Path Planning with Adaptive Autonomy Based on an Improved A∗ Algorithm and Dynamic Programming for Mobile Robots
Sustainable path-planning algorithms are essential for executing complex user-defined missions by mobile robots. Addressing various scenarios with a unified criterion during the design phase is often impractical due to the potential for unforeseen situations. Therefore, it is important to incorporat...
Saved in:
| Published in | Information (Basel) Vol. 16; no. 8; p. 700 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2078-2489 2078-2489 |
| DOI | 10.3390/info16080700 |
Cover
| Abstract | Sustainable path-planning algorithms are essential for executing complex user-defined missions by mobile robots. Addressing various scenarios with a unified criterion during the design phase is often impractical due to the potential for unforeseen situations. Therefore, it is important to incorporate the concept of adaptive autonomy for path planning. This approach allows the system to autonomously select the best path-planning strategy. The technique utilizes dynamic programming with an adaptive memory size, leveraging a cellular decomposition technique to divide the map into convex cells. The path is divided into three segments: the first segment connects the starting point to the center of the starting cell, the second segment connects the center of the goal cell to the goal point, and the third segment connects the center of the starting cell to the center of the goal cell. Since each cell is convex, internal path planning simply requires a straight line between two points within a cell. Path planning uses an improved A∗ (I-A∗) algorithm, which evaluates the feasibility of a direct path to the goal from the current position during execution. When a direct path is discovered, the algorithm promptly returns and saves it in memory. The memory size is proportional to the square of the total number of cells, and it stores paths between the centers of cells. By storing and reusing previously calculated paths, this method significantly reduces redundant computation and supports long-term sustainability in mobile robot deployments. The final phase of the path-planning process involves pruning, which eliminates unnecessary waypoints. This approach obviates the need for repetitive path planning across different scenarios thanks to its compact memory size. As a result, paths can be swiftly retrieved from memory when needed, enabling efficient and prompt navigation. Simulation results indicate that this algorithm consistently outperforms other algorithms in finding the shortest path quickly. |
|---|---|
| AbstractList | Sustainable path-planning algorithms are essential for executing complex user-defined missions by mobile robots. Addressing various scenarios with a unified criterion during the design phase is often impractical due to the potential for unforeseen situations. Therefore, it is important to incorporate the concept of adaptive autonomy for path planning. This approach allows the system to autonomously select the best path-planning strategy. The technique utilizes dynamic programming with an adaptive memory size, leveraging a cellular decomposition technique to divide the map into convex cells. The path is divided into three segments: the first segment connects the starting point to the center of the starting cell, the second segment connects the center of the goal cell to the goal point, and the third segment connects the center of the starting cell to the center of the goal cell. Since each cell is convex, internal path planning simply requires a straight line between two points within a cell. Path planning uses an improved A∗ (I- A∗ ) algorithm, which evaluates the feasibility of a direct path to the goal from the current position during execution. When a direct path is discovered, the algorithm promptly returns and saves it in memory. The memory size is proportional to the square of the total number of cells, and it stores paths between the centers of cells. By storing and reusing previously calculated paths, this method significantly reduces redundant computation and supports long-term sustainability in mobile robot deployments. The final phase of the path-planning process involves pruning, which eliminates unnecessary waypoints. This approach obviates the need for repetitive path planning across different scenarios thanks to its compact memory size. As a result, paths can be swiftly retrieved from memory when needed, enabling efficient and prompt navigation. Simulation results indicate that this algorithm consistently outperforms other algorithms in finding the shortest path quickly. Sustainable path-planning algorithms are essential for executing complex user-defined missions by mobile robots. Addressing various scenarios with a unified criterion during the design phase is often impractical due to the potential for unforeseen situations. Therefore, it is important to incorporate the concept of adaptive autonomy for path planning. This approach allows the system to autonomously select the best path-planning strategy. The technique utilizes dynamic programming with an adaptive memory size, leveraging a cellular decomposition technique to divide the map into convex cells. The path is divided into three segments: the first segment connects the starting point to the center of the starting cell, the second segment connects the center of the goal cell to the goal point, and the third segment connects the center of the starting cell to the center of the goal cell. Since each cell is convex, internal path planning simply requires a straight line between two points within a cell. Path planning uses an improved A[sup.∗] (I-A[sup.∗]) algorithm, which evaluates the feasibility of a direct path to the goal from the current position during execution. When a direct path is discovered, the algorithm promptly returns and saves it in memory. The memory size is proportional to the square of the total number of cells, and it stores paths between the centers of cells. By storing and reusing previously calculated paths, this method significantly reduces redundant computation and supports long-term sustainability in mobile robot deployments. The final phase of the path-planning process involves pruning, which eliminates unnecessary waypoints. This approach obviates the need for repetitive path planning across different scenarios thanks to its compact memory size. As a result, paths can be swiftly retrieved from memory when needed, enabling efficient and prompt navigation. Simulation results indicate that this algorithm consistently outperforms other algorithms in finding the shortest path quickly. |
| Audience | Academic |
| Author | Rashid, Ammar Baig, Muhammad Zeeshan Aatif, Muhammad Adeel, Umar |
| Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0003-1924-784X surname: Aatif fullname: Aatif, Muhammad – sequence: 2 givenname: Muhammad Zeeshan orcidid: 0000-0002-0902-9497 surname: Baig fullname: Baig, Muhammad Zeeshan – sequence: 3 givenname: Umar orcidid: 0000-0002-1779-4877 surname: Adeel fullname: Adeel, Umar – sequence: 4 givenname: Ammar orcidid: 0000-0002-8642-6218 surname: Rashid fullname: Rashid, Ammar |
| BookMark | eNp9kd1uFCEUx4mpibX2zgcg8dapfAwDXI71o5vUuDF6TQ4MjLOZgZWZbbNv4Bv4fj5JWceYXgkXnAP_8-Pw5zk6iyl6hF5ScsW5Jm-GGBJtiCKSkCfonBGpKlYrffYofoYu53lHypBS1Yqeo7yF5TvejhDjEHt8P5Ss7WC_DHcet4clxTQd8VuYfYdTxBDxZtrndFfS9vfPX7gd-5RL0VSOOvzuGGEaHN7m1GeYphMypIw_JTuMHn9JNi3zC_Q0wDj7y7_rBfr24f3X65vq9vPHzXV7WzneiKWqg5UMhOtYAGUby2TQYBUIyYmTlsiOso76ILl0VNfAdUMtt40QSnGlAr9Am5XbJdiZfR4myEeTYDB_NlLuDeRlcKM33imhCeMNeF0z54A7rsoVNAQrGi8Kq1pZh7iH4z2M4z8gJebkv3nsf9G_WvXFqx8HPy9mlw45lucazuqacK2YLqqrVdVDaeIEWDK4MjtfXCzfG4prplWCN0pSyUvB67XA5TTP2Yf_d_EAlH6mAw |
| Cites_doi | 10.1017/S0263574714000514 10.1007/s12555-011-0417-7 10.3390/s24062011 10.3390/s23146647 10.3390/act12030106 10.1109/TSSC.1968.300136 10.1109/ROBOT.2007.363555 10.1007/978-3-642-02094-0 10.4028/www.scientific.net/AMM.607.778 10.1007/978-3-031-35308-6_10 10.1109/70.88137 10.47611/jsrhs.v12i3.4790 10.1017/CBO9780511546877 10.1007/978-3-319-46475-6_7 10.1109/CVPRW.2017.70 10.1088/0741-3335/28/1A/022 10.1177/027836402320556421 10.15607/RSS.2005.I.009 10.1109/ROBOT.2007.364024 10.3390/agriculture12091445 10.1016/j.asoc.2024.111503 10.24963/ijcai.2017/700 10.54097/hset.v16i.2508 10.1109/ICRA.2011.5980409 10.1007/s10111-009-0134-7 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/info16080700 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2078-2489 |
| ExternalDocumentID | oai_doaj_org_article_ec8590236ae942cca3c38b071ffb56e5 10.3390/info16080700 A853687173 10_3390_info16080700 |
| GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC XH6 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PUEGO Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c365t-4fb72a5cd2fa8b6b27f9ab8a5730c7b07d12d1ef737c194a3961b3b65588388f3 |
| IEDL.DBID | BENPR |
| ISSN | 2078-2489 |
| IngestDate | Fri Oct 03 12:37:43 EDT 2025 Thu Aug 21 05:42:47 EDT 2025 Thu Aug 28 04:03:29 EDT 2025 Mon Oct 20 16:50:42 EDT 2025 Thu Oct 16 04:37:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-4fb72a5cd2fa8b6b27f9ab8a5730c7b07d12d1ef737c194a3961b3b65588388f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1924-784X 0000-0002-1779-4877 0000-0002-0902-9497 0000-0002-8642-6218 |
| OpenAccessLink | https://www.proquest.com/docview/3244039829?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3244039829 |
| PQPubID | 2032384 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ec8590236ae942cca3c38b071ffb56e5 unpaywall_primary_10_3390_info16080700 proquest_journals_3244039829 gale_infotracacademiconefile_A853687173 crossref_primary_10_3390_info16080700 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Information (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Yang (ref_31) 2011; 9 Hsu (ref_16) 2002; 21 Yao (ref_4) 2015; 33 ref_14 ref_13 ref_12 ref_11 ref_19 ref_17 ref_15 Borenstein (ref_9) 1991; 7 Wesson (ref_30) 1986; 28 ref_25 ref_24 ref_23 ref_22 Zhang (ref_26) 2022; 16 Zheng (ref_28) 2023; 12 ref_20 Noreen (ref_10) 2016; 7 Hart (ref_18) 1968; 4 ref_3 ref_2 ref_29 ref_27 ref_8 Mehmet (ref_1) 2024; 158 Botea (ref_33) 2004; 1 ref_5 ref_7 Zieba (ref_21) 2010; 12 Tang (ref_32) 2014; 607 ref_6 |
| References_xml | – ident: ref_7 – volume: 33 start-page: 611 year: 2015 ident: ref_4 article-title: Unmanned aerial vehicle dynamic path planning in an uncertain environment publication-title: Robotica doi: 10.1017/S0263574714000514 – volume: 9 start-page: 750 year: 2011 ident: ref_31 article-title: Anytime synchronized-biased-greedy rapidly-exploring random tree path planning in two dimensional complex environments publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-011-0417-7 – ident: ref_25 doi: 10.3390/s24062011 – ident: ref_27 doi: 10.3390/s23146647 – ident: ref_5 – volume: 1 start-page: 1 year: 2004 ident: ref_33 article-title: Near optimal hierarchical path-finding publication-title: J. Game Dev. – ident: ref_24 doi: 10.3390/act12030106 – volume: 4 start-page: 100 year: 1968 ident: ref_18 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – ident: ref_17 doi: 10.1109/ROBOT.2007.363555 – ident: ref_19 doi: 10.1007/978-3-642-02094-0 – volume: 607 start-page: 778 year: 2014 ident: ref_32 article-title: Comparison between Normal Waveform and Modified Wavefront Path Planning Algorithm for Mobile Robot publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.607.778 – ident: ref_2 doi: 10.1007/978-3-031-35308-6_10 – volume: 7 start-page: 278 year: 1991 ident: ref_9 article-title: The vector field histogram-fast obstacle avoidance for mobile robots publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.88137 – volume: 12 start-page: 1 year: 2023 ident: ref_28 article-title: Scouting robot with search-space reducing hybrid networks for unknown environment path planning publication-title: J. Stud. Res. doi: 10.47611/jsrhs.v12i3.4790 – ident: ref_3 doi: 10.1017/CBO9780511546877 – ident: ref_13 doi: 10.1007/978-3-319-46475-6_7 – ident: ref_12 doi: 10.1109/CVPRW.2017.70 – ident: ref_23 – volume: 28 start-page: 243 year: 1986 ident: ref_30 article-title: Sawtooth oscillations publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/28/1A/022 – volume: 7 start-page: 97 year: 2016 ident: ref_10 article-title: Optimal path planning using RRT* based approaches: A survey and future directions publication-title: Int. J. Adv. Comput. Sci. Appl – volume: 21 start-page: 233 year: 2002 ident: ref_16 article-title: Randomized kinodynamic motion planning with moving obstacles publication-title: Int. J. Robot. Res. doi: 10.1177/027836402320556421 – ident: ref_11 doi: 10.15607/RSS.2005.I.009 – ident: ref_8 doi: 10.1109/ROBOT.2007.364024 – ident: ref_29 doi: 10.3390/agriculture12091445 – volume: 158 start-page: 111503 year: 2024 ident: ref_1 article-title: Dynamic Path Planning via Dueling Double Deep Q-Network (D3QN) with Prioritized Experience Replay publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111503 – ident: ref_6 doi: 10.24963/ijcai.2017/700 – ident: ref_15 – volume: 16 start-page: 279 year: 2022 ident: ref_26 article-title: Mobile robot path planning in 2d space: A survey publication-title: Highlights Sci. Eng. Technol. doi: 10.54097/hset.v16i.2508 – ident: ref_14 doi: 10.1109/ICRA.2011.5980409 – volume: 12 start-page: 193 year: 2010 ident: ref_21 article-title: Principles of adjustable autonomy: A framework for resilient human–machine cooperation publication-title: Cogn. Technol. Work doi: 10.1007/s10111-009-0134-7 – ident: ref_22 – ident: ref_20 |
| SSID | ssj0000778481 |
| Score | 2.3246932 |
| Snippet | Sustainable path-planning algorithms are essential for executing complex user-defined missions by mobile robots. Addressing various scenarios with a unified... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 700 |
| SubjectTerms | Algorithms artificial intelligence Autonomy data-driven learning-based Decision making Decomposition Dynamic programming Efficiency Machine learning mobile robots path planning Planning Real time Robots Segments Shortest-path problems Straight lines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSuVAEC3EjboYfGJ80QudWQWTdNLdWcYXIigiI7gL3enu2VyTyzUX8Q_mD-b_5kumKsmVwIBuXOZd1EnXo6k6BXDs0AVHtpKhwXQ5TL1yoTLWhdJzb1KbKhFTo_Dtnbh-TG-esqfRqC-qCevpgXvFnbpKEcMIF9rlaYLf4xVXBh2j9yYTrmMvjVQ-SqY6Gywl8cT3le4c8_pTwisWGB9JamYb-aCOqv9_g7wGK_N6qt9e9WQy8jhX6_BtCBVZ0Yu4AUuu3oS1EYHgFszuMYBji8FDjDZVWWH1lGwYK-Zt17HAztBTWdbUTNes30TAw-Lv7z-smPxqZvjQM16y7KKfTs_u-5qtZ3olxrTstjFoO9hDY5r2ZRsery5_nl-HwxSFsOIia1H_RiY6q2zitTLCJNLn2iid4dquJGrSxomNnZdcVnGeap6L2HAjskwprpTnO7BcN7XbBaYQShk5i_jp1OpMex9pDGAEtdRLGQdwstBrOe3JMkpMMkj_5Vj_AZyR0t_vIYrr7gQCXw7Al58BH8APgqx7cTvTlR76CVBUorQqCwxEhKIigwAOFqiWwwp9KTGQTCOeqyQP4Ps70h-KvfcVYu_DakIjhLsawgNYbmdzd4hxTWuOul_4Hx4T9zs priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeCNSCvKBxyndxO-cUApUFVKrFWKlcors2K4qdpNVNktVfgH_gP_HL2GcR7UCCSGOSWxrohnPfDOaB0IvHJjgxJYyNuAux8wrFytjXSw99YZZpkQaCoVPTsXxnH0442dDwG09pFWCK37RKWkC9ismTGXTVEzVVCbJdGX9m69DJAksH2cEAEV2E-0IDlh8gnbmp7P8c5goN-7ts90p-PbTwLNUAEaSoaBtyw517fr_VMq76NamWumrS71YbFmdo7uoGOntk02-HGxac1B--62V4___0D10ZwCkOO8l6D664aoHaHerTeFD1MwAJuJxvBEOoVucW70KmhLnm7ari8CHYA8triusK9yHKuAx__n9B84X53UDm5bwyeJ3V5VeXpR41meGLcORgJzxSW1AQ-GPtanb9SM0P3r_6e1xPMxqiEsqeAtcNpJoXlritTLCEOkzbZTmoEFKaRJpU2JT5yWVZZoxTTORGmoE50pRpTx9jCZVXbknCCsQGJk4C1KimdVce59ogEkiFO5LmUbo5ci5YtW35CjAlQkcLrY5HKHDwNbrNaGRdveibs6L4V4WrlShgQ0V2mWMgDjTkiogN_XecOF4hF4HoegObhtd6qFqAUgNjbOKHOCOUCGVIUL7o9wUgx5YFwBXWUIzRbIIvbqWpb-SvfevC5-i2yQMI-6yEffRpG027hkgpNY8H67BL-tWDF0 priority: 102 providerName: Unpaywall |
| Title | Path Planning with Adaptive Autonomy Based on an Improved A∗ Algorithm and Dynamic Programming for Mobile Robots |
| URI | https://www.proquest.com/docview/3244039829 https://www.mdpi.com/2078-2489/16/8/700/pdf?version=1755421639 https://doaj.org/article/ec8590236ae942cca3c38b071ffb56e5 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ABDBF dateStart: 20111201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ADMLS dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: 8FG dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7ttgfYA-IpCkvlA49TtEmcxM4BoZTdskK0qhYqLafIju3l0E1KNxXiH_AP-H_8EmbyKJWQ9piHLGc-e2Y8mfkG4KVFE-ybQngaj8te5KT1pDbWE447HZlIJgEVCs_myfky-ngZXx7AvK-FobTKXic2itpUBcXIT9DwRz5PZZi-W3_3qGsU_V3tW2iorrWCedtQjB3CMCRmrAEMJ2fzxcUu6uILQfzxbQY8x_P-CeEYJOg3CSpy27NNDYX__4r6CO5sy7X6-UOtVnuWaHof7nUuJMtazB_AgS0fwtEeseAj2CzQsWN9QyJGwVaWGbUm3caybd1UMrAJWjDDqpKpkrXBBbzM_vz6zbLVFX57_e0aHxl22natZ4s2l-uahkRfl80qjTqFXVS6qm8ew3J69uX9udd1V_AKnsQ14qJFqOLChE5JnehQuFRpqWLc84XQvjBBaALrBBdFkEaKp0mguU7iWEoupeNPYFBWpX0KTCLEwrcGcVWRUbFyzlfo2CRUai9EMIJXvVzzdUuikePhg-Sf78t_BBMS-u4dor5ublSbq7zbSbktJFHO8ETZNApxAfKCS5xu4JyOExuP4A1B1gxcb1ShujoDnCpRXeUZOiiJpOSDERz3qObdzr3J_62zEbzeIX3rtJ_dPs5zuBtS0-Ama_AYBvVma1-gJ1PrMRzK6YcxDLPT2afP426xjpu4AF4t54vs618YoPnl |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lB6QPyK0AJ7oHCyanvt3fWhQg5tldImiqpW6s3sencLUmKniaMqb8Ab8DY8DE_CrGOHSEi99egfjUYzn-dnPT8AHwy6YF_n3FOYLnuRFcYTShuPW2pVpCPBAtco3B-w3lX09Tq-3oDfbS-MK6tsbWJtqHWZuzPyA3T8kU8TESafJ7ee2xrl_q62KzRks1pBH9YjxprGjjOzuMMUbnZ4eoT63g_Dk-PLLz2v2TLg5ZTFFfKneCjjXIdWCsVUyG0ilZAxYj_nyuc6CHVgLKc8x4xf0oQFiioWx0JQISxFuo9gK6JRgsnfVvd4MLxYnfL4nLt59cuKe0oT_8DhJmAYp3HXVLfmC-uVAf87hh3YnhcTubiTo9Ga5zt5Ck-akJWkS4w9gw1TPIedtUGGL2A6xECStAuQiDvcJamWE2dLSTqv6s4J0kWPqUlZEFmQ5WEGXqZ_fv4i6egGZV19H-MjTY4WhRz_yMlwWTs2diQxtib9UqENIxelKqvZS7h6EDm_gs2iLMxrIAIhxX2jEUcy0jKW1voSAynmWvs5Dzqw38o1myyHdmSY7Dj5Z-vy70DXCX31jhu1Xd8opzdZ8-VmJhduxA1l0iRRiICnORXIbmCtipmJO_DJqawmXE1lLpu-BmTVjdbKUgyImHDFDh3Ya7WaNZZilv3DdQc-rjR9L9tv7qfzHrZ7l_3z7Px0cLYLj0O3sLiuWNyDzWo6N28xiqrUuwaqBL499NfxF_1bMa0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIgE9IH6FocAeKJys2F57d31AyCWEltIqQlTqzd317hakxA6JoypvwBvwLjwOT8KMf0IkpN56dByNRjPfzs96fgh5ZcEFB6YQvoZ02Y-dtL7UxvrCMadjE0seYqPw8Qk_OI0_nSVnW-R33wuDZZW9TWwMtakKvCMfgOOPA5bKKB24rixiPBy9m_3wcYMUfmnt12m0EDmyq0tI3xZvD4eg670oGn34-v7A7zYM-AXjSQ28aRGppDCRU1JzHQmXKi1VArgvhA6ECSMTWieYKCDbVyzloWaaJ4mUTErHgO4NclPgFHfsUh99XN_vBELgpPq21p6xNBggYkIOEZrAdroNL9gsC_jfJeyQ28typlaXajLZ8Hmje-RuF6zSrEXXfbJlywdkZ2OE4UMyH0MISfvVRxSvdWlm1AytKM2WddMzQffBVxpalVSVtL3GgMfsz89fNJtcgGTrb1N4ZehwVarp94KO26qxKZKEqJoeVxqsF_1S6apePCKn1yLlx2S7rEr7hFAJYBKBNYAgFRuVKOcCBSEUx6Z-IUKP7PVyzWftuI4c0hyUf74pf4_so9DX_8Eh280P1fwi785sbguJw20YVzaNI4A6K5gEdkPndMJt4pE3qLKGcD1Xheo6GoBVHKqVZxAKcYllDh7Z7bWadzZikf9DtEderzV9JdtPr6bzktyCM5F_Pjw5ekbuRLipuClV3CXb9Xxpn0P4VOsXDU4pOb_ug_EXqMEvRw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeCNSCvKBxyndxO-cUApUFVKrFWKlcors2K4qdpNVNktVfgH_gP_HL2GcR7UCCSGOSWxrohnPfDOaB0IvHJjgxJYyNuAux8wrFytjXSw99YZZpkQaCoVPTsXxnH0442dDwG09pFWCK37RKWkC9ismTGXTVEzVVCbJdGX9m69DJAksH2cEAEV2E-0IDlh8gnbmp7P8c5goN-7ts90p-PbTwLNUAEaSoaBtyw517fr_VMq76NamWumrS71YbFmdo7uoGOntk02-HGxac1B--62V4___0D10ZwCkOO8l6D664aoHaHerTeFD1MwAJuJxvBEOoVucW70KmhLnm7ari8CHYA8triusK9yHKuAx__n9B84X53UDm5bwyeJ3V5VeXpR41meGLcORgJzxSW1AQ-GPtanb9SM0P3r_6e1xPMxqiEsqeAtcNpJoXlritTLCEOkzbZTmoEFKaRJpU2JT5yWVZZoxTTORGmoE50pRpTx9jCZVXbknCCsQGJk4C1KimdVce59ogEkiFO5LmUbo5ci5YtW35CjAlQkcLrY5HKHDwNbrNaGRdveibs6L4V4WrlShgQ0V2mWMgDjTkiogN_XecOF4hF4HoegObhtd6qFqAUgNjbOKHOCOUCGVIUL7o9wUgx5YFwBXWUIzRbIIvbqWpb-SvfevC5-i2yQMI-6yEffRpG027hkgpNY8H67BL-tWDF0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Planning+with+Adaptive+Autonomy+Based+on+an+Improved+A%E2%88%97+Algorithm+and+Dynamic+Programming+for+Mobile+Robots&rft.jtitle=Information+%28Basel%29&rft.au=Aatif+Muhammad&rft.au=Baig%2C+Muhammad+Zeeshan&rft.au=Umar%2C+Adeel&rft.au=Rashid+Ammar&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=16&rft.issue=8&rft.spage=700&rft_id=info:doi/10.3390%2Finfo16080700&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |