Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm
•Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by ANFIS–PSO model.•The developed framework could accurately estimate the biomass pyrolysis behavior.•A practical and handy software was designed fo...
Saved in:
| Published in | Fuel (Guildford) Vol. 253; pp. 189 - 198 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.10.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-2361 1873-7153 |
| DOI | 10.1016/j.fuel.2019.04.169 |
Cover
| Abstract | •Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by ANFIS–PSO model.•The developed framework could accurately estimate the biomass pyrolysis behavior.•A practical and handy software was designed for predicting biomass pyrolysis kinetics.
In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel production processes. Experimental thermogravimetric analysis (TGA) is usually employed to peruse the pyrolysis kinetics of biomass samples. In addition to that, the main constituents of biomass (i.e., cellulose, hemicellulose, lignin) as well as the process heating rate can excellently reflect its pyrolysis characteristics through modeling techniques. However, the application of statistical and phenomenological models for extremely complex and highly nonlinear phenomena like lignocellulose pyrolysis is challenging. To address this challenge, adaptive network-based fuzzy inference system (ANFIS) was consolidated with particle swarm optimization (PSO) algorithm to prognosticate the kinetic constants of lignocellulose pyrolysis. More specifically, the PSO algorithm was applied to tune membership function parameters of the ANFIS model. Three ANFIS−PSO topologies were designed and trained to estimate the kinetic constants of lignocellulose pyrolysis, i.e., energy of activation, pre-exponential coefficient, and order of reaction. The input variables of the developed models were biomass main constituents and the process heating rate. The developed models could predict the kinetic constants of lignocellulosic biomass pyrolysis with an R2 > 0.970, an MAPE < 3.270%, and an RMSE < 5.006. The pyrolysis behaviors of three different biomass feedstocks (unseen data to the developed models) were adequately prognosticated with an R2 > 0.91 using the developed models, further confirming their fidelity. Overall, the lignocellulose pyrolysis behavior could be reliably and accurately estimated using the trained ANFIS–PSO approaches as an alternative to the TGA measurements. In order to make practical use of the trained models, a handy freely-accessible software platform was designed using the selected ANFIS−PSO models for approximating biomass pyrolysis kinetics. |
|---|---|
| AbstractList | •Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by ANFIS–PSO model.•The developed framework could accurately estimate the biomass pyrolysis behavior.•A practical and handy software was designed for predicting biomass pyrolysis kinetics.
In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel production processes. Experimental thermogravimetric analysis (TGA) is usually employed to peruse the pyrolysis kinetics of biomass samples. In addition to that, the main constituents of biomass (i.e., cellulose, hemicellulose, lignin) as well as the process heating rate can excellently reflect its pyrolysis characteristics through modeling techniques. However, the application of statistical and phenomenological models for extremely complex and highly nonlinear phenomena like lignocellulose pyrolysis is challenging. To address this challenge, adaptive network-based fuzzy inference system (ANFIS) was consolidated with particle swarm optimization (PSO) algorithm to prognosticate the kinetic constants of lignocellulose pyrolysis. More specifically, the PSO algorithm was applied to tune membership function parameters of the ANFIS model. Three ANFIS−PSO topologies were designed and trained to estimate the kinetic constants of lignocellulose pyrolysis, i.e., energy of activation, pre-exponential coefficient, and order of reaction. The input variables of the developed models were biomass main constituents and the process heating rate. The developed models could predict the kinetic constants of lignocellulosic biomass pyrolysis with an R2 > 0.970, an MAPE < 3.270%, and an RMSE < 5.006. The pyrolysis behaviors of three different biomass feedstocks (unseen data to the developed models) were adequately prognosticated with an R2 > 0.91 using the developed models, further confirming their fidelity. Overall, the lignocellulose pyrolysis behavior could be reliably and accurately estimated using the trained ANFIS–PSO approaches as an alternative to the TGA measurements. In order to make practical use of the trained models, a handy freely-accessible software platform was designed using the selected ANFIS−PSO models for approximating biomass pyrolysis kinetics. In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel production processes. Experimental thermogravimetric analysis (TGA) is usually employed to peruse the pyrolysis kinetics of biomass samples. In addition to that, the main constituents of biomass (i.e., cellulose, hemicellulose, lignin) as well as the process heating rate can excellently reflect its pyrolysis characteristics through modeling techniques. However, the application of statistical and phenomenological models for extremely complex and highly nonlinear phenomena like lignocellulose pyrolysis is challenging. To address this challenge, adaptive network-based fuzzy inference system (ANFIS) was consolidated with particle swarm optimization (PSO) algorithm to prognosticate the kinetic constants of lignocellulose pyrolysis. More specifically, the PSO algorithm was applied to tune membership function parameters of the ANFIS model. Three ANFIS−PSO topologies were designed and trained to estimate the kinetic constants of lignocellulose pyrolysis, i.e., energy of activation, pre-exponential coefficient, and order of reaction. The input variables of the developed models were biomass main constituents and the process heating rate. The developed models could predict the kinetic constants of lignocellulosic biomass pyrolysis with an R2 > 0.970, an MAPE < 3.270%, and an RMSE < 5.006. The pyrolysis behaviors of three different biomass feedstocks (unseen data to the developed models) were adequately prognosticated with an R2 > 0.91 using the developed models, further confirming their fidelity. Overall, the lignocellulose pyrolysis behavior could be reliably and accurately estimated using the trained ANFIS–PSO approaches as an alternative to the TGA measurements. In order to make practical use of the trained models, a handy freely-accessible software platform was designed using the selected ANFIS−PSO models for approximating biomass pyrolysis kinetics. |
| Author | Aghbashlo, Mortaza Tabatabaei, Meisam Soltanian, Salman Davoodnia, Vandad Nadian, Mohammad Hossein |
| Author_xml | – sequence: 1 givenname: Mortaza surname: Aghbashlo fullname: Aghbashlo, Mortaza email: maghbashlo@ut.ac.ir organization: Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran – sequence: 2 givenname: Meisam surname: Tabatabaei fullname: Tabatabaei, Meisam email: meisam_tabatabaei@abrii.ac.ir organization: Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia – sequence: 3 givenname: Mohammad Hossein surname: Nadian fullname: Nadian, Mohammad Hossein organization: Brain Engineering Research Center, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran – sequence: 4 givenname: Vandad surname: Davoodnia fullname: Davoodnia, Vandad organization: Brain Engineering Research Center, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran – sequence: 5 givenname: Salman surname: Soltanian fullname: Soltanian, Salman organization: Biofuel Research Team (BRTeam), Karaj, Iran |
| BookMark | eNp9kEtrGzEURkVwII7TP9CVoGtP9PBIM9BNME0TCE0gyVpopCtHRh65kibgf1-57qoLry5cvnMf5xrNxjgCQl8paSih4nbbuAlCwwjtG7JqqOgv0Jx2ki8lbfkMzUlNLRkX9Apd57wlhMiuXc2Re0lxM8ZcvNHFxxFHh4OvHQMhTCFmb_Dg407njPeHFMMh-4wH-NCfPiY8ZT9u8N2v-8dXvIsWAi7TCBYPB_zy-ox12MTky8fuBl06HTJ8-VcX6P3-x9v6Yfn0_PNxffe0NFy0pR5riBSu75jU3NYLZSd6JiwYaMVAjWSt5oPlQyt6S4BT29NhRY2zhGvnCF-gb6e5-xR_T5CL2sYpjXWlYkwwWTUwWVPslDIp5pzAqX3yO50OihJ19Km26uhTHX0qslLVZ4W6_yDjy19nJWkfzqPfTyjU1z89JJWNh9GA9QlMUTb6c_gf1sKUhQ |
| CitedBy_id | crossref_primary_10_2139_ssrn_3998957 crossref_primary_10_1155_2019_8438639 crossref_primary_10_1038_s41598_024_73329_4 crossref_primary_10_1016_j_jaap_2021_105176 crossref_primary_10_1016_j_jcis_2023_11_150 crossref_primary_10_1016_j_renene_2020_11_122 crossref_primary_10_1016_j_matpr_2022_05_313 crossref_primary_10_1016_j_biortech_2023_128846 crossref_primary_10_1016_j_proci_2022_08_057 crossref_primary_10_1080_15567036_2022_2044412 crossref_primary_10_1016_j_energy_2021_123041 crossref_primary_10_1016_j_enconman_2020_112792 crossref_primary_10_1016_j_renene_2022_06_107 crossref_primary_10_1038_s41598_021_86701_5 crossref_primary_10_1155_2022_6491745 crossref_primary_10_1016_j_energy_2022_125734 crossref_primary_10_1016_j_eswa_2022_116965 crossref_primary_10_1016_j_energy_2023_127752 crossref_primary_10_1515_npprj_2023_0072 crossref_primary_10_2166_wcc_2022_435 crossref_primary_10_1016_j_ijhydene_2020_10_267 crossref_primary_10_1016_j_jclepro_2023_135881 crossref_primary_10_1016_j_jclepro_2022_133025 crossref_primary_10_1007_s10311_024_01767_7 crossref_primary_10_1016_j_cej_2021_129331 crossref_primary_10_1016_j_grets_2024_100077 crossref_primary_10_1016_j_cej_2021_129749 crossref_primary_10_1016_j_fuel_2021_122812 crossref_primary_10_1016_j_renene_2021_11_114 crossref_primary_10_1111_gcbb_12816 crossref_primary_10_1016_j_jclepro_2020_122462 crossref_primary_10_1016_j_jclepro_2020_124089 crossref_primary_10_1016_j_scp_2022_100840 crossref_primary_10_1016_j_energy_2023_129928 crossref_primary_10_1016_j_energy_2023_128316 crossref_primary_10_1016_j_jece_2022_108025 crossref_primary_10_1016_j_rser_2021_111748 crossref_primary_10_1016_j_rser_2021_111902 crossref_primary_10_3390_en18010016 crossref_primary_10_1016_j_energy_2021_121363 crossref_primary_10_3390_ma14216373 crossref_primary_10_1016_j_energy_2023_126816 crossref_primary_10_1016_j_jclepro_2019_117762 crossref_primary_10_1016_j_energy_2023_126817 crossref_primary_10_1007_s10973_023_12631_1 crossref_primary_10_1021_acs_iecr_3c01662 crossref_primary_10_1016_j_ijmecsci_2019_105197 crossref_primary_10_2478_ahr_2022_0020 crossref_primary_10_1016_j_jece_2024_114571 crossref_primary_10_3390_molecules26123727 crossref_primary_10_1016_j_fuel_2022_127123 crossref_primary_10_1016_j_cej_2022_136730 crossref_primary_10_1016_j_enconman_2020_112531 crossref_primary_10_1007_s12649_022_01694_0 crossref_primary_10_1016_j_jclepro_2023_137329 crossref_primary_10_1016_j_rser_2020_110173 crossref_primary_10_1016_j_pecs_2021_100904 crossref_primary_10_3389_fenrg_2021_684234 crossref_primary_10_1002_ese3_961 crossref_primary_10_1021_acs_energyfuels_2c01006 crossref_primary_10_1016_j_fuel_2021_122839 crossref_primary_10_1016_j_psep_2023_01_064 crossref_primary_10_1016_j_chemosphere_2021_132559 crossref_primary_10_3390_en16145302 crossref_primary_10_1016_j_jhazmat_2020_124369 crossref_primary_10_1007_s13369_024_09930_6 crossref_primary_10_1016_j_jaap_2023_106030 crossref_primary_10_1016_j_biortech_2022_128137 crossref_primary_10_1016_j_energy_2023_127177 crossref_primary_10_1016_j_biortech_2021_126215 crossref_primary_10_1016_j_jechem_2023_02_020 crossref_primary_10_1016_j_dche_2023_100103 crossref_primary_10_1016_j_enconman_2022_115613 crossref_primary_10_1016_j_fuel_2022_124344 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119308 crossref_primary_10_1016_j_indcrop_2022_115501 crossref_primary_10_48130_EMST_2023_0009 crossref_primary_10_1007_s11831_024_10185_5 crossref_primary_10_1016_j_energy_2023_127524 crossref_primary_10_1016_j_renene_2021_01_111 crossref_primary_10_1016_j_fuel_2019_116251 crossref_primary_10_1016_j_enconman_2021_115199 crossref_primary_10_33889_IJMEMS_2024_9_1_002 crossref_primary_10_1039_D4GC06034B crossref_primary_10_1002_bbb_2417 crossref_primary_10_1016_j_energy_2023_129705 |
| Cites_doi | 10.1016/j.fuproc.2015.05.013 10.1016/j.jclepro.2017.07.068 10.1002/ep.11954 10.1016/j.jaap.2015.11.010 10.1016/j.energy.2018.02.063 10.1002/bbb.1801 10.1109/21.256541 10.1016/j.energy.2018.02.082 10.1016/j.jclepro.2018.06.245 10.1016/j.fuel.2015.10.118 10.1016/j.enconman.2018.08.050 10.1016/j.indcrop.2012.10.013 10.1016/j.wasman.2017.03.020 10.1016/j.indcrop.2013.03.011 10.1080/15567036.2017.1413453 10.1016/j.energy.2017.05.041 10.1016/j.rser.2017.04.109 10.1016/j.enconman.2016.07.027 10.1016/j.biortech.2017.04.130 10.18331/BRJ2015.1.3.5 10.1016/j.enconman.2013.11.022 10.1016/S0196-8904(03)00177-8 10.1016/j.fuel.2016.12.046 10.1016/j.fuel.2018.02.126 10.1016/j.biortech.2017.12.029 10.1016/j.renene.2014.01.041 10.1016/j.fuel.2018.07.095 10.1016/j.enconman.2018.01.044 10.1016/j.jclepro.2017.08.173 10.1016/j.biortech.2018.01.132 10.1016/j.enconman.2016.07.030 10.1016/j.enconman.2018.11.071 10.1016/S0140-6736(18)32594-7 10.1016/j.wasman.2019.02.029 10.1080/07373937.2015.1036288 10.1016/j.biortech.2017.11.077 10.1016/j.rser.2018.12.056 10.18331/BRJ2018.5.4.2 10.1016/j.fuel.2011.02.003 10.1016/j.biortech.2017.02.119 10.1016/j.enconman.2018.03.057 10.1016/j.renene.2018.06.103 10.1016/j.enconman.2017.09.017 10.1016/S0140-6736(17)32464-9 10.1016/j.enconman.2018.02.086 10.1016/j.biortech.2018.09.021 10.1016/j.jaap.2017.12.007 10.1016/j.enconman.2015.12.047 10.1016/j.joei.2016.09.001 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Oct 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Oct 1, 2019 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.fuel.2019.04.169 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| EndPage | 198 |
| ExternalDocumentID | 10_1016_j_fuel_2019_04_169 S0016236119307422 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c365t-71c076f9827a3d785786926dece56b1c725a3bd3b569d0e31d91b41cfd03aff03 |
| IEDL.DBID | .~1 |
| ISSN | 0016-2361 |
| IngestDate | Wed Aug 13 11:30:26 EDT 2025 Wed Oct 01 04:07:34 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Fri Feb 23 02:49:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive network-based fuzzy inference system Pyrolysis kinetics Thermogravimetric analysis Lignocellulosic biomass Particle swarm optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-71c076f9827a3d785786926dece56b1c725a3bd3b569d0e31d91b41cfd03aff03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2262700127 |
| PQPubID | 2045474 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2262700127 crossref_primary_10_1016_j_fuel_2019_04_169 crossref_citationtrail_10_1016_j_fuel_2019_04_169 elsevier_sciencedirect_doi_10_1016_j_fuel_2019_04_169 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Luo, Guda, Steele, Mitchell, Yu (b0080) 2016; 112 Mandegari, Farzad, van Rensburg, Görgens (b0100) 2017; 11 Peters (b0105) 2011; 90 Parapati, Guda, Penmetsa, Steele, Tanneru (b0050) 2014; 33 Özsin, Pütün (b0265) 2017; 64 Aghbashlo, Hosseinpour, Tabatabaei, Mojarab (b0170) 2019; 235 Chong, Mong, Ng, Chong, Ani, Lam (b0215) 2019; 180 Odetoye, Onifade, AbuBakar, Titiloye (b0140) 2013; 44 Imran, Bramer, Brem, Seshan (b0090) 2018; 5 Watts, Amann, Arnell, Ayeb-Karlsson, Belesova, Berry (b0020) 2018; 392 Sumathi, Paneerselvam (b0250) 2010 Loy, Yusup, Chin, Gan, Shahbaz, Acda (b0125) 2018; 197 Yaman (b0115) 2004; 45 Önal, Uzun, Pütün (b0095) 2014; 78 Chandrasekaran, Ramachandran, Subbiah (b0230) 2017; 233 Aghbashlo, Tabatabaei, Hosseinpour (b0005) 2018; 164 Aghbashlo, Tabatabaei, Hosseinpour, Rastegari, Ghaziaskar (b0180) 2018; 160 Aghbashlo, Tabatabaei, Khalife, Roodbar Shojaei, Dadak (b0040) 2018; 149 Hosseinpour, Aghbashlo, Tabatabaei (b0165) 2018; 222 Hosseinzadeh-Bandbafha, Tabatabaei, Aghbashlo, Khanali, Demirbas (b0035) 2018; 174 Mandegari, Farzad, Görgens (b0085) 2018; 165 Odetoye, Onifade, AbuBakar, Titiloye (b0070) 2014; 1 Fermoso, Mašek (b0220) 2018; 130 Rajaeifar, Hemayati, Tabatabaei, Aghbashlo, Mahmoudi (b0010) 2019; 103 Aghbashlo, Mandegari, Tabatabaei, Farzad, Mojarab Soufiyan, Görgens (b0045) 2018; 149 Barati, Aghbashlo, Ghanavati, Tabatabaei, Sharifi, Javadirad (b0065) 2017; 151 Kennedy (b0245) 2011 Titiloye, Bakar, Odetoye (b0135) 2013; 47 Liang, Cheng, Si, Cao, Jiang, Han (b0255) 2014; 68 Aghbashlo, Hosseinpour, Tabatabaei, Dadak (b0160) 2017; 132 Aghbashlo, Hosseinpour, Mujumdar (b0145) 2015; 33 Betiku, Odude, Ishola, Bamimore, Osunleke, Okeleye (b0195) 2016; 124 Mohammed, Abakr, Hui, Alaba, Morris, Ibrahim (b0120) 2017; 164 Jang (b0240) 1993; 23 Hosseinpour, Aghbashlo, Tabatabaei, Khalife (b0030) 2016; 124 Farzad, Mandegari, Görgens (b0055) 2017; 239 Watts, Amann, Ayeb-Karlsson, Belesova, Bouley, Boykoff (b0025) 2018; 391 Gupta, Demirbas (b0110) 2010 Lopes, Pereira, Tannous (b0235) 2018; 270 Mishra, Mohanty (b0200) 2018; 251 Sunphorka, Chalermsinsuwan, Piumsomboon (b0150) 2017; 193 Aghbashlo, Tabatabaei, Soltanian, Ghanavati, Dadak (b0060) 2019; 87 Imran, Bramer, Seshan, Brem (b0075) 2016; 117 Uzun, Yaman (b0205) 2017; 90 Miraboutalebi, Kazemi, Bahrami (b0155) 2016; 166 Suleymani, Bemani (b0190) 2018; 40 Balasundram, Ibrahim, Kasmani, Hamid, Isha, Hasbullah (b0130) 2017; 167 Kaur, Gera, Jha, Bhaskar (b0225) 2018; 250 Almasi, Soltanian, Hosseinpour, Aghbashlo, Tabatabaei (b0185) 2018 Yiin, Yusup, Quitain, Uemura, Sasaki, Kida (b0210) 2018; 255 Cortés, Bridgwater (b0260) 2015; 138 Aghbashlo, Hosseinpour, Tabatabaei, Rastegari, Ghaziaskar (b0175) 2018; 130 Rajaeifar, Ghanavati, Dashti, Heijungs, Aghbashlo, Tabatabaei (b0015) 2017; 79 Sunphorka (10.1016/j.fuel.2019.04.169_b0150) 2017; 193 Rajaeifar (10.1016/j.fuel.2019.04.169_b0010) 2019; 103 Aghbashlo (10.1016/j.fuel.2019.04.169_b0060) 2019; 87 Almasi (10.1016/j.fuel.2019.04.169_b0185) 2018 Barati (10.1016/j.fuel.2019.04.169_b0065) 2017; 151 Suleymani (10.1016/j.fuel.2019.04.169_b0190) 2018; 40 Aghbashlo (10.1016/j.fuel.2019.04.169_b0145) 2015; 33 Chong (10.1016/j.fuel.2019.04.169_b0215) 2019; 180 Balasundram (10.1016/j.fuel.2019.04.169_b0130) 2017; 167 Aghbashlo (10.1016/j.fuel.2019.04.169_b0045) 2018; 149 Chandrasekaran (10.1016/j.fuel.2019.04.169_b0230) 2017; 233 Watts (10.1016/j.fuel.2019.04.169_b0025) 2018; 391 Rajaeifar (10.1016/j.fuel.2019.04.169_b0015) 2017; 79 Titiloye (10.1016/j.fuel.2019.04.169_b0135) 2013; 47 Kennedy (10.1016/j.fuel.2019.04.169_b0245) 2011 Hosseinpour (10.1016/j.fuel.2019.04.169_b0030) 2016; 124 Jang (10.1016/j.fuel.2019.04.169_b0240) 1993; 23 Uzun (10.1016/j.fuel.2019.04.169_b0205) 2017; 90 Aghbashlo (10.1016/j.fuel.2019.04.169_b0160) 2017; 132 Aghbashlo (10.1016/j.fuel.2019.04.169_b0040) 2018; 149 Yiin (10.1016/j.fuel.2019.04.169_b0210) 2018; 255 Kaur (10.1016/j.fuel.2019.04.169_b0225) 2018; 250 Watts (10.1016/j.fuel.2019.04.169_b0020) 2018; 392 Hosseinzadeh-Bandbafha (10.1016/j.fuel.2019.04.169_b0035) 2018; 174 Loy (10.1016/j.fuel.2019.04.169_b0125) 2018; 197 Aghbashlo (10.1016/j.fuel.2019.04.169_b0005) 2018; 164 Sumathi (10.1016/j.fuel.2019.04.169_b0250) 2010 Aghbashlo (10.1016/j.fuel.2019.04.169_b0170) 2019; 235 Mishra (10.1016/j.fuel.2019.04.169_b0200) 2018; 251 Imran (10.1016/j.fuel.2019.04.169_b0075) 2016; 117 Önal (10.1016/j.fuel.2019.04.169_b0095) 2014; 78 Peters (10.1016/j.fuel.2019.04.169_b0105) 2011; 90 Betiku (10.1016/j.fuel.2019.04.169_b0195) 2016; 124 Parapati (10.1016/j.fuel.2019.04.169_b0050) 2014; 33 Luo (10.1016/j.fuel.2019.04.169_b0080) 2016; 112 Özsin (10.1016/j.fuel.2019.04.169_b0265) 2017; 64 Liang (10.1016/j.fuel.2019.04.169_b0255) 2014; 68 Imran (10.1016/j.fuel.2019.04.169_b0090) 2018; 5 Cortés (10.1016/j.fuel.2019.04.169_b0260) 2015; 138 Aghbashlo (10.1016/j.fuel.2019.04.169_b0180) 2018; 160 Odetoye (10.1016/j.fuel.2019.04.169_b0140) 2013; 44 Lopes (10.1016/j.fuel.2019.04.169_b0235) 2018; 270 Odetoye (10.1016/j.fuel.2019.04.169_b0070) 2014; 1 Hosseinpour (10.1016/j.fuel.2019.04.169_b0165) 2018; 222 Farzad (10.1016/j.fuel.2019.04.169_b0055) 2017; 239 Fermoso (10.1016/j.fuel.2019.04.169_b0220) 2018; 130 Aghbashlo (10.1016/j.fuel.2019.04.169_b0175) 2018; 130 Mandegari (10.1016/j.fuel.2019.04.169_b0100) 2017; 11 Mandegari (10.1016/j.fuel.2019.04.169_b0085) 2018; 165 Miraboutalebi (10.1016/j.fuel.2019.04.169_b0155) 2016; 166 Yaman (10.1016/j.fuel.2019.04.169_b0115) 2004; 45 Mohammed (10.1016/j.fuel.2019.04.169_b0120) 2017; 164 Gupta (10.1016/j.fuel.2019.04.169_b0110) 2010 |
| References_xml | – volume: 44 start-page: 62 year: 2013 end-page: 66 ident: b0140 article-title: Thermochemical characterisation of Parinari polyandra Benth fruit shell publication-title: Ind Crops Prod – volume: 160 start-page: 251 year: 2018 end-page: 261 ident: b0180 article-title: Multi-objective exergy-based optimization of continuous glycerol ketalization to synthesize solketal as a biodiesel additive in subcritical acetone publication-title: Energy Convers Manage – volume: 167 start-page: 218 year: 2017 end-page: 228 ident: b0130 article-title: Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil publication-title: J Clean Prod – volume: 149 start-page: 967 year: 2018 end-page: 978 ident: b0040 article-title: Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide publication-title: Energy – volume: 164 start-page: 385 year: 2018 end-page: 398 ident: b0005 article-title: On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor publication-title: Energy Convers Manage – volume: 33 start-page: 726 year: 2014 end-page: 731 ident: b0050 article-title: Single stage hydroprocessing of pyrolysis oil in a continuous packed-bed reactor publication-title: Environ Prog Sustain Energy – volume: 197 start-page: 1231 year: 2018 end-page: 1243 ident: b0125 article-title: Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: kinetics modelling and product gas analysis publication-title: J Clean Prod – volume: 124 start-page: 219 year: 2016 end-page: 230 ident: b0195 article-title: Predictive capability evaluation of RSM, ANFIS and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process publication-title: Energy Convers Manage – volume: 392 start-page: 2479 year: 2018 end-page: 2514 ident: b0020 article-title: The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come publication-title: Lancet – volume: 78 start-page: 704 year: 2014 end-page: 710 ident: b0095 article-title: Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene publication-title: Energy Convers Manage – volume: 149 start-page: 623 year: 2018 end-page: 638 ident: b0045 article-title: Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production publication-title: Energy – volume: 1 start-page: 85 year: 2014 end-page: 90 ident: b0070 article-title: Pyrolysis of Parinari polyandra Benth fruit shell for bio-oil production publication-title: Biofuel Res J – volume: 11 start-page: 971 year: 2017 end-page: 990 ident: b0100 article-title: Multi-criteria analysis of a biorefinery for co-production of lactic acid and ethanol from sugarcane lignocellulose publication-title: Biofuels Bioprod Biorefin – volume: 5 start-page: 872 year: 2018 end-page: 885 ident: b0090 article-title: An overview of catalysts in biomass pyrolysis for production of biofuels publication-title: Biofuel Res J – volume: 130 start-page: 735 year: 2018 end-page: 748 ident: b0175 article-title: Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent publication-title: Renew Energy – volume: 255 start-page: 189 year: 2018 end-page: 197 ident: b0210 article-title: Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil publication-title: Bioresour Technol – volume: 130 start-page: 358 year: 2018 end-page: 367 ident: b0220 article-title: Thermochemical decomposition of coffee ground residues by TG-MS: a kinetic study publication-title: J Anal Appl Pyrolysis – volume: 47 start-page: 199 year: 2013 end-page: 203 ident: b0135 article-title: Thermochemical characterisation of agricultural wastes from West Africa publication-title: Ind Crops Prod – volume: 251 start-page: 63 year: 2018 end-page: 74 ident: b0200 article-title: Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis publication-title: Bioresour Technol – volume: 165 start-page: 76 year: 2018 end-page: 91 ident: b0085 article-title: A new insight into sugarcane biorefineries with fossil fuel co-combustion: techno-economic analysis and life cycle assessment publication-title: Energy Convers Manage – year: 2010 ident: b0110 article-title: Gasoline, diesel, and ethanol biofuels from grasses and plants – volume: 79 start-page: 414 year: 2017 end-page: 439 ident: b0015 article-title: Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review publication-title: Renew Sustain Energy Rev – volume: 235 start-page: 100 year: 2019 end-page: 112 ident: b0170 article-title: Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques publication-title: Fuel – volume: 117 start-page: 236 year: 2016 end-page: 246 ident: b0075 article-title: Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts publication-title: J Anal Appl Pyrolysis – volume: 90 start-page: 2301 year: 2011 end-page: 2314 ident: b0105 article-title: Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data publication-title: Fuel – volume: 239 start-page: 37 year: 2017 end-page: 48 ident: b0055 article-title: Integrated techno-economic and environmental analysis of butadiene production from biomass publication-title: Bioresour Technol – volume: 90 start-page: 825 year: 2017 end-page: 837 ident: b0205 article-title: Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis publication-title: J Energy Inst – volume: 87 start-page: 485 year: 2019 end-page: 498 ident: b0060 article-title: Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset publication-title: Waste Manage – volume: 112 start-page: 319 year: 2016 end-page: 327 ident: b0080 article-title: Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type publication-title: Energy Convers Manage – volume: 132 start-page: 65 year: 2017 end-page: 78 ident: b0160 article-title: Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor publication-title: Energy – volume: 40 start-page: 288 year: 2018 end-page: 293 ident: b0190 article-title: Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of biomass publication-title: Energy Sources, Part A Recover Util Environ Eff – volume: 174 start-page: 579 year: 2018 end-page: 614 ident: b0035 article-title: A comprehensive review on the environmental impacts of diesel/biodiesel additives publication-title: Energy Convers Manage – volume: 270 start-page: 294 year: 2018 end-page: 302 ident: b0235 article-title: Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres publication-title: Bioresour Technol – volume: 124 start-page: 389 year: 2016 end-page: 398 ident: b0030 article-title: Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN) publication-title: Energy Convers Manage – volume: 164 start-page: 1430 year: 2017 end-page: 1445 ident: b0120 article-title: Recovery of clean energy precursors from Bambara groundnut waste via pyrolysis: kinetics, products distribution and optimisation using response surface methodology publication-title: J Clean Prod – volume: 250 start-page: 422 year: 2018 end-page: 428 ident: b0225 article-title: Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis publication-title: Bioresour Technol – volume: 391 start-page: 581 year: 2018 end-page: 630 ident: b0025 article-title: The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health publication-title: Lancet – volume: 45 start-page: 651 year: 2004 end-page: 671 ident: b0115 article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks publication-title: Energy Convers Manage – volume: 222 start-page: 1 year: 2018 end-page: 10 ident: b0165 article-title: Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS) publication-title: Fuel – volume: 193 start-page: 142 year: 2017 end-page: 158 ident: b0150 article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents publication-title: Fuel – volume: 103 start-page: 423 year: 2019 end-page: 442 ident: b0010 article-title: A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply publication-title: Renew Sustain Energy Rev – volume: 233 start-page: 413 year: 2017 end-page: 422 ident: b0230 article-title: Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis publication-title: Bioresour Technol – volume: 68 start-page: 111 year: 2014 end-page: 117 ident: b0255 article-title: Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis publication-title: Renew Energy – volume: 64 start-page: 315 year: 2017 end-page: 326 ident: b0265 article-title: Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR publication-title: Waste Manage – year: 2010 ident: b0250 article-title: Computational intelligence paradigms: theory & applications using MATLAB – volume: 33 start-page: 1397 year: 2015 end-page: 1462 ident: b0145 article-title: Application of artificial neural networks (ANNs) in drying technology: a comprehensive review publication-title: Dry Technol – volume: 166 start-page: 143 year: 2016 end-page: 151 ident: b0155 article-title: Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane number employing random forest and artificial neural networks: a new approach publication-title: Fuel – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: b0240 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans Syst Man Cybern – volume: 138 start-page: 184 year: 2015 end-page: 193 ident: b0260 article-title: Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis publication-title: Fuel Process Technol – start-page: 387 year: 2018 end-page: 417 ident: b0185 article-title: Advanced Soft Computing Techniques in Biogas Production Technology publication-title: Biogas Fundam. Process. Oper. – volume: 180 start-page: 1260 year: 2019 end-page: 1267 ident: b0215 article-title: Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis publication-title: Energy Convers Manage – start-page: 760 year: 2011 end-page: 766 ident: b0245 article-title: Particle swarm optimization publication-title: Springer Encycl. Mach. Learn. – volume: 151 start-page: 753 year: 2017 end-page: 763 ident: b0065 article-title: Comprehensive exergy analysis of a gas engine-equipped anaerobic digestion plant producing electricity and biofertilizer from organic fraction of municipal solid waste publication-title: Energy Convers Manage – volume: 138 start-page: 184 year: 2015 ident: 10.1016/j.fuel.2019.04.169_b0260 article-title: Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2015.05.013 – volume: 164 start-page: 1430 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0120 article-title: Recovery of clean energy precursors from Bambara groundnut waste via pyrolysis: kinetics, products distribution and optimisation using response surface methodology publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.07.068 – volume: 33 start-page: 726 year: 2014 ident: 10.1016/j.fuel.2019.04.169_b0050 article-title: Single stage hydroprocessing of pyrolysis oil in a continuous packed-bed reactor publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.11954 – volume: 117 start-page: 236 year: 2016 ident: 10.1016/j.fuel.2019.04.169_b0075 article-title: Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2015.11.010 – volume: 149 start-page: 623 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0045 article-title: Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production publication-title: Energy doi: 10.1016/j.energy.2018.02.063 – volume: 11 start-page: 971 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0100 article-title: Multi-criteria analysis of a biorefinery for co-production of lactic acid and ethanol from sugarcane lignocellulose publication-title: Biofuels Bioprod Biorefin doi: 10.1002/bbb.1801 – start-page: 760 year: 2011 ident: 10.1016/j.fuel.2019.04.169_b0245 article-title: Particle swarm optimization – volume: 23 start-page: 665 year: 1993 ident: 10.1016/j.fuel.2019.04.169_b0240 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – volume: 149 start-page: 967 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0040 article-title: Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide publication-title: Energy doi: 10.1016/j.energy.2018.02.082 – volume: 197 start-page: 1231 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0125 article-title: Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: kinetics modelling and product gas analysis publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.06.245 – volume: 166 start-page: 143 year: 2016 ident: 10.1016/j.fuel.2019.04.169_b0155 article-title: Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane number employing random forest and artificial neural networks: a new approach publication-title: Fuel doi: 10.1016/j.fuel.2015.10.118 – volume: 174 start-page: 579 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0035 article-title: A comprehensive review on the environmental impacts of diesel/biodiesel additives publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.08.050 – volume: 44 start-page: 62 year: 2013 ident: 10.1016/j.fuel.2019.04.169_b0140 article-title: Thermochemical characterisation of Parinari polyandra Benth fruit shell publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2012.10.013 – volume: 64 start-page: 315 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0265 article-title: Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR publication-title: Waste Manage doi: 10.1016/j.wasman.2017.03.020 – volume: 47 start-page: 199 year: 2013 ident: 10.1016/j.fuel.2019.04.169_b0135 article-title: Thermochemical characterisation of agricultural wastes from West Africa publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2013.03.011 – volume: 40 start-page: 288 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0190 article-title: Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of biomass publication-title: Energy Sources, Part A Recover Util Environ Eff doi: 10.1080/15567036.2017.1413453 – year: 2010 ident: 10.1016/j.fuel.2019.04.169_b0250 – volume: 132 start-page: 65 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0160 article-title: Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor publication-title: Energy doi: 10.1016/j.energy.2017.05.041 – volume: 79 start-page: 414 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0015 article-title: Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.109 – volume: 124 start-page: 389 year: 2016 ident: 10.1016/j.fuel.2019.04.169_b0030 article-title: Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN) publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.07.027 – volume: 239 start-page: 37 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0055 article-title: Integrated techno-economic and environmental analysis of butadiene production from biomass publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.04.130 – volume: 1 start-page: 85 year: 2014 ident: 10.1016/j.fuel.2019.04.169_b0070 article-title: Pyrolysis of Parinari polyandra Benth fruit shell for bio-oil production publication-title: Biofuel Res J doi: 10.18331/BRJ2015.1.3.5 – volume: 78 start-page: 704 year: 2014 ident: 10.1016/j.fuel.2019.04.169_b0095 article-title: Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.11.022 – start-page: 387 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0185 article-title: Advanced Soft Computing Techniques in Biogas Production Technology – volume: 45 start-page: 651 year: 2004 ident: 10.1016/j.fuel.2019.04.169_b0115 article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(03)00177-8 – volume: 193 start-page: 142 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0150 article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents publication-title: Fuel doi: 10.1016/j.fuel.2016.12.046 – volume: 222 start-page: 1 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0165 article-title: Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS) publication-title: Fuel doi: 10.1016/j.fuel.2018.02.126 – volume: 251 start-page: 63 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0200 article-title: Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.12.029 – volume: 68 start-page: 111 year: 2014 ident: 10.1016/j.fuel.2019.04.169_b0255 article-title: Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis publication-title: Renew Energy doi: 10.1016/j.renene.2014.01.041 – volume: 235 start-page: 100 year: 2019 ident: 10.1016/j.fuel.2019.04.169_b0170 article-title: Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques publication-title: Fuel doi: 10.1016/j.fuel.2018.07.095 – volume: 160 start-page: 251 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0180 article-title: Multi-objective exergy-based optimization of continuous glycerol ketalization to synthesize solketal as a biodiesel additive in subcritical acetone publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.01.044 – volume: 167 start-page: 218 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0130 article-title: Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.08.173 – volume: 255 start-page: 189 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0210 article-title: Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.01.132 – volume: 124 start-page: 219 year: 2016 ident: 10.1016/j.fuel.2019.04.169_b0195 article-title: Predictive capability evaluation of RSM, ANFIS and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.07.030 – volume: 180 start-page: 1260 year: 2019 ident: 10.1016/j.fuel.2019.04.169_b0215 article-title: Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.11.071 – volume: 392 start-page: 2479 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0020 article-title: The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come publication-title: Lancet doi: 10.1016/S0140-6736(18)32594-7 – volume: 87 start-page: 485 year: 2019 ident: 10.1016/j.fuel.2019.04.169_b0060 article-title: Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset publication-title: Waste Manage doi: 10.1016/j.wasman.2019.02.029 – volume: 33 start-page: 1397 year: 2015 ident: 10.1016/j.fuel.2019.04.169_b0145 article-title: Application of artificial neural networks (ANNs) in drying technology: a comprehensive review publication-title: Dry Technol doi: 10.1080/07373937.2015.1036288 – volume: 250 start-page: 422 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0225 article-title: Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.11.077 – year: 2010 ident: 10.1016/j.fuel.2019.04.169_b0110 – volume: 103 start-page: 423 year: 2019 ident: 10.1016/j.fuel.2019.04.169_b0010 article-title: A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.12.056 – volume: 5 start-page: 872 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0090 article-title: An overview of catalysts in biomass pyrolysis for production of biofuels publication-title: Biofuel Res J doi: 10.18331/BRJ2018.5.4.2 – volume: 90 start-page: 2301 year: 2011 ident: 10.1016/j.fuel.2019.04.169_b0105 article-title: Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data publication-title: Fuel doi: 10.1016/j.fuel.2011.02.003 – volume: 233 start-page: 413 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0230 article-title: Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.02.119 – volume: 165 start-page: 76 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0085 article-title: A new insight into sugarcane biorefineries with fossil fuel co-combustion: techno-economic analysis and life cycle assessment publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.03.057 – volume: 130 start-page: 735 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0175 article-title: Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent publication-title: Renew Energy doi: 10.1016/j.renene.2018.06.103 – volume: 151 start-page: 753 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0065 article-title: Comprehensive exergy analysis of a gas engine-equipped anaerobic digestion plant producing electricity and biofertilizer from organic fraction of municipal solid waste publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.09.017 – volume: 391 start-page: 581 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0025 article-title: The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health publication-title: Lancet doi: 10.1016/S0140-6736(17)32464-9 – volume: 164 start-page: 385 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0005 article-title: On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.02.086 – volume: 270 start-page: 294 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0235 article-title: Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.09.021 – volume: 130 start-page: 358 year: 2018 ident: 10.1016/j.fuel.2019.04.169_b0220 article-title: Thermochemical decomposition of coffee ground residues by TG-MS: a kinetic study publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2017.12.007 – volume: 112 start-page: 319 year: 2016 ident: 10.1016/j.fuel.2019.04.169_b0080 article-title: Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.12.047 – volume: 90 start-page: 825 year: 2017 ident: 10.1016/j.fuel.2019.04.169_b0205 article-title: Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis publication-title: J Energy Inst doi: 10.1016/j.joei.2016.09.001 |
| SSID | ssj0007854 |
| Score | 2.5752404 |
| Snippet | •Biomass pyrolysis behavior was estimated from its main constituents and heating rate.•The kinetic constants of lignocellulose pyrolysis were predicted by... In-depth knowledge on pyrolysis behavior of lignocellulosic biomass is pivotal for efficient design, optimization, and control of thermochemical biofuel... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 189 |
| SubjectTerms | Activation energy Adaptive network-based fuzzy inference system Adaptive systems Algorithms Biofuels Biomass Cellulose Constituents Design optimization Fuzzy systems Heating rate Hemicellulose Kinetics Lignin Lignocellulose Lignocellulosic biomass Mathematical models Nonlinear phenomena Particle swarm optimization Particle swarm optimization algorithm Pyrolysis Pyrolysis kinetics Reaction kinetics Statistical analysis Statistical methods Thermogravimetric analysis Topology |
| Title | Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm |
| URI | https://dx.doi.org/10.1016/j.fuel.2019.04.169 https://www.proquest.com/docview/2262700127 |
| Volume | 253 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuItD2woNI5f9VghqgJSQSqV2Kw4sUtRaaqSDiz8dnyJw0uIgTGWz4rOzueL_d13CJ163IVtrR0xntmI5QmNFEtcpCwj3qSqUwlsi77oDdn1A39YQhdNLgzQKgP215heoXVoaQVvtmbjMeT4EgHSIT4EgR88wGHGJFQxOH_7pHnINq-VmImIoHdInKk5Xm5h4fqBKJA7JUB6_n1z-gHT1d7T3UDrIWjEnfq9NtGSnW6htS9SgtvI3c0L4MyV4QwOFw5Pxr4FTuYXk8JPBoZUex8r49nrvKiUSHCTpI-B_j7CnX73aoCr4ji4XHgAxuYV3w1ucToZFfNx-fi8g4bdy_uLXhRqKEQZFbyMJMliKZxqJzKluXeGbAuViNxmlgtDMpnwlJqcGi5UHltKckUMI5nLY5o6F9NdtDwtpnYPYUJsYpyUfu0ZljquMqqoEt7GKOnH20ekcZ7OgsA41LmY6IZJ9qTB4RocrmOmvcP30dmHzayW1_izN2_mRH9bJNrj_592R80E6vCJvmgfd1aX7ok8-Oewh2gVnmpq3xFaLucLe-xDlNKcVGvwBK10rm56_XdGtub8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIry9MCGAnH8qkeEqMqrIAESmxUnNhSVpirpwMJvx5c4vIQYWB2fFZ3t7872d3cI7XncBbPWjhjPbMTyhEaKJS5SlhEvUtWpBLZFT3Tv2Nk9v59Cx00sDNAqA_bXmF6hdWg5DNo8HPX7EONLBKQO8S4IHPA8Ds8wnkg4gR28ffI8ZJvXqZiJiKB7iJypSV5uYuH9gSjId0qA9fy7dfqB05Xx6SyiheA14qP6x5bQlB0uo_kvuQRXkLseF0CaK8MlHC4cHvR9C1zNTwaFnw0MsfbeWcaj13FRpSLBTZQ-Bv77Az7qdU5vcFUdB5cTj8DYvOLrmyucDh6Kcb98fF5Fd52T2-NuFIooRBkVvIwkyWIpnGonMqW5V4ZsC5WI3GaWC0MymfCUmpwaLlQeW0pyRQwjmctjmjoX0zU0PSyGdh1hQmxinJR-8RmWOq4yqqgSXsYo6cdrIdIoT2chwzgUuhjohkr2pEHhGhSuY6a9wlto_0NmVOfX-LM3b-ZEf1sl2huAP-W2mgnUYY--aO94Vq_uidz457C7aLZ7e3mhL05755toDr7UPL8tNF2OJ3bb-yul2anW4zuvvuiR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostication+of+lignocellulosic+biomass+pyrolysis+behavior+using+ANFIS+model+tuned+by+PSO+algorithm&rft.jtitle=Fuel+%28Guildford%29&rft.au=Aghbashlo%2C+Mortaza&rft.au=Tabatabaei%2C+Meisam&rft.au=Nadian%2C+Mohammad+Hossein&rft.au=Davoodnia%2C+Vandad&rft.date=2019-10-01&rft.issn=0016-2361&rft.volume=253&rft.spage=189&rft.epage=198&rft_id=info:doi/10.1016%2Fj.fuel.2019.04.169&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2019_04_169 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |