Optical characterization of a funnel solar cooker with azimuthal sun tracking through ray-tracing simulation

Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple r...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 233; pp. 84 - 95
Main Authors Carrillo-Andrés, Antonio, Apaolaza-Pagoaga, Xabier, Ruivo, Celestino Rodrigues, Rodríguez-García, Eduardo, Fernández-Hernández, Francisco
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.02.2022
Pergamon Press Inc
Subjects
Online AccessGet full text
ISSN0038-092X
1471-1257
DOI10.1016/j.solener.2021.12.027

Cover

Abstract Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple reflections occur. The overall performance of funnel solar cookers is strongly affected by their optical efficiency. There is a lack of information in academic literature about this important research topic. This work aims to fill this gap presenting an optical performance analysis of a funnel solar cooker with only azimuthal sun tracking. Open-source numerical ray-tracing software Soltrace is used to investigate relevant characteristics such as the intercept factor, optical efficiency, dependency on incidence angle, performance of each reflecting surface and irradiation density flux distribution on different surfaces of the cooking pot. Some important results for beam radiation at normal incidence are the intercept factor, determined to be 0.664, and the optical efficiency with realistic optical properties, that turned out to be 0.370. When the incidence of solar beam radiation is not normal, optical efficiency remains above 90% of its normal incidence value, if the alignment errors are less than 10°. •Numerical ray tracing is used to perform optical characterization of a funnel solar cooker.•The optical efficiency with perfect optical properties at normal incidence is 0.664.•The optical efficiency with realistic optical properties at normal incidence is 0.370.•The dependence of optical efficiency on the angle of incidence angle is investigated.•Irradiation density flux maps on cooking pot surfaces are presented.
AbstractList Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple reflections occur. The overall performance of funnel solar cookers is strongly affected by their optical efficiency. There is a lack of information in academic literature about this important research topic. This work aims to fill this gap presenting an optical performance analysis of a funnel solar cooker with only azimuthal sun tracking. Open-source numerical ray-tracing software Soltrace is used to investigate relevant characteristics such as the intercept factor, optical efficiency, dependency on incidence angle, performance of each reflecting surface and irradiation density flux distribution on different surfaces of the cooking pot. Some important results for beam radiation at normal incidence are the intercept factor, determined to be 0.664, and the optical efficiency with realistic optical properties, that turned out to be 0.370. When the incidence of solar beam radiation is not normal, optical efficiency remains above 90% of its normal incidence value, if the alignment errors are less than 10°.
Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple reflections occur. The overall performance of funnel solar cookers is strongly affected by their optical efficiency. There is a lack of information in academic literature about this important research topic. This work aims to fill this gap presenting an optical performance analysis of a funnel solar cooker with only azimuthal sun tracking. Open-source numerical ray-tracing software Soltrace is used to investigate relevant characteristics such as the intercept factor, optical efficiency, dependency on incidence angle, performance of each reflecting surface and irradiation density flux distribution on different surfaces of the cooking pot. Some important results for beam radiation at normal incidence are the intercept factor, determined to be 0.664, and the optical efficiency with realistic optical properties, that turned out to be 0.370. When the incidence of solar beam radiation is not normal, optical efficiency remains above 90% of its normal incidence value, if the alignment errors are less than 10°. •Numerical ray tracing is used to perform optical characterization of a funnel solar cooker.•The optical efficiency with perfect optical properties at normal incidence is 0.664.•The optical efficiency with realistic optical properties at normal incidence is 0.370.•The dependence of optical efficiency on the angle of incidence angle is investigated.•Irradiation density flux maps on cooking pot surfaces are presented.
Author Ruivo, Celestino Rodrigues
Rodríguez-García, Eduardo
Carrillo-Andrés, Antonio
Fernández-Hernández, Francisco
Apaolaza-Pagoaga, Xabier
Author_xml – sequence: 1
  givenname: Antonio
  orcidid: 0000-0001-9511-2678
  surname: Carrillo-Andrés
  fullname: Carrillo-Andrés, Antonio
  email: acarrillo@uma.es
  organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain
– sequence: 2
  givenname: Xabier
  orcidid: 0000-0002-7956-3855
  surname: Apaolaza-Pagoaga
  fullname: Apaolaza-Pagoaga, Xabier
  organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain
– sequence: 3
  givenname: Celestino Rodrigues
  orcidid: 0000-0002-3915-0554
  surname: Ruivo
  fullname: Ruivo, Celestino Rodrigues
  organization: Department of Mechanical Engineering, Institute of Engineering, University of Algarve, Campus da Penha, 8005-139 Faro, Portugal
– sequence: 4
  givenname: Eduardo
  orcidid: 0000-0002-7326-1127
  surname: Rodríguez-García
  fullname: Rodríguez-García, Eduardo
  organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain
– sequence: 5
  givenname: Francisco
  orcidid: 0000-0002-5074-1507
  surname: Fernández-Hernández
  fullname: Fernández-Hernández, Francisco
  organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain
BookMark eNqFkE1LxDAQhoMouH78BCHguTUzybZbPIiIX7CwFwVvIU2zNmtN1iRV9NebdT158RSYvM87zHNAdp13hpATYCUwqM5WZfSDcSaUyBBKwJJhvUMmIGooAKf1LpkwxmcFa_BpnxzEuGIMapjVEzIs1slqNVDdq6B0MsF-qWS9o35JFV2OzpmB5n4VqPb-xQT6YVNP1Zd9HVOfwTg6mjL6Yt0zTX3w43NPg_osNsPNLObk8NN5RPaWaojm-Pc9JI831w9Xd8V8cXt_dTkvNK-mqeAMsWN1J0AwQOgEU6iNAgOtQNEiN-2sEUIgNJpxgUpozTXHtmvaikPLD8nptncd_NtoYpIrPwaXV0qseMM4r4Dn1HSb0sHHGMxSroN9VeFTApMbsXIlf8XKjVgJKLPYzJ3_4bRNP_fli-3wL32xpU0W8G7zb9TWOG06G4xOsvP2n4ZvIqqbtg
CitedBy_id crossref_primary_10_1007_s10973_023_12282_2
crossref_primary_10_1016_j_energy_2022_124730
crossref_primary_10_1016_j_renene_2024_120856
crossref_primary_10_1016_j_applthermaleng_2022_119643
crossref_primary_10_1002_wene_516
crossref_primary_10_1016_j_solener_2024_113178
crossref_primary_10_1016_j_seta_2024_103879
crossref_primary_10_3103_S0003701X2206010X
crossref_primary_10_1016_j_seta_2023_103586
crossref_primary_10_1016_j_energy_2024_134194
crossref_primary_10_1016_j_jclepro_2023_136158
crossref_primary_10_1016_j_seta_2022_102600
Cites_doi 10.1016/j.solener.2014.11.011
10.1016/j.solener.2018.07.096
10.1016/j.csite.2020.100766
10.1016/j.solener.2020.07.026
10.1016/j.scs.2017.08.031
10.1016/j.apenergy.2018.05.067
10.1016/j.solener.2019.04.083
10.1016/S0143-8166(00)00010-5
10.1016/j.renene.2021.01.146
10.1016/j.icheatmasstransfer.2017.06.021
10.1016/j.renene.2019.03.021
10.1016/j.enconman.2010.12.042
10.1016/j.solener.2021.08.006
10.1016/j.solener.2018.09.007
10.1016/j.egypro.2014.10.319
10.1016/j.rser.2015.12.199
10.1364/AO.40.002148
10.1016/j.solener.2020.07.056
10.2172/946571
10.1016/j.solmat.2004.01.029
10.1016/j.renene.2021.08.025
10.1016/j.ijleo.2017.02.064
10.1016/j.ijleo.2018.09.082
ContentType Journal Article
Copyright 2022 International Solar Energy Society
Copyright Pergamon Press Inc. Feb 2022
Copyright_xml – notice: 2022 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Feb 2022
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2021.12.027
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 95
ExternalDocumentID 10_1016_j_solener_2021_12_027
S0038092X21010768
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7ST
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c365t-3022d07d4140121d40a2cea1e1b424b23eb89444219c0342a4cc3c32bd9b631b3
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 06:15:24 EDT 2025
Thu Sep 25 00:40:41 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Fri Feb 23 02:43:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Funnel cooker
Ray-tracing
Solar cooker
Soltrace
Solar energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-3022d07d4140121d40a2cea1e1b424b23eb89444219c0342a4cc3c32bd9b631b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7326-1127
0000-0001-9511-2678
0000-0002-7956-3855
0000-0002-5074-1507
0000-0002-3915-0554
OpenAccessLink http://hdl.handle.net/10400.1/17761
PQID 2639033613
PQPubID 9393
PageCount 12
ParticipantIDs proquest_journals_2639033613
crossref_primary_10_1016_j_solener_2021_12_027
crossref_citationtrail_10_1016_j_solener_2021_12_027
elsevier_sciencedirect_doi_10_1016_j_solener_2021_12_027
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2022
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Brogren, Helgesson, Karlsson, Nilsson, Roos (b10) 2004; 82
Solar Cookers International (b31) 2021
Solar Cookers International (b33) 2021
Apaolaza-Pagoaga, Carrillo-Andrés, Ruivo (b2) 2021
Rönnelid, Adsten, Lindström, Nostell, Wäckelgård (b27) 2001; 40
McDonald (b20) 1974
ASAE (b6) 2013
Benrejeb, Helal, Chaouachi (b8) 2015; 112
AALCO (b1) 2018
Aramesh, Ghalebani, Kasaeian, Zamani, Lorenzini, Mahian, Wongwises (b4) 2019; 140
Lindseth, Bardal, Spooren (b19) 1999; 32
Wang, Huang, Song, Yan (b37) 2019; 237
Su, Gu, Vafai (b34) 2017; 87
Rehman (b26) 2018; 173
Waghmare, Gulhane (b36) 2019; 176
Solar Cookers International (b32) 2021
Zou, Jiang, Yao, Yang (b41) 2019; 160
Wendelin, Dobos, Lewandowski (b38) 2013; 303
Bode, Gauché (b9) 2012
R Core Team (b23) 2021
Gupta, Misal, Agrawal (b16) 2021
Houcine, Maatallah, Alimi, Nasrallah (b18) 2017; 35
Apaolaza-Pagoaga, Sagade, Rodrigues Ruivo, Carrillo-Andrés (b3) 2021
Regattieri, Piana, Bortolini, Gamberi, Ferrari (b25) 2016; 57
Balcomb, Barley, McFarland, Perry, Wray, Noll (b7) 1980; vol. 2 of two volumes
Ruelas, Pando, Lucero, Tzab (b28) 2014; 57
Fan, You, Xia, Zheng, Zhang, Liang, Li, Li (b15) 2018; 225
Clausson, S., 2018. A comparison of Copenhagen solar cookers with other similar sized solar cookers. In: CONSOLFOOD 2018, Faro, Portugal.
Waghmare, Gulhane (b35) 2017; 136
Mekonnen, Liyew, Tigabu (b21) 2020; 22
Solar Cookers International (b30) 2021
Zhao, Zheng, Sun, Li, Wu (b39) 2018; 174
Duffie, Beckman (b12) 2013
Zheng, Tao, Dai, Kang (b40) 2011; 52
Arunachala, Kundapur (b5) 2020; 207
Ebersviller, Jetter (b14) 2020; 208
Reddy, Khan (b24) 2019; 185
Pejack (b22) 2006
Ruivo, Carrillo-Andrés, Apaolaza-Pagoaga (b29) 2021; 170
Ho, C.K., 2008. Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Report. SAND2008, p. 8053.
Earthboundtech (b13) 2012
Lindseth (10.1016/j.solener.2021.12.027_b19) 1999; 32
Bode (10.1016/j.solener.2021.12.027_b9) 2012
Wendelin (10.1016/j.solener.2021.12.027_b38) 2013; 303
ASAE (10.1016/j.solener.2021.12.027_b6) 2013
Houcine (10.1016/j.solener.2021.12.027_b18) 2017; 35
Mekonnen (10.1016/j.solener.2021.12.027_b21) 2020; 22
Solar Cookers International (10.1016/j.solener.2021.12.027_b30) 2021
Pejack (10.1016/j.solener.2021.12.027_b22) 2006
Waghmare (10.1016/j.solener.2021.12.027_b35) 2017; 136
Ruivo (10.1016/j.solener.2021.12.027_b29) 2021; 170
Waghmare (10.1016/j.solener.2021.12.027_b36) 2019; 176
Zou (10.1016/j.solener.2021.12.027_b41) 2019; 160
R Core Team (10.1016/j.solener.2021.12.027_b23) 2021
Rönnelid (10.1016/j.solener.2021.12.027_b27) 2001; 40
Reddy (10.1016/j.solener.2021.12.027_b24) 2019; 185
Zhao (10.1016/j.solener.2021.12.027_b39) 2018; 174
Benrejeb (10.1016/j.solener.2021.12.027_b8) 2015; 112
Su (10.1016/j.solener.2021.12.027_b34) 2017; 87
Balcomb (10.1016/j.solener.2021.12.027_b7) 1980; vol. 2 of two volumes
Solar Cookers International (10.1016/j.solener.2021.12.027_b33) 2021
Zheng (10.1016/j.solener.2021.12.027_b40) 2011; 52
10.1016/j.solener.2021.12.027_b11
Apaolaza-Pagoaga (10.1016/j.solener.2021.12.027_b3) 2021
Rehman (10.1016/j.solener.2021.12.027_b26) 2018; 173
Duffie (10.1016/j.solener.2021.12.027_b12) 2013
Regattieri (10.1016/j.solener.2021.12.027_b25) 2016; 57
Wang (10.1016/j.solener.2021.12.027_b37) 2019; 237
10.1016/j.solener.2021.12.027_b17
Solar Cookers International (10.1016/j.solener.2021.12.027_b31) 2021
Aramesh (10.1016/j.solener.2021.12.027_b4) 2019; 140
Brogren (10.1016/j.solener.2021.12.027_b10) 2004; 82
Ruelas (10.1016/j.solener.2021.12.027_b28) 2014; 57
Earthboundtech (10.1016/j.solener.2021.12.027_b13) 2012
Apaolaza-Pagoaga (10.1016/j.solener.2021.12.027_b2) 2021
McDonald (10.1016/j.solener.2021.12.027_b20) 1974
Solar Cookers International (10.1016/j.solener.2021.12.027_b32) 2021
Ebersviller (10.1016/j.solener.2021.12.027_b14) 2020; 208
Fan (10.1016/j.solener.2021.12.027_b15) 2018; 225
Arunachala (10.1016/j.solener.2021.12.027_b5) 2020; 207
AALCO (10.1016/j.solener.2021.12.027_b1) 2018
Gupta (10.1016/j.solener.2021.12.027_b16) 2021
References_xml – volume: 207
  start-page: 903
  year: 2020
  end-page: 916
  ident: b5
  article-title: Cost-effective solar cookers: A global review
  publication-title: Sol. Energy
– volume: 112
  start-page: 108
  year: 2015
  end-page: 119
  ident: b8
  article-title: Optical and thermal performances improvement of an ICS solar water heater system
  publication-title: Sol. Energy
– volume: 22
  year: 2020
  ident: b21
  article-title: Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker
  publication-title: Case Stud. Therm. Eng.
– volume: 174
  start-page: 263
  year: 2018
  end-page: 272
  ident: b39
  article-title: Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator
  publication-title: Sol. Energy
– volume: 185
  start-page: 363
  year: 2019
  end-page: 373
  ident: b24
  article-title: Design and ray tracing of multifaceted scheffler reflector with novel crossbars
  publication-title: Sol. Energy
– volume: 237
  start-page: 70
  year: 2019
  end-page: 82
  ident: b37
  article-title: Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker
  publication-title: Appl. Energy
– reference: Ho, C.K., 2008. Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Report. SAND2008, p. 8053.
– year: 2021
  ident: b3
  article-title: Performance of solar funnel cookers using intermediate temperature test load under low sun elevation
  publication-title: Sol. Energy
– year: 2021
  ident: b31
  article-title: Solar cooker designs
– volume: 208
  start-page: 166
  year: 2020
  end-page: 172
  ident: b14
  article-title: Evaluation of performance of household solar cookers
  publication-title: Sol. Energy
– volume: vol. 2 of two volumes
  year: 1980
  ident: b7
  publication-title: Passive Solar Design Handbook
– reference: Clausson, S., 2018. A comparison of Copenhagen solar cookers with other similar sized solar cookers. In: CONSOLFOOD 2018, Faro, Portugal.
– start-page: 10
  year: 2021
  end-page: 13
  ident: b16
  article-title: Development of low cost reflective panel solar cooker
  publication-title: Mater. Today: Proc.
– volume: 303
  start-page: 275
  year: 2013
  end-page: 3000
  ident: b38
  article-title: SolTrace: A ray-tracing code for complex solar optical systems
  publication-title: Contract
– year: 2012
  ident: b9
  article-title: Review of optical software for use in concentrating solar power systems
– volume: 160
  year: 2019
  ident: b41
  article-title: Optical performance of parabolic trough solar collectors under condition of multiple optical factors
  publication-title: Appl. Therm. Eng.
– year: 2018
  ident: b1
  article-title: Ippon panel light datasheet
– start-page: 2
  year: 2006
  end-page: 6
  ident: b22
  article-title: Optical properties of the cookit solar cooker
  publication-title: Proceedings Of The 2006 Solar Cookers International Conference
– volume: 87
  start-page: 169
  year: 2017
  end-page: 174
  ident: b34
  article-title: Modeling and simulation of ray tracing for compound parabolic thermal solar collector
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 176
  start-page: 315
  year: 2019
  end-page: 323
  ident: b36
  article-title: Design configurations and possibilities of reflector shape for solar compound parabolic collector by ray tracing simulation
  publication-title: Optik
– year: 2013
  ident: b12
  article-title: Solar Engineering Of Thermal Processes
– volume: 140
  start-page: 419
  year: 2019
  end-page: 435
  ident: b4
  article-title: A review of recent advances in solar cooking technology
  publication-title: Renew. Energy
– year: 2021
  ident: b32
  article-title: Solar funnel cooker, Solar Cooking Wiki
– volume: 35
  start-page: 786
  year: 2017
  end-page: 798
  ident: b18
  article-title: Optical modeling and investigation of sun tracking parabolic trough solar collector basing on ray tracing 3Dimensions-4rays
  publication-title: Sustain. Cities Soc.
– volume: 173
  start-page: 1207
  year: 2018
  end-page: 1215
  ident: b26
  article-title: Optical-irradiance ray-tracing model for the performance analysis and optimization of a façade integrated solar collector with a flat booster reflector
  publication-title: Sol. Energy
– volume: 57
  start-page: 2858
  year: 2014
  end-page: 2866
  ident: b28
  article-title: Ray tracing study to determine the characteristics of the solar image in the receiver for a Scheffler-type solar concentrator coupled with a Stirling engine
  publication-title: Energy Procedia
– year: 2021
  ident: b2
  article-title: New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker
  publication-title: Renew. Energy
– year: 2012
  ident: b13
  article-title: Reciprocal optical test for measuring solar cooker performance
– volume: 136
  start-page: 470
  year: 2017
  end-page: 479
  ident: b35
  article-title: Flux concentration on tubular receiver of compound parabolic collector by surface areal irradiance method of ray tracing
  publication-title: Optik
– volume: 170
  start-page: 364
  year: 2021
  end-page: 374
  ident: b29
  article-title: Experimental determination of the standardised power of a solar funnel cooker for low sun elevations
  publication-title: Renew. Energy
– volume: 32
  start-page: 419
  year: 1999
  end-page: 435
  ident: b19
  article-title: Reflectance measurements of aluminium surfaces using integrating spheres
  publication-title: Opt. Lasers Eng.
– year: 1974
  ident: b20
  article-title: Survey of coatings for solar collectors
  publication-title: Workshop On Solar Collectors For Heating And Cooling Of Buildings
– volume: 225
  start-page: 769
  year: 2018
  end-page: 781
  ident: b15
  article-title: An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors
  publication-title: Appl. Energy
– year: 2021
  ident: b23
  article-title: R: A Language and Environment for Statistical Computing
– volume: 52
  start-page: 2373
  year: 2011
  end-page: 2377
  ident: b40
  article-title: Light tracing analysis of a new kind of trough solar concentrator
  publication-title: Energy Convers. Manage.
– volume: 82
  start-page: 387
  year: 2004
  end-page: 412
  ident: b10
  article-title: Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 57
  start-page: 319
  year: 2016
  end-page: 326
  ident: b25
  article-title: Innovative portable solar cooker using the packaging waste of humanitarian supplies
  publication-title: Renew. Sustain. Energy Rev.
– year: 2021
  ident: b33
  article-title: Test results
– year: 2013
  ident: b6
  article-title: ASAE S580.1 NOV2013, Testing and reporting solar cooker performance
– volume: 40
  start-page: 2148
  year: 2001
  ident: b27
  article-title: Optical scattering from rough-rolled aluminum surfaces
  publication-title: Appl. Opt.
– year: 2021
  ident: b30
  article-title: Copenhagen solar cooker light, solar cooking wiki
– volume: 112
  start-page: 108
  year: 2015
  ident: 10.1016/j.solener.2021.12.027_b8
  article-title: Optical and thermal performances improvement of an ICS solar water heater system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.011
– volume: 303
  start-page: 275
  issue: October
  year: 2013
  ident: 10.1016/j.solener.2021.12.027_b38
  article-title: SolTrace: A ray-tracing code for complex solar optical systems
  publication-title: Contract
– volume: 160
  issue: July
  year: 2019
  ident: 10.1016/j.solener.2021.12.027_b41
  article-title: Optical performance of parabolic trough solar collectors under condition of multiple optical factors
  publication-title: Appl. Therm. Eng.
– volume: 173
  start-page: 1207
  issue: June
  year: 2018
  ident: 10.1016/j.solener.2021.12.027_b26
  article-title: Optical-irradiance ray-tracing model for the performance analysis and optimization of a façade integrated solar collector with a flat booster reflector
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.07.096
– volume: 22
  year: 2020
  ident: 10.1016/j.solener.2021.12.027_b21
  article-title: Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100766
– volume: vol. 2 of two volumes
  year: 1980
  ident: 10.1016/j.solener.2021.12.027_b7
– year: 1974
  ident: 10.1016/j.solener.2021.12.027_b20
  article-title: Survey of coatings for solar collectors
– year: 2021
  ident: 10.1016/j.solener.2021.12.027_b31
– volume: 207
  start-page: 903
  issue: June
  year: 2020
  ident: 10.1016/j.solener.2021.12.027_b5
  article-title: Cost-effective solar cookers: A global review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.07.026
– volume: 35
  start-page: 786
  issue: October 2016
  year: 2017
  ident: 10.1016/j.solener.2021.12.027_b18
  article-title: Optical modeling and investigation of sun tracking parabolic trough solar collector basing on ray tracing 3Dimensions-4rays
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.08.031
– year: 2013
  ident: 10.1016/j.solener.2021.12.027_b6
– volume: 225
  start-page: 769
  issue: May
  year: 2018
  ident: 10.1016/j.solener.2021.12.027_b15
  article-title: An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.05.067
– volume: 185
  start-page: 363
  issue: May
  year: 2019
  ident: 10.1016/j.solener.2021.12.027_b24
  article-title: Design and ray tracing of multifaceted scheffler reflector with novel crossbars
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.083
– volume: 237
  start-page: 70
  issue: December 2018
  year: 2019
  ident: 10.1016/j.solener.2021.12.027_b37
  article-title: Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker
  publication-title: Appl. Energy
– volume: 32
  start-page: 419
  issue: 5
  year: 1999
  ident: 10.1016/j.solener.2021.12.027_b19
  article-title: Reflectance measurements of aluminium surfaces using integrating spheres
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/S0143-8166(00)00010-5
– volume: 170
  start-page: 364
  year: 2021
  ident: 10.1016/j.solener.2021.12.027_b29
  article-title: Experimental determination of the standardised power of a solar funnel cooker for low sun elevations
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.146
– volume: 87
  start-page: 169
  issue: August
  year: 2017
  ident: 10.1016/j.solener.2021.12.027_b34
  article-title: Modeling and simulation of ray tracing for compound parabolic thermal solar collector
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2017.06.021
– year: 2021
  ident: 10.1016/j.solener.2021.12.027_b33
– volume: 140
  start-page: 419
  year: 2019
  ident: 10.1016/j.solener.2021.12.027_b4
  article-title: A review of recent advances in solar cooking technology
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.03.021
– volume: 52
  start-page: 2373
  issue: 6
  year: 2011
  ident: 10.1016/j.solener.2021.12.027_b40
  article-title: Light tracing analysis of a new kind of trough solar concentrator
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.12.042
– year: 2021
  ident: 10.1016/j.solener.2021.12.027_b3
  article-title: Performance of solar funnel cookers using intermediate temperature test load under low sun elevation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.08.006
– year: 2021
  ident: 10.1016/j.solener.2021.12.027_b30
– volume: 174
  start-page: 263
  issue: September
  year: 2018
  ident: 10.1016/j.solener.2021.12.027_b39
  article-title: Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.09.007
– year: 2012
  ident: 10.1016/j.solener.2021.12.027_b9
– ident: 10.1016/j.solener.2021.12.027_b11
– volume: 57
  start-page: 2858
  year: 2014
  ident: 10.1016/j.solener.2021.12.027_b28
  article-title: Ray tracing study to determine the characteristics of the solar image in the receiver for a Scheffler-type solar concentrator coupled with a Stirling engine
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.10.319
– volume: 57
  start-page: 319
  year: 2016
  ident: 10.1016/j.solener.2021.12.027_b25
  article-title: Innovative portable solar cooker using the packaging waste of humanitarian supplies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.199
– year: 2021
  ident: 10.1016/j.solener.2021.12.027_b23
– volume: 40
  start-page: 2148
  issue: 13
  year: 2001
  ident: 10.1016/j.solener.2021.12.027_b27
  article-title: Optical scattering from rough-rolled aluminum surfaces
  publication-title: Appl. Opt.
  doi: 10.1364/AO.40.002148
– volume: 208
  start-page: 166
  issue: July
  year: 2020
  ident: 10.1016/j.solener.2021.12.027_b14
  article-title: Evaluation of performance of household solar cookers
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.07.056
– ident: 10.1016/j.solener.2021.12.027_b17
  doi: 10.2172/946571
– volume: 82
  start-page: 387
  issue: 3
  year: 2004
  ident: 10.1016/j.solener.2021.12.027_b10
  article-title: Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.01.029
– year: 2018
  ident: 10.1016/j.solener.2021.12.027_b1
– start-page: 10
  year: 2021
  ident: 10.1016/j.solener.2021.12.027_b16
  article-title: Development of low cost reflective panel solar cooker
  publication-title: Mater. Today: Proc.
– year: 2021
  ident: 10.1016/j.solener.2021.12.027_b2
  article-title: New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.08.025
– volume: 136
  start-page: 470
  year: 2017
  ident: 10.1016/j.solener.2021.12.027_b35
  article-title: Flux concentration on tubular receiver of compound parabolic collector by surface areal irradiance method of ray tracing
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.02.064
– year: 2012
  ident: 10.1016/j.solener.2021.12.027_b13
– year: 2021
  ident: 10.1016/j.solener.2021.12.027_b32
– volume: 176
  start-page: 315
  issue: September 2018
  year: 2019
  ident: 10.1016/j.solener.2021.12.027_b36
  article-title: Design configurations and possibilities of reflector shape for solar compound parabolic collector by ray tracing simulation
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.09.082
– year: 2013
  ident: 10.1016/j.solener.2021.12.027_b12
– start-page: 2
  year: 2006
  ident: 10.1016/j.solener.2021.12.027_b22
  article-title: Optical properties of the cookit solar cooker
SSID ssj0017187
Score 2.4310849
Snippet Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 84
SubjectTerms Cookers
Cooking
Efficiency
Funnel cooker
Greenhouse effect
Incidence angle
Irradiation
Optical properties
Radiation
Ray tracing
Solar cooker
Solar cookers
Solar energy
Solar radiation
Soltrace
Tracking
Title Optical characterization of a funnel solar cooker with azimuthal sun tracking through ray-tracing simulation
URI https://dx.doi.org/10.1016/j.solener.2021.12.027
https://www.proquest.com/docview/2639033613
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lj14TZt95HUsxVIV6sVCb0t2k2BLTUubHvTgb3cm2dQHguAlhyUTwuzuvOcbQm5AJwTc9xIni9wQHBTPc3QmUsc32o3CrMw0YbXF2B9N5P3UmzbIoO6FwbJKK_srmV5Ka7vSs9zsrWYz7PEVoRvxKTgtDPNJ2MEuAzzr3fddmQcD2VvhZgpM8_PpZxdPbw5O7ALBncFN5KyMCuJwmd_10w9JXaqf4RE5tHYj7Ve_dkwaaX5CDr6gCZ6SxeOqDExTswNhrnos6TKjMQUNlqcLukFflhpE2lxTjMLS-G32si2egXCzzWkBpBg-p3aCD13Hrw4u4toG3qyK587IZHj7NBg5dpiCY4TvFY4AZZ24QSLRo-IskW7MTRqzlGnJpeYi1WEkpQQJZhAWMJbGCCO4TiLtC6bFOWnmyzy9IDRElCyZuEzjsBh4GA_MjCTjXIeGB6xFZM1CZSzSOA68WKi6pGyuLOcVcl4xroDzLdLdka0qqI2_CMJ6f9S3M6NAHfxF2q73U9lLu1EcrDVXCDBwLv__5Suyz7FDoizsbpNmsd6m12C3FLpTHswO2evfPYzGH2km7bE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSPAh5Y08aPpMmIKlCBUhYqdbNiJxGtSqjadICB385d4pSHkCqxZLByUXS2733fEXIJOqHNfS920tANwEHxPEenInF8o90wSItME1Zb9P3uQN4NvWGNdKpeGCyrtLK_lOmFtLYrLcvN1nQ0wh5fEbghH4LTwjCftEbWJY45gEPd_FjWeTAQviVwpsA8Px9-tfG0xuDFThDdGfxEzoqwIE6X-VtB_RLVhf652SHb1nCkV-W_7ZJaku2RrW9wgvtk8jgtItPULFGYyyZL-prSiIIKy5IJnaMzSw1Cbc4ohmFp9D56WeTPQDhfZDQHUoyfUzvCh86iNwcXcW0Ob5bVcwdkcHP91Ok6dpqCY4Tv5Y4AbR277ViiS8VZLN2ImyRiCdOSS81FooNQSgkizCAuYCSNEUZwHYfaF0yLQ1LPXrPkiNAAYbJk7DKN02LgYTywM-KUcx0Y3mbHRFYsVMZCjePEi4mqasrGynJeIecV4wo4f0yaS7JpibWxiiCo9kf9ODQK9MEq0ka1n8re2rniYK65QoCFc_L_L1-Qje7TQ0_1bvv3p2STY7tEUeXdIPV8tkjOwIjJ9XlxSD8B0YLvOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+characterization+of+a+funnel+solar+cooker+with+azimuthal+sun+tracking+through+ray-tracing+simulation&rft.jtitle=Solar+energy&rft.au=Carrillo-Andr%C3%A9s%2C+Antonio&rft.au=Apaolaza-Pagoaga%2C+Xabier&rft.au=Ruivo%2C+Celestino+Rodrigues&rft.au=Rodr%C3%ADguez-Garc%C3%ADa%2C+Eduardo&rft.date=2022-02-01&rft.issn=0038-092X&rft.volume=233&rft.spage=84&rft.epage=95&rft_id=info:doi/10.1016%2Fj.solener.2021.12.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2021_12_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon