b0185) 2018
Barati (10.1016/j.fuel.2019.04.169_b0065) 2017; 151
Suleymani (10.1016/j.fuel.2019.04.169_b0190) 2018; 40
Aghbashlo (10.1016/j.fuel.2019.04.169_b0145) 2015; 33
Chong (10.1016/j.fuel.2019.04.169_b0215) 2019; 180
Balasundram (10.1016/j.fuel.2019.04.169_b0130) 2017; 167
Aghbashlo (10.1016/j.fuel.2019.04.169_b0045) 2018; 149
Chandrasekaran (10.1016/j.fuel.2019.04.169_b0230) 2017; 233
Watts (10.1016/j.fuel.2019.04.169_b0025) 2018; 391
Rajaeifar (10.1016/j.fuel.2019.04.169_b0015) 2017; 79
Titiloye (10.1016/j.fuel.2019.04.169_b0135) 2013; 47
Kennedy (10.1016/j.fuel.2019.04.169_b0245) 2011
Hosseinpour (10.1016/j.fuel.2019.04.169_b0030) 2016; 124
Jang (10.1016/j.fuel.2019.04.169_b0240) 1993; 23
Uzun (10.1016/j.fuel.2019.04.169_b0205) 2017; 90
Aghbashlo (10.1016/j.fuel.2019.04.169_b0160) 2017; 132
Aghbashlo (10.1016/j.fuel.2019.04.169_b0040) 2018; 149
Yiin (10.1016/j.fuel.2019.04.169_b0210) 2018; 255
Kaur (10.1016/j.fuel.2019.04.169_b0225) 2018; 250
Watts (10.1016/j.fuel.2019.04.169_b0020) 2018; 392
Hosseinzadeh-Bandbafha (10.1016/j.fuel.2019.04.169_b0035) 2018; 174
Loy (10.1016/j.fuel.2019.04.169_b0125) 2018; 197
Aghbashlo (10.1016/j.fuel.2019.04.169_b0005) 2018; 164
Sumathi (10.1016/j.fuel.2019.04.169_b0250) 2010
Aghbashlo (10.1016/j.fuel.2019.04.169_b0170) 2019; 235
Mishra (10.1016/j.fuel.2019.04.169_b0200) 2018; 251
Imran (10.1016/j.fuel.2019.04.169_b0075) 2016; 117
Önal (10.1016/j.fuel.2019.04.169_b0095) 2014; 78
Peters (10.1016/j.fuel.2019.04.169_b0105) 2011; 90
Betiku (10.1016/j.fuel.2019.04.169_b0195) 2016; 124
Parapati (10.1016/j.fuel.2019.04.169_b0050) 2014; 33
Luo (10.1016/j.fuel.2019.04.169_b0080) 2016; 112
Özsin (10.1016/j.fuel.2019.04.169_b0265) 2017; 64
Liang (10.1016/j.fuel.2019.04.169_b0255) 2014; 68
Imran (10.1016/j.fuel.2019.04.169_b0090) 2018; 5
Cortés (10.1016/j.fuel.2019.04.169_b0260) 2015; 138
Aghbashlo (10.1016/j.fuel.2019.04.169_b0180) 2018; 160
Odetoye (10.1016/j.fuel.2019.04.169_b0140) 2013; 44
Lopes (10.1016/j.fuel.2019.04.169_b0235) 2018; 270
Odetoye (10.1016/j.fuel.2019.04.169_b0070) 2014; 1
Hosseinpour (10.1016/j.fuel.2019.04.169_b0165) 2018; 222
Farzad (10.1016/j.fuel.2019.04.169_b0055) 2017; 239
Fermoso (10.1016/j.fuel.2019.04.169_b0220) 2018; 130
Aghbashlo (10.1016/j.fuel.2019.04.169_b0175) 2018; 130
Mandegari (10.1016/j.fuel.2019.04.169_b0100) 2017; 11
Mandegari (10.1016/j.fuel.2019.04.169_b0085) 2018; 165
Miraboutalebi (10.1016/j.fuel.2019.04.169_b0155) 2016; 166
Yaman (10.1016/j.fuel.2019.04.169_b0115) 2004; 45
Mohammed (10.1016/j.fuel.2019.04.169_b0120) 2017; 164
Gupta (10.1016/j.fuel.2019.04.169_b0110) 2010
References_xml – volume: 44
  start-page: 62
  year: 2013
  end-page: 66
  ident: b0140
  article-title: Thermochemical characterisation of Parinari polyandra Benth fruit shell
  publication-title: Ind Crops Prod
– volume: 160
  start-page: 251
  year: 2018
  end-page: 261
  ident: b0180
  article-title: Multi-objective exergy-based optimization of continuous glycerol ketalization to synthesize solketal as a biodiesel additive in subcritical acetone
  publication-title: Energy Convers Manage
– volume: 167
  start-page: 218
  year: 2017
  end-page: 228
  ident: b0130
  article-title: Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil
  publication-title: J Clean Prod
– volume: 149
  start-page: 967
  year: 2018
  end-page: 978
  ident: b0040
  article-title: Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide
  publication-title: Energy
– volume: 164
  start-page: 385
  year: 2018
  end-page: 398
  ident: b0005
  article-title: On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor
  publication-title: Energy Convers Manage
– volume: 33
  start-page: 726
  year: 2014
  end-page: 731
  ident: b0050
  article-title: Single stage hydroprocessing of pyrolysis oil in a continuous packed-bed reactor
  publication-title: Environ Prog Sustain Energy
– volume: 197
  start-page: 1231
  year: 2018
  end-page: 1243
  ident: b0125
  article-title: Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: kinetics modelling and product gas analysis
  publication-title: J Clean Prod
– volume: 124
  start-page: 219
  year: 2016
  end-page: 230
  ident: b0195
  article-title: Predictive capability evaluation of RSM, ANFIS and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process
  publication-title: Energy Convers Manage
– volume: 392
  start-page: 2479
  year: 2018
  end-page: 2514
  ident: b0020
  article-title: The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come
  publication-title: Lancet
– volume: 78
  start-page: 704
  year: 2014
  end-page: 710
  ident: b0095
  article-title: Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene
  publication-title: Energy Convers Manage
– volume: 149
  start-page: 623
  year: 2018
  end-page: 638
  ident: b0045
  article-title: Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production
  publication-title: Energy
– volume: 1
  start-page: 85
  year: 2014
  end-page: 90
  ident: b0070
  article-title: Pyrolysis of Parinari polyandra Benth fruit shell for bio-oil production
  publication-title: Biofuel Res J
– volume: 11
  start-page: 971
  year: 2017
  end-page: 990
  ident: b0100
  article-title: Multi-criteria analysis of a biorefinery for co-production of lactic acid and ethanol from sugarcane lignocellulose
  publication-title: Biofuels Bioprod Biorefin
– volume: 5
  start-page: 872
  year: 2018
  end-page: 885
  ident: b0090
  article-title: An overview of catalysts in biomass pyrolysis for production of biofuels
  publication-title: Biofuel Res J
– volume: 130
  start-page: 735
  year: 2018
  end-page: 748
  ident: b0175
  article-title: Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent
  publication-title: Renew Energy
– volume: 255
  start-page: 189
  year: 2018
  end-page: 197
  ident: b0210
  article-title: Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil
  publication-title: Bioresour Technol
– volume: 130
  start-page: 358
  year: 2018
  end-page: 367
  ident: b0220
  article-title: Thermochemical decomposition of coffee ground residues by TG-MS: a kinetic study
  publication-title: J Anal Appl Pyrolysis
– volume: 47
  start-page: 199
  year: 2013
  end-page: 203
  ident: b0135
  article-title: Thermochemical characterisation of agricultural wastes from West Africa
  publication-title: Ind Crops Prod
– volume: 251
  start-page: 63
  year: 2018
  end-page: 74
  ident: b0200
  article-title: Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis
  publication-title: Bioresour Technol
– volume: 165
  start-page: 76
  year: 2018
  end-page: 91
  ident: b0085
  article-title: A new insight into sugarcane biorefineries with fossil fuel co-combustion: techno-economic analysis and life cycle assessment
  publication-title: Energy Convers Manage
– year: 2010
  ident: b0110
  article-title: Gasoline, diesel, and ethanol biofuels from grasses and plants
– volume: 79
  start-page: 414
  year: 2017
  end-page: 439
  ident: b0015
  article-title: Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review
  publication-title: Renew Sustain Energy Rev
– volume: 235
  start-page: 100
  year: 2019
  end-page: 112
  ident: b0170
  article-title: Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques
  publication-title: Fuel
– volume: 117
  start-page: 236
  year: 2016
  end-page: 246
  ident: b0075
  article-title: Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts
  publication-title: J Anal Appl Pyrolysis
– volume: 90
  start-page: 2301
  year: 2011
  end-page: 2314
  ident: b0105
  article-title: Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data
  publication-title: Fuel
– volume: 239
  start-page: 37
  year: 2017
  end-page: 48
  ident: b0055
  article-title: Integrated techno-economic and environmental analysis of butadiene production from biomass
  publication-title: Bioresour Technol
– volume: 90
  start-page: 825
  year: 2017
  end-page: 837
  ident: b0205
  article-title: Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis
  publication-title: J Energy Inst
– volume: 87
  start-page: 485
  year: 2019
  end-page: 498
  ident: b0060
  article-title: Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset
  publication-title: Waste Manage
– volume: 112
  start-page: 319
  year: 2016
  end-page: 327
  ident: b0080
  article-title: Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type
  publication-title: Energy Convers Manage
– volume: 132
  start-page: 65
  year: 2017
  end-page: 78
  ident: b0160
  article-title: Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor
  publication-title: Energy
– volume: 40
  start-page: 288
  year: 2018
  end-page: 293
  ident: b0190
  article-title: Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of biomass
  publication-title: Energy Sources, Part A Recover Util Environ Eff
– volume: 174
  start-page: 579
  year: 2018
  end-page: 614
  ident: b0035
  article-title: A comprehensive review on the environmental impacts of diesel/biodiesel additives
  publication-title: Energy Convers Manage
– volume: 270
  start-page: 294
  year: 2018
  end-page: 302
  ident: b0235
  article-title: Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres
  publication-title: Bioresour Technol
– volume: 124
  start-page: 389
  year: 2016
  end-page: 398
  ident: b0030
  article-title: Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN)
  publication-title: Energy Convers Manage
– volume: 164
  start-page: 1430
  year: 2017
  end-page: 1445
  ident: b0120
  article-title: Recovery of clean energy precursors from Bambara groundnut waste via pyrolysis: kinetics, products distribution and optimisation using response surface methodology
  publication-title: J Clean Prod
– volume: 250
  start-page: 422
  year: 2018
  end-page: 428
  ident: b0225
  article-title: Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis
  publication-title: Bioresour Technol
– volume: 391
  start-page: 581
  year: 2018
  end-page: 630
  ident: b0025
  article-title: The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health
  publication-title: Lancet
– volume: 45
  start-page: 651
  year: 2004
  end-page: 671
  ident: b0115
  article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks
  publication-title: Energy Convers Manage
– volume: 222
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0165
  article-title: Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS)
  publication-title: Fuel
– volume: 193
  start-page: 142
  year: 2017
  end-page: 158
  ident: b0150
  article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents
  publication-title: Fuel
– volume: 103
  start-page: 423
  year: 2019
  end-page: 442
  ident: b0010
  article-title: A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply
  publication-title: Renew Sustain Energy Rev
– volume: 233
  start-page: 413
  year: 2017
  end-page: 422
  ident: b0230
  article-title: Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis
  publication-title: Bioresour Technol
– volume: 68
  start-page: 111
  year: 2014
  end-page: 117
  ident: b0255
  article-title: Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis
  publication-title: Renew Energy
– volume: 64
  start-page: 315
  year: 2017
  end-page: 326
  ident: b0265
  article-title: Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR
  publication-title: Waste Manage
– year: 2010
  ident: b0250
  article-title: Computational intelligence paradigms: theory & applications using MATLAB
– volume: 33
  start-page: 1397
  year: 2015
  end-page: 1462
  ident: b0145
  article-title: Application of artificial neural networks (ANNs) in drying technology: a comprehensive review
  publication-title: Dry Technol
– volume: 166
  start-page: 143
  year: 2016
  end-page: 151
  ident: b0155
  article-title: Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane number employing random forest and artificial neural networks: a new approach
  publication-title: Fuel
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b0240
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans Syst Man Cybern
– volume: 138
  start-page: 184
  year: 2015
  end-page: 193
  ident: b0260
  article-title: Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis
  publication-title: Fuel Process Technol
– start-page: 387
  year: 2018
  end-page: 417
  ident: b0185
  article-title: Advanced Soft Computing Techniques in Biogas Production Technology
  publication-title: Biogas Fundam. Process. Oper.
– volume: 180
  start-page: 1260
  year: 2019
  end-page: 1267
  ident: b0215
  article-title: Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis
  publication-title: Energy Convers Manage
– start-page: 760
  year: 2011
  end-page: 766
  ident: b0245
  article-title: Particle swarm optimization
  publication-title: Springer Encycl. Mach. Learn.
– volume: 151
  start-page: 753
  year: 2017
  end-page: 763
  ident: b0065
  article-title: Comprehensive exergy analysis of a gas engine-equipped anaerobic digestion plant producing electricity and biofertilizer from organic fraction of municipal solid waste
  publication-title: Energy Convers Manage
– volume: 138
  start-page: 184
  year: 2015
  ident: 10.1016/j.fuel.2019.04.169_b0260
  article-title: Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2015.05.013
– volume: 164
  start-page: 1430
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0120
  article-title: Recovery of clean energy precursors from Bambara groundnut waste via pyrolysis: kinetics, products distribution and optimisation using response surface methodology
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.07.068
– volume: 33
  start-page: 726
  year: 2014
  ident: 10.1016/j.fuel.2019.04.169_b0050
  article-title: Single stage hydroprocessing of pyrolysis oil in a continuous packed-bed reactor
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.11954
– volume: 117
  start-page: 236
  year: 2016
  ident: 10.1016/j.fuel.2019.04.169_b0075
  article-title: Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2015.11.010
– volume: 149
  start-page: 623
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0045
  article-title: Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.063
– volume: 11
  start-page: 971
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0100
  article-title: Multi-criteria analysis of a biorefinery for co-production of lactic acid and ethanol from sugarcane lignocellulose
  publication-title: Biofuels Bioprod Biorefin
  doi: 10.1002/bbb.1801
– start-page: 760
  year: 2011
  ident: 10.1016/j.fuel.2019.04.169_b0245
  article-title: Particle swarm optimization
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.1016/j.fuel.2019.04.169_b0240
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 149
  start-page: 967
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0040
  article-title: Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.082
– volume: 197
  start-page: 1231
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0125
  article-title: Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: kinetics modelling and product gas analysis
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.06.245
– volume: 166
  start-page: 143
  year: 2016
  ident: 10.1016/j.fuel.2019.04.169_b0155
  article-title: Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane number employing random forest and artificial neural networks: a new approach
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.10.118
– volume: 174
  start-page: 579
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0035
  article-title: A comprehensive review on the environmental impacts of diesel/biodiesel additives
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.08.050
– volume: 44
  start-page: 62
  year: 2013
  ident: 10.1016/j.fuel.2019.04.169_b0140
  article-title: Thermochemical characterisation of Parinari polyandra Benth fruit shell
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2012.10.013
– volume: 64
  start-page: 315
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0265
  article-title: Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2017.03.020
– volume: 47
  start-page: 199
  year: 2013
  ident: 10.1016/j.fuel.2019.04.169_b0135
  article-title: Thermochemical characterisation of agricultural wastes from West Africa
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2013.03.011
– volume: 40
  start-page: 288
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0190
  article-title: Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of biomass
  publication-title: Energy Sources, Part A Recover Util Environ Eff
  doi: 10.1080/15567036.2017.1413453
– year: 2010
  ident: 10.1016/j.fuel.2019.04.169_b0250
– volume: 132
  start-page: 65
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0160
  article-title: Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.041
– volume: 79
  start-page: 414
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0015
  article-title: Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.109
– volume: 124
  start-page: 389
  year: 2016
  ident: 10.1016/j.fuel.2019.04.169_b0030
  article-title: Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN)
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.07.027
– volume: 239
  start-page: 37
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0055
  article-title: Integrated techno-economic and environmental analysis of butadiene production from biomass
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.04.130
– volume: 1
  start-page: 85
  year: 2014
  ident: 10.1016/j.fuel.2019.04.169_b0070
  article-title: Pyrolysis of Parinari polyandra Benth fruit shell for bio-oil production
  publication-title: Biofuel Res J
  doi: 10.18331/BRJ2015.1.3.5
– volume: 78
  start-page: 704
  year: 2014
  ident: 10.1016/j.fuel.2019.04.169_b0095
  article-title: Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.11.022
– start-page: 387
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0185
  article-title: Advanced Soft Computing Techniques in Biogas Production Technology
– volume: 45
  start-page: 651
  year: 2004
  ident: 10.1016/j.fuel.2019.04.169_b0115
  article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(03)00177-8
– volume: 193
  start-page: 142
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0150
  article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.046
– volume: 222
  start-page: 1
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0165
  article-title: Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS)
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.02.126
– volume: 251
  start-page: 63
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0200
  article-title: Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.12.029
– volume: 68
  start-page: 111
  year: 2014
  ident: 10.1016/j.fuel.2019.04.169_b0255
  article-title: Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.01.041
– volume: 235
  start-page: 100
  year: 2019
  ident: 10.1016/j.fuel.2019.04.169_b0170
  article-title: Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.07.095
– volume: 160
  start-page: 251
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0180
  article-title: Multi-objective exergy-based optimization of continuous glycerol ketalization to synthesize solketal as a biodiesel additive in subcritical acetone
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.01.044
– volume: 167
  start-page: 218
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0130
  article-title: Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.08.173
– volume: 255
  start-page: 189
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0210
  article-title: Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.01.132
– volume: 124
  start-page: 219
  year: 2016
  ident: 10.1016/j.fuel.2019.04.169_b0195
  article-title: Predictive capability evaluation of RSM, ANFIS and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.07.030
– volume: 180
  start-page: 1260
  year: 2019
  ident: 10.1016/j.fuel.2019.04.169_b0215
  article-title: Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.11.071
– volume: 392
  start-page: 2479
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0020
  article-title: The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32594-7
– volume: 87
  start-page: 485
  year: 2019
  ident: 10.1016/j.fuel.2019.04.169_b0060
  article-title: Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2019.02.029
– volume: 33
  start-page: 1397
  year: 2015
  ident: 10.1016/j.fuel.2019.04.169_b0145
  article-title: Application of artificial neural networks (ANNs) in drying technology: a comprehensive review
  publication-title: Dry Technol
  doi: 10.1080/07373937.2015.1036288
– volume: 250
  start-page: 422
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0225
  article-title: Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.11.077
– year: 2010
  ident: 10.1016/j.fuel.2019.04.169_b0110
– volume: 103
  start-page: 423
  year: 2019
  ident: 10.1016/j.fuel.2019.04.169_b0010
  article-title: A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.12.056
– volume: 5
  start-page: 872
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0090
  article-title: An overview of catalysts in biomass pyrolysis for production of biofuels
  publication-title: Biofuel Res J
  doi: 10.18331/BRJ2018.5.4.2
– volume: 90
  start-page: 2301
  year: 2011
  ident: 10.1016/j.fuel.2019.04.169_b0105
  article-title: Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.02.003
– volume: 233
  start-page: 413
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0230
  article-title: Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.02.119
– volume: 165
  start-page: 76
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0085
  article-title: A new insight into sugarcane biorefineries with fossil fuel co-combustion: techno-economic analysis and life cycle assessment
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.03.057
– volume: 130
  start-page: 735
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0175
  article-title: Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.06.103
– volume: 151
  start-page: 753
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0065
  article-title: Comprehensive exergy analysis of a gas engine-equipped anaerobic digestion plant producing electricity and biofertilizer from organic fraction of municipal solid waste
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.09.017
– volume: 391
  start-page: 581
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0025
  article-title: The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)32464-9
– volume: 164
  start-page: 385
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0005
  article-title: On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.02.086
– volume: 270
  start-page: 294
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0235
  article-title: Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.09.021
– volume: 130
  start-page: 358
  year: 2018
  ident: 10.1016/j.fuel.2019.04.169_b0220
  article-title: Thermochemical decomposition of coffee ground residues by TG-MS: a kinetic study
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2017.12.007
– volume: 112
  start-page: 319
  year: 2016
  ident: 10.1016/j.fuel.2019.04.169_b0080
  article-title: Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.12.047
– volume: 90
  start-page: 825
  year: 2017
  ident: 10.1016/j.fuel.2019.04.169_b0205
  article-title: Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2016.09.001
SSID ssj0007854
Score 2.5752404
Snippet •Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by...
In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Activation energy
Adaptive network-based fuzzy inference system
Adaptive systems
Algorithms
Biofuels
Biomass
Cellulose
Constituents
Design optimization
Fuzzy systems
Heating rate
Hemicellulose
Kinetics
Lignin
Lignocellulose
Lignocellulosic biomass
Mathematical models
Nonlinear phenomena
Particle swarm optimization
Particle swarm optimization algorithm
Pyrolysis
Pyrolysis kinetics
Reaction kinetics
Statistical analysis
Statistical methods
Thermogravimetric analysis
Topology
Title Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm
URI https://dx.doi.org/10.1016/j.fuel.2019.04.169
https://www.proquest.com/docview/2262700127
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuItD2woNI5f9VghqgJSQSqV2Kw4sUtRaaqSDiz8dnyJw0uIgTGWz4rOzueL_d13CJ163IVtrR0xntmI5QmNFEtcpCwj3qSqUwlsi77oDdn1A39YQhdNLgzQKgP215heoXVoaQVvtmbjMeT4EgHSIT4EgR88wGHGJFQxOH_7pHnINq-VmImIoHdInKk5Xm5h4fqBKJA7JUB6_n1z-gHT1d7T3UDrIWjEnfq9NtGSnW6htS9SgtvI3c0L4MyV4QwOFw5Pxr4FTuYXk8JPBoZUex8r49nrvKiUSHCTpI-B_j7CnX73aoCr4ji4XHgAxuYV3w1ucToZFfNx-fi8g4bdy_uLXhRqKEQZFbyMJMliKZxqJzKluXeGbAuViNxmlgtDMpnwlJqcGi5UHltKckUMI5nLY5o6F9NdtDwtpnYPYUJsYpyUfu0ZljquMqqoEt7GKOnH20ekcZ7OgsA41LmY6IZJ9qTB4RocrmOmvcP30dmHzayW1_izN2_mRH9bJNrj_592R80E6vCJvmgfd1aX7ok8-Oewh2gVnmpq3xFaLucLe-xDlNKcVGvwBK10rm56_XdGtub8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIry9MCGAnH8qkeEqMqrIAESmxUnNhSVpirpwMJvx5c4vIQYWB2fFZ3t7872d3cI7XncBbPWjhjPbMTyhEaKJS5SlhEvUtWpBLZFT3Tv2Nk9v59Cx00sDNAqA_bXmF6hdWg5DNo8HPX7EONLBKQO8S4IHPA8Ds8wnkg4gR28ffI8ZJvXqZiJiKB7iJypSV5uYuH9gSjId0qA9fy7dfqB05Xx6SyiheA14qP6x5bQlB0uo_kvuQRXkLseF0CaK8MlHC4cHvR9C1zNTwaFnw0MsfbeWcaj13FRpSLBTZQ-Bv77Az7qdU5vcFUdB5cTj8DYvOLrmyucDh6Kcb98fF5Fd52T2-NuFIooRBkVvIwkyWIpnGonMqW5V4ZsC5WI3GaWC0MymfCUmpwaLlQeW0pyRQwjmctjmjoX0zU0PSyGdh1hQmxinJR-8RmWOq4yqqgSXsYo6cdrIdIoT2chwzgUuhjohkr2pEHhGhSuY6a9wlto_0NmVOfX-LM3b-ZEf1sl2huAP-W2mgnUYY--aO94Vq_uidz457C7aLZ7e3mhL05755toDr7UPL8tNF2OJ3bb-yul2anW4zuvvuiR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostication+of+lignocellulosic+biomass+pyrolysis+behavior+using+ANFIS+model+tuned+by+PSO+algorithm&rft.jtitle=Fuel+%28Guildford%29&rft.au=Aghbashlo%2C+Mortaza&rft.au=Tabatabaei%2C+Meisam&rft.au=Nadian%2C+Mohammad+Hossein&rft.au=Davoodnia%2C+Vandad&rft.date=2019-10-01&rft.issn=0016-2361&rft.volume=253&rft.spage=189&rft.epage=198&rft_id=info:doi/10.1016%2Fj.fuel.2019.04.169&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2019_04_169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon