Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm
In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops, this paper proposes a multi-resource, multi-objective dynamic scheduling optimization model, which aims to minimize delay time and completio...
        Saved in:
      
    
          | Published in | Mathematics (Basel) Vol. 13; no. 6; p. 932 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.03.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2227-7390 2227-7390  | 
| DOI | 10.3390/math13060932 | 
Cover
| Abstract | In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops, this paper proposes a multi-resource, multi-objective dynamic scheduling optimization model, which aims to minimize delay time and completion time. It integrates the scheduling of the workpieces, machines, and maintenance personnel to improve the response efficiency of emergency equipment maintenance. To this end, a self-learning Ant Colony Algorithm based on deep reinforcement learning (ACODDQN) is designed in this paper. The algorithm searches the solution space by using the ACO, prioritizes the solutions by combining the non-dominated sorting strategies, and achieves the adaptive optimization of scheduling decisions by utilizing the organic integration of the pheromone update mechanism and the DDQN framework. Further, the generated solutions are locally adjusted via the feasible solution optimization strategy to ensure that the solutions satisfy all the constraints and ultimately generate a Pareto optimal solution set with high quality. Simulation results based on standard examples and real cases show that the ACODDQN algorithm exhibits significant optimization effects in several tests, which verifies its superiority and practical application potential in dynamic scheduling problems. | 
    
|---|---|
| AbstractList | In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops, this paper proposes a multi-resource, multi-objective dynamic scheduling optimization model, which aims to minimize delay time and completion time. It integrates the scheduling of the workpieces, machines, and maintenance personnel to improve the response efficiency of emergency equipment maintenance. To this end, a self-learning Ant Colony Algorithm based on deep reinforcement learning (ACODDQN) is designed in this paper. The algorithm searches the solution space by using the ACO, prioritizes the solutions by combining the non-dominated sorting strategies, and achieves the adaptive optimization of scheduling decisions by utilizing the organic integration of the pheromone update mechanism and the DDQN framework. Further, the generated solutions are locally adjusted via the feasible solution optimization strategy to ensure that the solutions satisfy all the constraints and ultimately generate a Pareto optimal solution set with high quality. Simulation results based on standard examples and real cases show that the ACODDQN algorithm exhibits significant optimization effects in several tests, which verifies its superiority and practical application potential in dynamic scheduling problems. | 
    
| Audience | Academic | 
    
| Author | Lu, Jiansha Cheng, Zhenbo Xu, Xuesong Zhang, Jiarui Cao, Jun Shao, Yiping  | 
    
| Author_xml | – sequence: 1 givenname: Jiansha surname: Lu fullname: Lu, Jiansha – sequence: 2 givenname: Jiarui surname: Zhang fullname: Zhang, Jiarui – sequence: 3 givenname: Jun surname: Cao fullname: Cao, Jun – sequence: 4 givenname: Xuesong surname: Xu fullname: Xu, Xuesong – sequence: 5 givenname: Yiping orcidid: 0000-0002-8721-9755 surname: Shao fullname: Shao, Yiping – sequence: 6 givenname: Zhenbo orcidid: 0000-0003-2185-7006 surname: Cheng fullname: Cheng, Zhenbo  | 
    
| BookMark | eNp9kc1u1DAUhSNUJErpjgewxJYUOz-OvRxmOtCqMKDCOvLP9cSjxA6OAwwvwGvXJQjNCnvhq-NzP1_rPM_OnHeQZS8JvipLjt8MInakxBTzsniSnRdF0eRNujg7qZ9ll9N0wGlxUrKKn2e_tz38tLIHdOsluu_8iDZHJwar0L3qQM-9dXsknEZbMfcRfRDWRXDCKUCfIEzeOejR2vsRgoj2O5y27cZoB_sr6d6ht2ICjVIRO0Cr9W6z-fwRrfq9DzZ2w4vsqRH9BJd_z4vs6_b6y_p9frd7d7Ne3eWqpHXMC4O1NkYaLFXFOWFVXVWYEaOlxFVtmkIJDAWmDYWK16CoZkrWVDaa8aKm5UV2s3C1F4d2DHYQ4dh6Yds_gg_7VoRoVQ8tF1yrimFq0lvEGF5jyTkvGJHGAGeJlS-s2Y3i-EP0_T8gwe1jKO1pKMn_avGPwX-bYYrtwc_Bpe-2JWGkZg2rmuS6Wlx7kYawzvgYhEpbQ0olZW5s0lesbGpOS_qIfb00qOCnKYD5_xQPTz-tKQ | 
    
| Cites_doi | 10.1007/s10845-020-01547-4 10.1007/s10586-024-04803-x 10.1016/j.procir.2022.02.183 10.3390/app14104082 10.1016/j.cie.2021.107489 10.23919/CCC63176.2024.10662528 10.1016/j.cie.2023.109255 10.3390/pr10030571 10.1016/j.engappai.2024.108487 10.3901/JME.2022.19.242 10.1016/j.asoc.2018.06.022 10.1016/j.cie.2020.106347 10.1016/j.eswa.2023.121723 10.1016/j.rcim.2022.102435 10.1016/j.comnet.2021.107969 10.1007/s12555-023-0578-1 10.3390/math12203176 10.1016/j.eswa.2022.117460 10.1016/j.asoc.2025.112787 10.3390/su14095177 10.1016/j.ejor.2023.05.017 10.1109/ACCESS.2020.2992478 10.1016/j.swevo.2024.101605 10.1109/TWC.2023.3277801 10.1109/ACCESS.2024.3448768 10.3390/s24072251 10.1016/j.aei.2024.102872 10.1016/j.asoc.2020.106208 10.1109/TASE.2013.2274517 10.1016/j.swevo.2024.101660 10.3233/JIFS-236157 10.17531/ein/171784 10.1109/ACCESS.2020.2987820 10.1016/j.ijpe.2016.01.016 10.5220/0010429605620573  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/math13060932 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2227-7390 | 
    
| ExternalDocumentID | oai_doaj_org_article_9a9dc4806fbc41ff950b999281bffe98 10.3390/math13060932 A837596362 10_3390_math13060932  | 
    
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c365t-2f0ddffbf0bc499184544081fdbb045f72ca0e20676e495ec6d8cb56b7d892563 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2227-7390 | 
    
| IngestDate | Tue Oct 14 19:03:36 EDT 2025 Sun Sep 07 11:11:45 EDT 2025 Fri Jul 25 11:58:32 EDT 2025 Mon Oct 20 16:53:27 EDT 2025 Thu Oct 16 04:24:03 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c365t-2f0ddffbf0bc499184544081fdbb045f72ca0e20676e495ec6d8cb56b7d892563 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-2185-7006 0000-0002-8721-9755  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/math13060932 | 
    
| PQID | 3181587847 | 
    
| PQPubID | 2032364 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9a9dc4806fbc41ff950b999281bffe98 unpaywall_primary_10_3390_math13060932 proquest_journals_3181587847 gale_infotracacademiconefile_A837596362 crossref_primary_10_3390_math13060932  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-03-01 | 
    
| PublicationDateYYYYMMDD | 2025-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Mathematics (Basel) | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Wang (ref_4) 2023; 79 Gao (ref_11) 2020; 8 Yuan (ref_43) 2015; 12 Zhang (ref_10) 2022; 203 Turkyilmaz (ref_21) 2020; 31 Liu (ref_31) 2022; 56 Taghian (ref_42) 2021; 166 Gui (ref_33) 2023; 180 Huang (ref_35) 2018; 24 Zhang (ref_34) 2024; 62 Zain (ref_41) 2018; 70 Palacio (ref_32) 2022; 106 Guo (ref_2) 2024; 23 Luan (ref_12) 2024; 46 Yue (ref_9) 2024; 90 ref_17 Zhang (ref_36) 2023; 40 ref_15 Luo (ref_44) 2020; 91 Lu (ref_37) 2024; 133 Tang (ref_40) 2024; 237 Su (ref_27) 2024; 88 Meng (ref_38) 2024; 30 ref_25 Yuan (ref_14) 2025; 171 Mokhtari (ref_19) 2021; 8 Jiang (ref_20) 2023; 21 ref_23 ref_45 ref_22 Liu (ref_28) 2020; 8 Peng (ref_26) 2025; 28 Zhang (ref_16) 2023; 35 Meng (ref_39) 2020; 142 Xu (ref_13) 2022; 58 Li (ref_46) 2016; 174 Liang (ref_24) 2023; 25 Tariq (ref_3) 2024; 12 Ding (ref_8) 2024; 314 Niu (ref_1) 2023; 57 Luo (ref_30) 2021; 159 Sun (ref_18) 2022; 33 Cheng (ref_5) 2024; 30 Jiang (ref_6) 2024; 36 ref_7 Wang (ref_29) 2021; 190  | 
    
| References_xml | – volume: 33 start-page: 2590 year: 2022 ident: ref_18 article-title: Dual Resource-constrained Flexible Job Shop Scheduling Algorithm Considering Machining Quality of Key Jobs publication-title: China Mech. Eng. – volume: 31 start-page: 1949 year: 2020 ident: ref_21 article-title: A research survey: Heuristic approaches for solving multi objective flexible job shop problems publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01547-4 – volume: 28 start-page: 185 year: 2025 ident: ref_26 article-title: Multi-objective dynamic distributed flexible job shop scheduling problem considering uncertain processing time publication-title: Clust. Comput. doi: 10.1007/s10586-024-04803-x – volume: 106 start-page: 227 year: 2022 ident: ref_32 article-title: A Q-Learning algorithm for flexible job shop scheduling in a real-world manufacturing scenario publication-title: Procedia CIRP doi: 10.1016/j.procir.2022.02.183 – ident: ref_23 doi: 10.3390/app14104082 – volume: 159 start-page: 107489 year: 2021 ident: ref_30 article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107489 – volume: 56 start-page: 1262 year: 2022 ident: ref_31 article-title: Dual-System Reinforcement Learning Approach for Dynamic Scheduling in Flexible Job Shops publication-title: J. Shanghai Jiao Tong Univ. – ident: ref_17 doi: 10.23919/CCC63176.2024.10662528 – volume: 8 start-page: 295 year: 2021 ident: ref_19 article-title: Dual Resource Constrained Flexible Job-Shop Scheduling with Lexicograph Objectives publication-title: J. Ind. Eng. Res. Prod. Syst. – volume: 180 start-page: 109255 year: 2023 ident: ref_33 article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109255 – volume: 36 start-page: 1609 year: 2024 ident: ref_6 article-title: Real-time Scheduling Method for Dynamic Flexible Job Shop Scheduling publication-title: J. Syst. Simul. – ident: ref_22 doi: 10.3390/pr10030571 – volume: 133 start-page: 22 year: 2024 ident: ref_37 article-title: A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108487 – volume: 58 start-page: 242 year: 2022 ident: ref_13 article-title: Comprehensive Energy Saving Optimization of Processing Parameters and Job Shop Dynamic Scheduling Considering Disturbance Events publication-title: J. Mech. Eng. doi: 10.3901/JME.2022.19.242 – volume: 24 start-page: 558 year: 2018 ident: ref_35 article-title: ACO integrated approach for solving flexible job-shop scheduling with multiple process plans publication-title: Comput. Integr. Manuf. Syst. – volume: 70 start-page: 680 year: 2018 ident: ref_41 article-title: A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.022 – volume: 35 start-page: 734 year: 2023 ident: ref_16 article-title: Dual Resource Constrained Flexible Job Shop Energy-saving Scheduling Considering Delivery Time publication-title: J. Syst. Simul. – volume: 142 start-page: 13 year: 2020 ident: ref_39 article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106347 – volume: 237 start-page: 121723 year: 2024 ident: ref_40 article-title: A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121723 – volume: 79 start-page: 102435 year: 2023 ident: ref_4 article-title: Edge computing-based real-time scheduling for digital twin flexible job shop with variable time window publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102435 – volume: 190 start-page: 107969 year: 2021 ident: ref_29 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.107969 – volume: 166 start-page: 25 year: 2021 ident: ref_42 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst. Appl. – volume: 21 start-page: 3127 year: 2023 ident: ref_20 article-title: A Review on Intelligent Scheduling and Optimization for Flexible Job Shop publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-023-0578-1 – volume: 57 start-page: 1267 year: 2023 ident: ref_1 article-title: Adaptive salp swarm algorithm for solving flexible job shop scheduling problem with transportation time publication-title: J. Zhejiang Univ. – ident: ref_15 doi: 10.3390/math12203176 – volume: 30 start-page: 1 year: 2024 ident: ref_38 article-title: Solving Flexible Job Shop Joint Scheduling Problem Based on Multi-Agent Reinforcement Learning publication-title: Comput. Integr. Manuf. Syst. – volume: 30 start-page: 4179 year: 2024 ident: ref_5 article-title: Industrial Exoskeletons for Human-Centric Manufacturing: Challenges, Progress, and Prospects publication-title: Comput. Integr. Manuf. Syst. – volume: 203 start-page: 12 year: 2022 ident: ref_10 article-title: An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117460 – volume: 171 start-page: 13 year: 2025 ident: ref_14 article-title: Dynamic scheduling for multi-objective flexible job shop via deep reinforcement learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2025.112787 – ident: ref_45 doi: 10.3390/su14095177 – volume: 314 start-page: 409 year: 2024 ident: ref_8 article-title: The flexible job shop scheduling problem: A review publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2023.05.017 – volume: 8 start-page: 86915 year: 2020 ident: ref_11 article-title: Improved jaya algorithm for flexible job shop rescheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992478 – volume: 88 start-page: 101605 year: 2024 ident: ref_27 article-title: Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101605 – volume: 23 start-page: 347 year: 2024 ident: ref_2 article-title: Multi-UAV Cooperative Task Offloading and Resource Allocation in 5G Advanced and Beyond publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2023.3277801 – volume: 12 start-page: 118941 year: 2024 ident: ref_3 article-title: An IoT-Enabled Real-Time Dynamic Scheduler for Flexible Job Shop Scheduling (FJSS) in an Industry 4.0-Based Manufacturing Execution System (MES 4.0) (vol 12, pg 49653, 2024) publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3448768 – ident: ref_25 doi: 10.3390/s24072251 – volume: 62 start-page: 102872 year: 2024 ident: ref_34 article-title: Dynamic flexible job-shop scheduling by multi-agent reinforcement learning with reward-shaping publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102872 – volume: 91 start-page: 17 year: 2020 ident: ref_44 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106208 – volume: 12 start-page: 336 year: 2015 ident: ref_43 article-title: Multi objective Flexible Job Shop Scheduling Using Memetic Algorithms publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2274517 – volume: 40 start-page: 3690 year: 2023 ident: ref_36 article-title: Improved Hybrid Multi-Objective Ant Colony Algorithm for Flexible Job Shop Scheduling Problem with Transportation and Setup Times publication-title: Appl. Res. Comput. – volume: 90 start-page: 13 year: 2024 ident: ref_9 article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101660 – volume: 46 start-page: 7697 year: 2024 ident: ref_12 article-title: Solving multi-objective green flexible job shop scheduling problem by an improved chimp optimization algorithm publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-236157 – volume: 25 start-page: 13 year: 2023 ident: ref_24 article-title: A genetic algorithm-based approach for flexible job shop rescheduling problem with machine failure interference publication-title: Eksploat. I Niezawodn. doi: 10.17531/ein/171784 – volume: 8 start-page: 71752 year: 2020 ident: ref_28 article-title: Actor-critic deep reinforcement learning for solving job shop scheduling problems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2987820 – volume: 174 start-page: 93 year: 2016 ident: ref_46 article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2016.01.016 – ident: ref_7 doi: 10.5220/0010429605620573  | 
    
| SSID | ssj0000913849 | 
    
| Score | 2.2867284 | 
    
| Snippet | In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops,... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 932 | 
    
| SubjectTerms | ACODDQN algorithm Algorithms Ant colony optimization Automation Completion time Deep learning Delay time Emergency equipment Energy consumption equipment fault diagnosis and maintenance Failure Fault diagnosis Genetic algorithms global search capabilities Heuristic Job shops Machine learning Maintenance Manufacturing multi-resource and multi-objective model Multiple objective analysis Objectives Optimization Optimization models Personnel Production management Production scheduling Resource scheduling Scheduling Solution space Workpieces  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzSHkrQp3TYtOvRxMvFDkq3jZrdLCGzSkgZyE6NXNuDYy8ZLyC_I3-7IdhaHQHrpzRjLGjSjmW_Q6BtCvjJjmHMsQeRmfMTywkfAHYu4ACMzZjS0zSbmp-L4gp1c8stBq69QE9bRA3cLdyhBWsOKWHhtWOK95LFGUJMi3PLeyfaab1zIQTLV-mCZZAWTXaV7hnn9IeK_BfprgRl8-iQGtVT9zx3yDtleV0u4v4OyHESc2S5500NFOu5E3COvXPWW7Mw3PKu378jDLPBZ6tLRk1rT80W9pNOuxTw9R23YUGZ-RaGydAbrsqFzCPQQgWPD0V8t1q5cSSd1vXQdA_hw2Bl6k5v-miY9wmhnKT7g7HQ8OZtOf5_ScXlVr66bxc0-uZj9_DM5jvrWCpHJBG-i1MfWeq99jKuKELFgPLSeTrzVGkGez1MDsQvU7sJhCuWMsIXRXOjcFhJRUvaebFV15T4QasLJq8kB0tSzBLjOvMWx-FNg4CAdkW-Pi62WHYOGwswjKEUNlTIiR0ETm28C73X7Aq1B9dag_mUNI_Ij6FGF3dmswEB_yQBFDTxXaoz5OEefI3C6g0dVq37b3ip0cAkvcozYI_J9o_4Xxf74P8T-RF6noa9wW9t2QLaa1dp9RrDT6C-tXf8F2bL_Gw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JbtswECVS59DmUHRF3aYFD11OQmSJ1HIoCi8xggB20qYBchOGm31QJNWRUfQL-tud0eK6KJCbIIgUwSGHb8jhe4y9F1oLa8UIkZt2nogT54G0wpMR6DQUWkEjNrFYRmfX4vxG3hywZX8XhtIqe5_YOGpTatojP8GxN5JJjM70S_XDI9UoOl3tJTSgk1YwnxuKsQfsMCBmrAE7nJwuL7_tdl2IBTMRaZsBH2K8f4K4cI1-PMLIPvhnbWoo_P931Efs4bao4NdPyPO9lWj-hD3uICQftzZ_yg5s8YwdLXb8q3fP2e858Vyq3PLzUvGrdVnxWSs9z6_QSobSz1ccCsPnsM1rvgCijSDuDcsvGwxe2JxPy7KyLTP4frEL9DK33fVNPsFV0HB8wL_z8fRiNvu65ON8hV1Xr29fsOv56ffpmddJLng6jGTtBc43xjnlfKUxFsLwT5Ik9cgZpRD8uTjQ4FuifI8shlZWRybRSkYqNkmK6Cl8yQZFWdhXjGs6kdUxQBA4MQKpQmewLFYKAiwEQ_ah7-ysapk1MoxIyCjZvlGGbEKW2H1DfNjNi3KzyrrplaWQGi0SP3LY7pFzqfQVQt8AQblzNk2G7BPZMaNZW29AQ3f5AJtK_FfZGON0ib4owt8d96bOuul8l_0dfEP2cWf-e5v9-v563rBHASkJN9lsx2xQb7b2LcKbWr3rxuwfQPv8eA priority: 102 providerName: ProQuest  | 
    
| Title | Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm | 
    
| URI | https://www.proquest.com/docview/3181587847 https://doi.org/10.3390/math13060932 https://doaj.org/article/9a9dc4806fbc41ff950b999281bffe98  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V5AA98EYYSrSHAicXP9avo_MwVaWkgRKpnKx9NgjXjlJHCP4Af5tZ24kClYCbZe3ao53ZmW_s2W8AjqkQVCnqInIT2qZRrG0WKGoHIROJTwVnTbOJ6Sw8XdCzy-DyAI63Z2H2_t_7mI6_Q9i2RDcbYuKNjrYfBoi4e9BfzObpZ9M3zvMiO8KBbU37rSm_RZuGlP-26z2Eu5tyxb5_Y0WxF1uyBzDZStWWlHw92dT8RPz4g7DxX2I_hPsduCRpaw2P4ECVj-FwumNmvXkCPzPDgMkLRc4qTi6W1YqM26b05AL1J01h-hVhpSQZ2xQ1mTJDKGFYORSZN-i8VAUZVdVKtZzh-9PO0f9cdwc7yRDjoyR4gW8n6eh8PP4wI2lxVa2_1Mvrp7DIJp9Gp3bXjMEWfhjUtqcdKbXm2uECsyRMDAPTrNrVknOEhTryBHOUIYMPFSZdSoQyFjwIeSTjBHGV_wx6ZVWq50CE-VcrIsY8T1OXBdzXEufiQxllinkWvN4qLV-1nBs55ipmYfP9hbVgaDS6G2OYspsbqIm823h5whIpaOyEGuV2tU4ChyMo9hCua62S2IK3xh5ys5_rNROsO5aAohpmrDzFDB6NDuO8BUdbk8m7jX6To0t0gzjCGG_Bm50Z_VXsF_878CXc80y34abi7Qh69XqjXiEEqvkA7sTZ-wH0h5PZ_OOg-ZAw6HbFL3PNB8s | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXS5JDmUHRF3aYtD017EqKFlMRDUHiJ4Sx20iYBclO42gdFUm0ZQb6gf9Vv61CL66JAbrkJgkQRnNHMGy7vIfSZSEm0Jh4gN2kcEsXG4VQTh4ZcsoBIwSuxifEkHF2R42t6vYF-t2dh7LbKNiZWgVrl0s6R74PveTSOIJh-K346VjXKrq62Ehq8kVZQBxXFWHOw40Tf30EJtzg4GoC993x_eHjZHzmNyoAjg5CWjm9cpYwRxhUS4D9UPNSqMHtGCQF4x0S-5K62LOehhmpCy1DFUtBQRCpmABgCaPcJ2iIBYVD8bfUOJ-c_VrM8lnUzJqzecR8EzN0HHDqDvBG6LPD_yYWVZMD_iWEHbS-zgt_f8TRdy3zD5-hZA1lxt_axF2hDZy_RznjF97p4hX4NLa-mSDU-zgW-mOUFHtRS9_gCvELZ7e5TzDOFh3yZlnjMLU2F5frQ-LzC_JlOcT_PC10zka-_dgZR7bY5Lop7kHUVhgv4Ou72zwaD7xPcTadgqnJ2-xpdPcrgv0GbWZ7ptwhLuwIsI8593xCPUxEYBe9Co5xwzf0O2msHOylqJo8EKiBrlGTdKB3Us5ZYPWP5t6sb-XyaNL9zwjhTksRuaKDfnjGMugKgtg9FgDGaxR301doxsVGinHPJm8MO0FXLt5V04yCiEPtC-Nxua-qkCR-L5K-zd9CXlfkf7Pa7h9v5hLZHl-PT5PRocvIePfWtinG1k24XbZbzpf4A0KoUHxv_xejmsX-ZP7ydOcM | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4iUGAPFE5W_Fi_DgilMaYPkhaVSr2ZfSYH1zaJo6q_gP_Er2PGjxCE1FtvluVdr3ZmZ77dnfmGkHdMSqY1cwC5SWOxMDIW9zWz_IDL2GNS8KbYxGQaHJyzowv_Yov87nNhMKyyt4mNoValxDPyIeie40chGNOh6cIiTpP0U_XTwgpSeNPal9NoVeRYX1_B9m358TABWe-5bvr5-_jA6ioMWNIL_Npyja2UMcLYQgL0h92OjxWYHaOEAKxjQldyWyPDeaBhJ6FloCIp_ECEKooBLHjQ7x1yN0QWd8xST7-sz3eQbzNicRtr73mxPQQEOgePEdix5_7jBZtiAf-7hB1yf1VU_PqK5_mGz0sfkYcdWKWjVrseky1dPCE7kzXT6_Ip-ZUio6bINT0qBT2blxVN2iL39Az0QWGg-4zyQtGUr_KaTjgSVCDLh6anDdovdE7HZVnploN8s9kJ2LPLLlGU7oO_VRQe4O90ND5Jkm9TOspnIJh6fvmMnN_K1D8n20VZ6BeESrz7lSHnrmuYw33hGQVtoVPOuObugOz1k51VLYdHBnsfFEq2KZQB2UdJrL9B5u3mRbmYZd1CzmIeK8kiOzAwbseY2LcFgGwX4L8xOo4G5APKMUP7UC-45F2aAwwVmbayUeSFPli9AH6324s66wzHMvur5gPyfi3-G4f98uZ-3pJ7sFCyr4fT41fkgYvli5sQul2yXS9W-jVgqlq8aZSXkh-3vVr-ADP4N10 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V6QF64I1wKWgPBU4u9nrXj6ObNKoqJS0qkcrJ2meDcO0odVTBH-BvM2s7UaAScLOsXXu0O49vtLPfABwypZgxLETkpqzPktT6ghvm81ioLGJKirbZxGQan87Y2RW_2oHD9V2YrfP7CNPxjwjb5uhmY0y80dHuxhwR9wB2Z9OL_IvrG0dp4ic4sKtpvzflt2jTkvLfd7178GBVLcT3O1GWW7Fl_BhO1lJ1JSXfjlaNPFI__iBs_JfYT-BRDy5J3mnDU9gx1TPYm2yYWW-fw8-xY8CUpSFntSSX83pBRl1TenKJ-6ddYfo1EZUmY7EqGzIRjlDCsXIYctGi88qUZFjXC9Nxhm9PO0f_c9Nf7CTHGB81wQf8O8mH56PRpynJy-t6-bWZ37yA2fjk8_DU75sx-CqKeeNTG2htrbSBVJglYWLIXbPq0GopERbahCoRGEcGHxtMuoyKdaokj2Wi0wxxVfQSBlVdmVdAlDurVYkQlFoWCi4jq3EuflQwYQT14N1604pFx7lRYK7iFrbYXlgPjt2ObsY4puz2Be5E0RtekYlMK5YGsUW5Q2szHkgExRThurUmSz344PShcPbcLIUS_bUEFNUxYxU5ZvCodBjnPThYq0zRG_ptgS4x5GmCMd6D9xs1-qvY-_878DU8pK7bcFvxdgCDZrkybxACNfJtbwG_AAMPBFY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Job+Shop+Dynamic+Scheduling+and+Fault+Maintenance+Personnel+Cooperative+Scheduling+Optimization+Based+on+the+ACODDQN+Algorithm&rft.jtitle=Mathematics+%28Basel%29&rft.au=Lu%2C+Jiansha&rft.au=Zhang%2C+Jiarui&rft.au=Cao%2C+Jun&rft.au=Xu%2C+Xuesong&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=6&rft.spage=932&rft_id=info:doi/10.3390%2Fmath13060932&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |