Optical characterization of a funnel solar cooker with azimuthal sun tracking through ray-tracing simulation
Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple r...
Saved in:
Published in | Solar energy Vol. 233; pp. 84 - 95 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.02.2022
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0038-092X 1471-1257 |
DOI | 10.1016/j.solener.2021.12.027 |
Cover
Abstract | Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple reflections occur. The overall performance of funnel solar cookers is strongly affected by their optical efficiency. There is a lack of information in academic literature about this important research topic. This work aims to fill this gap presenting an optical performance analysis of a funnel solar cooker with only azimuthal sun tracking. Open-source numerical ray-tracing software Soltrace is used to investigate relevant characteristics such as the intercept factor, optical efficiency, dependency on incidence angle, performance of each reflecting surface and irradiation density flux distribution on different surfaces of the cooking pot. Some important results for beam radiation at normal incidence are the intercept factor, determined to be 0.664, and the optical efficiency with realistic optical properties, that turned out to be 0.370. When the incidence of solar beam radiation is not normal, optical efficiency remains above 90% of its normal incidence value, if the alignment errors are less than 10°.
•Numerical ray tracing is used to perform optical characterization of a funnel solar cooker.•The optical efficiency with perfect optical properties at normal incidence is 0.664.•The optical efficiency with realistic optical properties at normal incidence is 0.370.•The dependence of optical efficiency on the angle of incidence angle is investigated.•Irradiation density flux maps on cooking pot surfaces are presented. |
---|---|
AbstractList | Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple reflections occur. The overall performance of funnel solar cookers is strongly affected by their optical efficiency. There is a lack of information in academic literature about this important research topic. This work aims to fill this gap presenting an optical performance analysis of a funnel solar cooker with only azimuthal sun tracking. Open-source numerical ray-tracing software Soltrace is used to investigate relevant characteristics such as the intercept factor, optical efficiency, dependency on incidence angle, performance of each reflecting surface and irradiation density flux distribution on different surfaces of the cooking pot. Some important results for beam radiation at normal incidence are the intercept factor, determined to be 0.664, and the optical efficiency with realistic optical properties, that turned out to be 0.370. When the incidence of solar beam radiation is not normal, optical efficiency remains above 90% of its normal incidence value, if the alignment errors are less than 10°. Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is placed inside a transparent enclosure to create a greenhouse effect. The analysis of the resulting optical system is a complex task, as multiple reflections occur. The overall performance of funnel solar cookers is strongly affected by their optical efficiency. There is a lack of information in academic literature about this important research topic. This work aims to fill this gap presenting an optical performance analysis of a funnel solar cooker with only azimuthal sun tracking. Open-source numerical ray-tracing software Soltrace is used to investigate relevant characteristics such as the intercept factor, optical efficiency, dependency on incidence angle, performance of each reflecting surface and irradiation density flux distribution on different surfaces of the cooking pot. Some important results for beam radiation at normal incidence are the intercept factor, determined to be 0.664, and the optical efficiency with realistic optical properties, that turned out to be 0.370. When the incidence of solar beam radiation is not normal, optical efficiency remains above 90% of its normal incidence value, if the alignment errors are less than 10°. •Numerical ray tracing is used to perform optical characterization of a funnel solar cooker.•The optical efficiency with perfect optical properties at normal incidence is 0.664.•The optical efficiency with realistic optical properties at normal incidence is 0.370.•The dependence of optical efficiency on the angle of incidence angle is investigated.•Irradiation density flux maps on cooking pot surfaces are presented. |
Author | Ruivo, Celestino Rodrigues Rodríguez-García, Eduardo Carrillo-Andrés, Antonio Fernández-Hernández, Francisco Apaolaza-Pagoaga, Xabier |
Author_xml | – sequence: 1 givenname: Antonio orcidid: 0000-0001-9511-2678 surname: Carrillo-Andrés fullname: Carrillo-Andrés, Antonio email: acarrillo@uma.es organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain – sequence: 2 givenname: Xabier orcidid: 0000-0002-7956-3855 surname: Apaolaza-Pagoaga fullname: Apaolaza-Pagoaga, Xabier organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain – sequence: 3 givenname: Celestino Rodrigues orcidid: 0000-0002-3915-0554 surname: Ruivo fullname: Ruivo, Celestino Rodrigues organization: Department of Mechanical Engineering, Institute of Engineering, University of Algarve, Campus da Penha, 8005-139 Faro, Portugal – sequence: 4 givenname: Eduardo orcidid: 0000-0002-7326-1127 surname: Rodríguez-García fullname: Rodríguez-García, Eduardo organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain – sequence: 5 givenname: Francisco orcidid: 0000-0002-5074-1507 surname: Fernández-Hernández fullname: Fernández-Hernández, Francisco organization: Energy Research Group. Department of Mechanical, Thermal and Fluids Engineering, University of Malaga. Calle Arquitecto Francisco Peñalosa, 6, 29071, Malaga, Spain |
BookMark | eNqFkE1LxDAQhoMouH78BCHguTUzybZbPIiIX7CwFwVvIU2zNmtN1iRV9NebdT158RSYvM87zHNAdp13hpATYCUwqM5WZfSDcSaUyBBKwJJhvUMmIGooAKf1LpkwxmcFa_BpnxzEuGIMapjVEzIs1slqNVDdq6B0MsF-qWS9o35JFV2OzpmB5n4VqPb-xQT6YVNP1Zd9HVOfwTg6mjL6Yt0zTX3w43NPg_osNsPNLObk8NN5RPaWaojm-Pc9JI831w9Xd8V8cXt_dTkvNK-mqeAMsWN1J0AwQOgEU6iNAgOtQNEiN-2sEUIgNJpxgUpozTXHtmvaikPLD8nptncd_NtoYpIrPwaXV0qseMM4r4Dn1HSb0sHHGMxSroN9VeFTApMbsXIlf8XKjVgJKLPYzJ3_4bRNP_fli-3wL32xpU0W8G7zb9TWOG06G4xOsvP2n4ZvIqqbtg |
CitedBy_id | crossref_primary_10_1007_s10973_023_12282_2 crossref_primary_10_1016_j_energy_2022_124730 crossref_primary_10_1016_j_renene_2024_120856 crossref_primary_10_1016_j_applthermaleng_2022_119643 crossref_primary_10_1002_wene_516 crossref_primary_10_1016_j_solener_2024_113178 crossref_primary_10_1016_j_seta_2024_103879 crossref_primary_10_3103_S0003701X2206010X crossref_primary_10_1016_j_seta_2023_103586 crossref_primary_10_1016_j_energy_2024_134194 crossref_primary_10_1016_j_jclepro_2023_136158 crossref_primary_10_1016_j_seta_2022_102600 |
Cites_doi | 10.1016/j.solener.2014.11.011 10.1016/j.solener.2018.07.096 10.1016/j.csite.2020.100766 10.1016/j.solener.2020.07.026 10.1016/j.scs.2017.08.031 10.1016/j.apenergy.2018.05.067 10.1016/j.solener.2019.04.083 10.1016/S0143-8166(00)00010-5 10.1016/j.renene.2021.01.146 10.1016/j.icheatmasstransfer.2017.06.021 10.1016/j.renene.2019.03.021 10.1016/j.enconman.2010.12.042 10.1016/j.solener.2021.08.006 10.1016/j.solener.2018.09.007 10.1016/j.egypro.2014.10.319 10.1016/j.rser.2015.12.199 10.1364/AO.40.002148 10.1016/j.solener.2020.07.056 10.2172/946571 10.1016/j.solmat.2004.01.029 10.1016/j.renene.2021.08.025 10.1016/j.ijleo.2017.02.064 10.1016/j.ijleo.2018.09.082 |
ContentType | Journal Article |
Copyright | 2022 International Solar Energy Society Copyright Pergamon Press Inc. Feb 2022 |
Copyright_xml | – notice: 2022 International Solar Energy Society – notice: Copyright Pergamon Press Inc. Feb 2022 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2021.12.027 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 95 |
ExternalDocumentID | 10_1016_j_solener_2021_12_027 S0038092X21010768 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7ST 8FD AGCQF C1K FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c365t-3022d07d4140121d40a2cea1e1b424b23eb89444219c0342a4cc3c32bd9b631b3 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Wed Aug 13 06:15:24 EDT 2025 Thu Sep 25 00:40:41 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Fri Feb 23 02:43:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Funnel cooker Ray-tracing Solar cooker Soltrace Solar energy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-3022d07d4140121d40a2cea1e1b424b23eb89444219c0342a4cc3c32bd9b631b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7326-1127 0000-0001-9511-2678 0000-0002-7956-3855 0000-0002-5074-1507 0000-0002-3915-0554 |
OpenAccessLink | http://hdl.handle.net/10400.1/17761 |
PQID | 2639033613 |
PQPubID | 9393 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2639033613 crossref_primary_10_1016_j_solener_2021_12_027 crossref_citationtrail_10_1016_j_solener_2021_12_027 elsevier_sciencedirect_doi_10_1016_j_solener_2021_12_027 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Brogren, Helgesson, Karlsson, Nilsson, Roos (b10) 2004; 82 Solar Cookers International (b31) 2021 Solar Cookers International (b33) 2021 Apaolaza-Pagoaga, Carrillo-Andrés, Ruivo (b2) 2021 Rönnelid, Adsten, Lindström, Nostell, Wäckelgård (b27) 2001; 40 McDonald (b20) 1974 ASAE (b6) 2013 Benrejeb, Helal, Chaouachi (b8) 2015; 112 AALCO (b1) 2018 Aramesh, Ghalebani, Kasaeian, Zamani, Lorenzini, Mahian, Wongwises (b4) 2019; 140 Lindseth, Bardal, Spooren (b19) 1999; 32 Wang, Huang, Song, Yan (b37) 2019; 237 Su, Gu, Vafai (b34) 2017; 87 Rehman (b26) 2018; 173 Waghmare, Gulhane (b36) 2019; 176 Solar Cookers International (b32) 2021 Zou, Jiang, Yao, Yang (b41) 2019; 160 Wendelin, Dobos, Lewandowski (b38) 2013; 303 Bode, Gauché (b9) 2012 R Core Team (b23) 2021 Gupta, Misal, Agrawal (b16) 2021 Houcine, Maatallah, Alimi, Nasrallah (b18) 2017; 35 Apaolaza-Pagoaga, Sagade, Rodrigues Ruivo, Carrillo-Andrés (b3) 2021 Regattieri, Piana, Bortolini, Gamberi, Ferrari (b25) 2016; 57 Balcomb, Barley, McFarland, Perry, Wray, Noll (b7) 1980; vol. 2 of two volumes Ruelas, Pando, Lucero, Tzab (b28) 2014; 57 Fan, You, Xia, Zheng, Zhang, Liang, Li, Li (b15) 2018; 225 Clausson, S., 2018. A comparison of Copenhagen solar cookers with other similar sized solar cookers. In: CONSOLFOOD 2018, Faro, Portugal. Waghmare, Gulhane (b35) 2017; 136 Mekonnen, Liyew, Tigabu (b21) 2020; 22 Solar Cookers International (b30) 2021 Zhao, Zheng, Sun, Li, Wu (b39) 2018; 174 Duffie, Beckman (b12) 2013 Zheng, Tao, Dai, Kang (b40) 2011; 52 Arunachala, Kundapur (b5) 2020; 207 Ebersviller, Jetter (b14) 2020; 208 Reddy, Khan (b24) 2019; 185 Pejack (b22) 2006 Ruivo, Carrillo-Andrés, Apaolaza-Pagoaga (b29) 2021; 170 Ho, C.K., 2008. Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Report. SAND2008, p. 8053. Earthboundtech (b13) 2012 Lindseth (10.1016/j.solener.2021.12.027_b19) 1999; 32 Bode (10.1016/j.solener.2021.12.027_b9) 2012 Wendelin (10.1016/j.solener.2021.12.027_b38) 2013; 303 ASAE (10.1016/j.solener.2021.12.027_b6) 2013 Houcine (10.1016/j.solener.2021.12.027_b18) 2017; 35 Mekonnen (10.1016/j.solener.2021.12.027_b21) 2020; 22 Solar Cookers International (10.1016/j.solener.2021.12.027_b30) 2021 Pejack (10.1016/j.solener.2021.12.027_b22) 2006 Waghmare (10.1016/j.solener.2021.12.027_b35) 2017; 136 Ruivo (10.1016/j.solener.2021.12.027_b29) 2021; 170 Waghmare (10.1016/j.solener.2021.12.027_b36) 2019; 176 Zou (10.1016/j.solener.2021.12.027_b41) 2019; 160 R Core Team (10.1016/j.solener.2021.12.027_b23) 2021 Rönnelid (10.1016/j.solener.2021.12.027_b27) 2001; 40 Reddy (10.1016/j.solener.2021.12.027_b24) 2019; 185 Zhao (10.1016/j.solener.2021.12.027_b39) 2018; 174 Benrejeb (10.1016/j.solener.2021.12.027_b8) 2015; 112 Su (10.1016/j.solener.2021.12.027_b34) 2017; 87 Balcomb (10.1016/j.solener.2021.12.027_b7) 1980; vol. 2 of two volumes Solar Cookers International (10.1016/j.solener.2021.12.027_b33) 2021 Zheng (10.1016/j.solener.2021.12.027_b40) 2011; 52 10.1016/j.solener.2021.12.027_b11 Apaolaza-Pagoaga (10.1016/j.solener.2021.12.027_b3) 2021 Rehman (10.1016/j.solener.2021.12.027_b26) 2018; 173 Duffie (10.1016/j.solener.2021.12.027_b12) 2013 Regattieri (10.1016/j.solener.2021.12.027_b25) 2016; 57 Wang (10.1016/j.solener.2021.12.027_b37) 2019; 237 10.1016/j.solener.2021.12.027_b17 Solar Cookers International (10.1016/j.solener.2021.12.027_b31) 2021 Aramesh (10.1016/j.solener.2021.12.027_b4) 2019; 140 Brogren (10.1016/j.solener.2021.12.027_b10) 2004; 82 Ruelas (10.1016/j.solener.2021.12.027_b28) 2014; 57 Earthboundtech (10.1016/j.solener.2021.12.027_b13) 2012 Apaolaza-Pagoaga (10.1016/j.solener.2021.12.027_b2) 2021 McDonald (10.1016/j.solener.2021.12.027_b20) 1974 Solar Cookers International (10.1016/j.solener.2021.12.027_b32) 2021 Ebersviller (10.1016/j.solener.2021.12.027_b14) 2020; 208 Fan (10.1016/j.solener.2021.12.027_b15) 2018; 225 Arunachala (10.1016/j.solener.2021.12.027_b5) 2020; 207 AALCO (10.1016/j.solener.2021.12.027_b1) 2018 Gupta (10.1016/j.solener.2021.12.027_b16) 2021 |
References_xml | – volume: 207 start-page: 903 year: 2020 end-page: 916 ident: b5 article-title: Cost-effective solar cookers: A global review publication-title: Sol. Energy – volume: 112 start-page: 108 year: 2015 end-page: 119 ident: b8 article-title: Optical and thermal performances improvement of an ICS solar water heater system publication-title: Sol. Energy – volume: 22 year: 2020 ident: b21 article-title: Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker publication-title: Case Stud. Therm. Eng. – volume: 174 start-page: 263 year: 2018 end-page: 272 ident: b39 article-title: Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator publication-title: Sol. Energy – volume: 185 start-page: 363 year: 2019 end-page: 373 ident: b24 article-title: Design and ray tracing of multifaceted scheffler reflector with novel crossbars publication-title: Sol. Energy – volume: 237 start-page: 70 year: 2019 end-page: 82 ident: b37 article-title: Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker publication-title: Appl. Energy – reference: Ho, C.K., 2008. Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Report. SAND2008, p. 8053. – year: 2021 ident: b3 article-title: Performance of solar funnel cookers using intermediate temperature test load under low sun elevation publication-title: Sol. Energy – year: 2021 ident: b31 article-title: Solar cooker designs – volume: 208 start-page: 166 year: 2020 end-page: 172 ident: b14 article-title: Evaluation of performance of household solar cookers publication-title: Sol. Energy – volume: vol. 2 of two volumes year: 1980 ident: b7 publication-title: Passive Solar Design Handbook – reference: Clausson, S., 2018. A comparison of Copenhagen solar cookers with other similar sized solar cookers. In: CONSOLFOOD 2018, Faro, Portugal. – start-page: 10 year: 2021 end-page: 13 ident: b16 article-title: Development of low cost reflective panel solar cooker publication-title: Mater. Today: Proc. – volume: 303 start-page: 275 year: 2013 end-page: 3000 ident: b38 article-title: SolTrace: A ray-tracing code for complex solar optical systems publication-title: Contract – year: 2012 ident: b9 article-title: Review of optical software for use in concentrating solar power systems – volume: 160 year: 2019 ident: b41 article-title: Optical performance of parabolic trough solar collectors under condition of multiple optical factors publication-title: Appl. Therm. Eng. – year: 2018 ident: b1 article-title: Ippon panel light datasheet – start-page: 2 year: 2006 end-page: 6 ident: b22 article-title: Optical properties of the cookit solar cooker publication-title: Proceedings Of The 2006 Solar Cookers International Conference – volume: 87 start-page: 169 year: 2017 end-page: 174 ident: b34 article-title: Modeling and simulation of ray tracing for compound parabolic thermal solar collector publication-title: Int. Commun. Heat Mass Transfer – volume: 176 start-page: 315 year: 2019 end-page: 323 ident: b36 article-title: Design configurations and possibilities of reflector shape for solar compound parabolic collector by ray tracing simulation publication-title: Optik – year: 2013 ident: b12 article-title: Solar Engineering Of Thermal Processes – volume: 140 start-page: 419 year: 2019 end-page: 435 ident: b4 article-title: A review of recent advances in solar cooking technology publication-title: Renew. Energy – year: 2021 ident: b32 article-title: Solar funnel cooker, Solar Cooking Wiki – volume: 35 start-page: 786 year: 2017 end-page: 798 ident: b18 article-title: Optical modeling and investigation of sun tracking parabolic trough solar collector basing on ray tracing 3Dimensions-4rays publication-title: Sustain. Cities Soc. – volume: 173 start-page: 1207 year: 2018 end-page: 1215 ident: b26 article-title: Optical-irradiance ray-tracing model for the performance analysis and optimization of a façade integrated solar collector with a flat booster reflector publication-title: Sol. Energy – volume: 57 start-page: 2858 year: 2014 end-page: 2866 ident: b28 article-title: Ray tracing study to determine the characteristics of the solar image in the receiver for a Scheffler-type solar concentrator coupled with a Stirling engine publication-title: Energy Procedia – year: 2021 ident: b2 article-title: New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker publication-title: Renew. Energy – year: 2012 ident: b13 article-title: Reciprocal optical test for measuring solar cooker performance – volume: 136 start-page: 470 year: 2017 end-page: 479 ident: b35 article-title: Flux concentration on tubular receiver of compound parabolic collector by surface areal irradiance method of ray tracing publication-title: Optik – volume: 170 start-page: 364 year: 2021 end-page: 374 ident: b29 article-title: Experimental determination of the standardised power of a solar funnel cooker for low sun elevations publication-title: Renew. Energy – volume: 32 start-page: 419 year: 1999 end-page: 435 ident: b19 article-title: Reflectance measurements of aluminium surfaces using integrating spheres publication-title: Opt. Lasers Eng. – year: 1974 ident: b20 article-title: Survey of coatings for solar collectors publication-title: Workshop On Solar Collectors For Heating And Cooling Of Buildings – volume: 225 start-page: 769 year: 2018 end-page: 781 ident: b15 article-title: An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors publication-title: Appl. Energy – year: 2021 ident: b23 article-title: R: A Language and Environment for Statistical Computing – volume: 52 start-page: 2373 year: 2011 end-page: 2377 ident: b40 article-title: Light tracing analysis of a new kind of trough solar concentrator publication-title: Energy Convers. Manage. – volume: 82 start-page: 387 year: 2004 end-page: 412 ident: b10 article-title: Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators publication-title: Sol. Energy Mater. Sol. Cells – volume: 57 start-page: 319 year: 2016 end-page: 326 ident: b25 article-title: Innovative portable solar cooker using the packaging waste of humanitarian supplies publication-title: Renew. Sustain. Energy Rev. – year: 2021 ident: b33 article-title: Test results – year: 2013 ident: b6 article-title: ASAE S580.1 NOV2013, Testing and reporting solar cooker performance – volume: 40 start-page: 2148 year: 2001 ident: b27 article-title: Optical scattering from rough-rolled aluminum surfaces publication-title: Appl. Opt. – year: 2021 ident: b30 article-title: Copenhagen solar cooker light, solar cooking wiki – volume: 112 start-page: 108 year: 2015 ident: 10.1016/j.solener.2021.12.027_b8 article-title: Optical and thermal performances improvement of an ICS solar water heater system publication-title: Sol. Energy doi: 10.1016/j.solener.2014.11.011 – volume: 303 start-page: 275 issue: October year: 2013 ident: 10.1016/j.solener.2021.12.027_b38 article-title: SolTrace: A ray-tracing code for complex solar optical systems publication-title: Contract – volume: 160 issue: July year: 2019 ident: 10.1016/j.solener.2021.12.027_b41 article-title: Optical performance of parabolic trough solar collectors under condition of multiple optical factors publication-title: Appl. Therm. Eng. – volume: 173 start-page: 1207 issue: June year: 2018 ident: 10.1016/j.solener.2021.12.027_b26 article-title: Optical-irradiance ray-tracing model for the performance analysis and optimization of a façade integrated solar collector with a flat booster reflector publication-title: Sol. Energy doi: 10.1016/j.solener.2018.07.096 – volume: 22 year: 2020 ident: 10.1016/j.solener.2021.12.027_b21 article-title: Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100766 – volume: vol. 2 of two volumes year: 1980 ident: 10.1016/j.solener.2021.12.027_b7 – year: 1974 ident: 10.1016/j.solener.2021.12.027_b20 article-title: Survey of coatings for solar collectors – year: 2021 ident: 10.1016/j.solener.2021.12.027_b31 – volume: 207 start-page: 903 issue: June year: 2020 ident: 10.1016/j.solener.2021.12.027_b5 article-title: Cost-effective solar cookers: A global review publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.026 – volume: 35 start-page: 786 issue: October 2016 year: 2017 ident: 10.1016/j.solener.2021.12.027_b18 article-title: Optical modeling and investigation of sun tracking parabolic trough solar collector basing on ray tracing 3Dimensions-4rays publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.08.031 – year: 2013 ident: 10.1016/j.solener.2021.12.027_b6 – volume: 225 start-page: 769 issue: May year: 2018 ident: 10.1016/j.solener.2021.12.027_b15 article-title: An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.067 – volume: 185 start-page: 363 issue: May year: 2019 ident: 10.1016/j.solener.2021.12.027_b24 article-title: Design and ray tracing of multifaceted scheffler reflector with novel crossbars publication-title: Sol. Energy doi: 10.1016/j.solener.2019.04.083 – volume: 237 start-page: 70 issue: December 2018 year: 2019 ident: 10.1016/j.solener.2021.12.027_b37 article-title: Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker publication-title: Appl. Energy – volume: 32 start-page: 419 issue: 5 year: 1999 ident: 10.1016/j.solener.2021.12.027_b19 article-title: Reflectance measurements of aluminium surfaces using integrating spheres publication-title: Opt. Lasers Eng. doi: 10.1016/S0143-8166(00)00010-5 – volume: 170 start-page: 364 year: 2021 ident: 10.1016/j.solener.2021.12.027_b29 article-title: Experimental determination of the standardised power of a solar funnel cooker for low sun elevations publication-title: Renew. Energy doi: 10.1016/j.renene.2021.01.146 – volume: 87 start-page: 169 issue: August year: 2017 ident: 10.1016/j.solener.2021.12.027_b34 article-title: Modeling and simulation of ray tracing for compound parabolic thermal solar collector publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2017.06.021 – year: 2021 ident: 10.1016/j.solener.2021.12.027_b33 – volume: 140 start-page: 419 year: 2019 ident: 10.1016/j.solener.2021.12.027_b4 article-title: A review of recent advances in solar cooking technology publication-title: Renew. Energy doi: 10.1016/j.renene.2019.03.021 – volume: 52 start-page: 2373 issue: 6 year: 2011 ident: 10.1016/j.solener.2021.12.027_b40 article-title: Light tracing analysis of a new kind of trough solar concentrator publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.12.042 – year: 2021 ident: 10.1016/j.solener.2021.12.027_b3 article-title: Performance of solar funnel cookers using intermediate temperature test load under low sun elevation publication-title: Sol. Energy doi: 10.1016/j.solener.2021.08.006 – year: 2021 ident: 10.1016/j.solener.2021.12.027_b30 – volume: 174 start-page: 263 issue: September year: 2018 ident: 10.1016/j.solener.2021.12.027_b39 article-title: Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator publication-title: Sol. Energy doi: 10.1016/j.solener.2018.09.007 – year: 2012 ident: 10.1016/j.solener.2021.12.027_b9 – ident: 10.1016/j.solener.2021.12.027_b11 – volume: 57 start-page: 2858 year: 2014 ident: 10.1016/j.solener.2021.12.027_b28 article-title: Ray tracing study to determine the characteristics of the solar image in the receiver for a Scheffler-type solar concentrator coupled with a Stirling engine publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.10.319 – volume: 57 start-page: 319 year: 2016 ident: 10.1016/j.solener.2021.12.027_b25 article-title: Innovative portable solar cooker using the packaging waste of humanitarian supplies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.199 – year: 2021 ident: 10.1016/j.solener.2021.12.027_b23 – volume: 40 start-page: 2148 issue: 13 year: 2001 ident: 10.1016/j.solener.2021.12.027_b27 article-title: Optical scattering from rough-rolled aluminum surfaces publication-title: Appl. Opt. doi: 10.1364/AO.40.002148 – volume: 208 start-page: 166 issue: July year: 2020 ident: 10.1016/j.solener.2021.12.027_b14 article-title: Evaluation of performance of household solar cookers publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.056 – ident: 10.1016/j.solener.2021.12.027_b17 doi: 10.2172/946571 – volume: 82 start-page: 387 issue: 3 year: 2004 ident: 10.1016/j.solener.2021.12.027_b10 article-title: Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2004.01.029 – year: 2018 ident: 10.1016/j.solener.2021.12.027_b1 – start-page: 10 year: 2021 ident: 10.1016/j.solener.2021.12.027_b16 article-title: Development of low cost reflective panel solar cooker publication-title: Mater. Today: Proc. – year: 2021 ident: 10.1016/j.solener.2021.12.027_b2 article-title: New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker publication-title: Renew. Energy doi: 10.1016/j.renene.2021.08.025 – volume: 136 start-page: 470 year: 2017 ident: 10.1016/j.solener.2021.12.027_b35 article-title: Flux concentration on tubular receiver of compound parabolic collector by surface areal irradiance method of ray tracing publication-title: Optik doi: 10.1016/j.ijleo.2017.02.064 – year: 2012 ident: 10.1016/j.solener.2021.12.027_b13 – year: 2021 ident: 10.1016/j.solener.2021.12.027_b32 – volume: 176 start-page: 315 issue: September 2018 year: 2019 ident: 10.1016/j.solener.2021.12.027_b36 article-title: Design configurations and possibilities of reflector shape for solar compound parabolic collector by ray tracing simulation publication-title: Optik doi: 10.1016/j.ijleo.2018.09.082 – year: 2013 ident: 10.1016/j.solener.2021.12.027_b12 – start-page: 2 year: 2006 ident: 10.1016/j.solener.2021.12.027_b22 article-title: Optical properties of the cookit solar cooker |
SSID | ssj0017187 |
Score | 2.4310849 |
Snippet | Funnel type solar cookers are simple and effective. Most of them rely on a multifaceted reflector to concentrate solar radiation on a cooking pot that is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 84 |
SubjectTerms | Cookers Cooking Efficiency Funnel cooker Greenhouse effect Incidence angle Irradiation Optical properties Radiation Ray tracing Solar cooker Solar cookers Solar energy Solar radiation Soltrace Tracking |
Title | Optical characterization of a funnel solar cooker with azimuthal sun tracking through ray-tracing simulation |
URI | https://dx.doi.org/10.1016/j.solener.2021.12.027 https://www.proquest.com/docview/2639033613 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lj14TZt95HUsxVIV6sVCb0t2k2BLTUubHvTgb3cm2dQHguAlhyUTwuzuvOcbQm5AJwTc9xIni9wQHBTPc3QmUsc32o3CrMw0YbXF2B9N5P3UmzbIoO6FwbJKK_srmV5Ka7vSs9zsrWYz7PEVoRvxKTgtDPNJ2MEuAzzr3fddmQcD2VvhZgpM8_PpZxdPbw5O7ALBncFN5KyMCuJwmd_10w9JXaqf4RE5tHYj7Ve_dkwaaX5CDr6gCZ6SxeOqDExTswNhrnos6TKjMQUNlqcLukFflhpE2lxTjMLS-G32si2egXCzzWkBpBg-p3aCD13Hrw4u4toG3qyK587IZHj7NBg5dpiCY4TvFY4AZZ24QSLRo-IskW7MTRqzlGnJpeYi1WEkpQQJZhAWMJbGCCO4TiLtC6bFOWnmyzy9IDRElCyZuEzjsBh4GA_MjCTjXIeGB6xFZM1CZSzSOA68WKi6pGyuLOcVcl4xroDzLdLdka0qqI2_CMJ6f9S3M6NAHfxF2q73U9lLu1EcrDVXCDBwLv__5Suyz7FDoizsbpNmsd6m12C3FLpTHswO2evfPYzGH2km7bE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSPAh5Y08aPpMmIKlCBUhYqdbNiJxGtSqjadICB385d4pSHkCqxZLByUXS2733fEXIJOqHNfS920tANwEHxPEenInF8o90wSItME1Zb9P3uQN4NvWGNdKpeGCyrtLK_lOmFtLYrLcvN1nQ0wh5fEbghH4LTwjCftEbWJY45gEPd_FjWeTAQviVwpsA8Px9-tfG0xuDFThDdGfxEzoqwIE6X-VtB_RLVhf652SHb1nCkV-W_7ZJaku2RrW9wgvtk8jgtItPULFGYyyZL-prSiIIKy5IJnaMzSw1Cbc4ohmFp9D56WeTPQDhfZDQHUoyfUzvCh86iNwcXcW0Ob5bVcwdkcHP91Ok6dpqCY4Tv5Y4AbR277ViiS8VZLN2ImyRiCdOSS81FooNQSgkizCAuYCSNEUZwHYfaF0yLQ1LPXrPkiNAAYbJk7DKN02LgYTywM-KUcx0Y3mbHRFYsVMZCjePEi4mqasrGynJeIecV4wo4f0yaS7JpibWxiiCo9kf9ODQK9MEq0ka1n8re2rniYK65QoCFc_L_L1-Qje7TQ0_1bvv3p2STY7tEUeXdIPV8tkjOwIjJ9XlxSD8B0YLvOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+characterization+of+a+funnel+solar+cooker+with+azimuthal+sun+tracking+through+ray-tracing+simulation&rft.jtitle=Solar+energy&rft.au=Carrillo-Andr%C3%A9s%2C+Antonio&rft.au=Apaolaza-Pagoaga%2C+Xabier&rft.au=Ruivo%2C+Celestino+Rodrigues&rft.au=Rodr%C3%ADguez-Garc%C3%ADa%2C+Eduardo&rft.date=2022-02-01&rft.issn=0038-092X&rft.volume=233&rft.spage=84&rft.epage=95&rft_id=info:doi/10.1016%2Fj.solener.2021.12.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2021_12_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |