Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm

In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops, this paper proposes a multi-resource, multi-objective dynamic scheduling optimization model, which aims to minimize delay time and completio...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 13; no. 6; p. 932
Main Authors Lu, Jiansha, Zhang, Jiarui, Cao, Jun, Xu, Xuesong, Shao, Yiping, Cheng, Zhenbo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math13060932

Cover

Abstract In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops, this paper proposes a multi-resource, multi-objective dynamic scheduling optimization model, which aims to minimize delay time and completion time. It integrates the scheduling of the workpieces, machines, and maintenance personnel to improve the response efficiency of emergency equipment maintenance. To this end, a self-learning Ant Colony Algorithm based on deep reinforcement learning (ACODDQN) is designed in this paper. The algorithm searches the solution space by using the ACO, prioritizes the solutions by combining the non-dominated sorting strategies, and achieves the adaptive optimization of scheduling decisions by utilizing the organic integration of the pheromone update mechanism and the DDQN framework. Further, the generated solutions are locally adjusted via the feasible solution optimization strategy to ensure that the solutions satisfy all the constraints and ultimately generate a Pareto optimal solution set with high quality. Simulation results based on standard examples and real cases show that the ACODDQN algorithm exhibits significant optimization effects in several tests, which verifies its superiority and practical application potential in dynamic scheduling problems.
AbstractList In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops, this paper proposes a multi-resource, multi-objective dynamic scheduling optimization model, which aims to minimize delay time and completion time. It integrates the scheduling of the workpieces, machines, and maintenance personnel to improve the response efficiency of emergency equipment maintenance. To this end, a self-learning Ant Colony Algorithm based on deep reinforcement learning (ACODDQN) is designed in this paper. The algorithm searches the solution space by using the ACO, prioritizes the solutions by combining the non-dominated sorting strategies, and achieves the adaptive optimization of scheduling decisions by utilizing the organic integration of the pheromone update mechanism and the DDQN framework. Further, the generated solutions are locally adjusted via the feasible solution optimization strategy to ensure that the solutions satisfy all the constraints and ultimately generate a Pareto optimal solution set with high quality. Simulation results based on standard examples and real cases show that the ACODDQN algorithm exhibits significant optimization effects in several tests, which verifies its superiority and practical application potential in dynamic scheduling problems.
Audience Academic
Author Lu, Jiansha
Cheng, Zhenbo
Xu, Xuesong
Zhang, Jiarui
Cao, Jun
Shao, Yiping
Author_xml – sequence: 1
  givenname: Jiansha
  surname: Lu
  fullname: Lu, Jiansha
– sequence: 2
  givenname: Jiarui
  surname: Zhang
  fullname: Zhang, Jiarui
– sequence: 3
  givenname: Jun
  surname: Cao
  fullname: Cao, Jun
– sequence: 4
  givenname: Xuesong
  surname: Xu
  fullname: Xu, Xuesong
– sequence: 5
  givenname: Yiping
  orcidid: 0000-0002-8721-9755
  surname: Shao
  fullname: Shao, Yiping
– sequence: 6
  givenname: Zhenbo
  orcidid: 0000-0003-2185-7006
  surname: Cheng
  fullname: Cheng, Zhenbo
BookMark eNp9kc1u1DAUhSNUJErpjgewxJYUOz-OvRxmOtCqMKDCOvLP9cSjxA6OAwwvwGvXJQjNCnvhq-NzP1_rPM_OnHeQZS8JvipLjt8MInakxBTzsniSnRdF0eRNujg7qZ9ll9N0wGlxUrKKn2e_tz38tLIHdOsluu_8iDZHJwar0L3qQM-9dXsknEZbMfcRfRDWRXDCKUCfIEzeOejR2vsRgoj2O5y27cZoB_sr6d6ht2ICjVIRO0Cr9W6z-fwRrfq9DzZ2w4vsqRH9BJd_z4vs6_b6y_p9frd7d7Ne3eWqpHXMC4O1NkYaLFXFOWFVXVWYEaOlxFVtmkIJDAWmDYWK16CoZkrWVDaa8aKm5UV2s3C1F4d2DHYQ4dh6Yds_gg_7VoRoVQ8tF1yrimFq0lvEGF5jyTkvGJHGAGeJlS-s2Y3i-EP0_T8gwe1jKO1pKMn_avGPwX-bYYrtwc_Bpe-2JWGkZg2rmuS6Wlx7kYawzvgYhEpbQ0olZW5s0lesbGpOS_qIfb00qOCnKYD5_xQPTz-tKQ
Cites_doi 10.1007/s10845-020-01547-4
10.1007/s10586-024-04803-x
10.1016/j.procir.2022.02.183
10.3390/app14104082
10.1016/j.cie.2021.107489
10.23919/CCC63176.2024.10662528
10.1016/j.cie.2023.109255
10.3390/pr10030571
10.1016/j.engappai.2024.108487
10.3901/JME.2022.19.242
10.1016/j.asoc.2018.06.022
10.1016/j.cie.2020.106347
10.1016/j.eswa.2023.121723
10.1016/j.rcim.2022.102435
10.1016/j.comnet.2021.107969
10.1007/s12555-023-0578-1
10.3390/math12203176
10.1016/j.eswa.2022.117460
10.1016/j.asoc.2025.112787
10.3390/su14095177
10.1016/j.ejor.2023.05.017
10.1109/ACCESS.2020.2992478
10.1016/j.swevo.2024.101605
10.1109/TWC.2023.3277801
10.1109/ACCESS.2024.3448768
10.3390/s24072251
10.1016/j.aei.2024.102872
10.1016/j.asoc.2020.106208
10.1109/TASE.2013.2274517
10.1016/j.swevo.2024.101660
10.3233/JIFS-236157
10.17531/ein/171784
10.1109/ACCESS.2020.2987820
10.1016/j.ijpe.2016.01.016
10.5220/0010429605620573
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math13060932
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_9a9dc4806fbc41ff950b999281bffe98
10.3390/math13060932
A837596362
10_3390_math13060932
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c365t-2f0ddffbf0bc499184544081fdbb045f72ca0e20676e495ec6d8cb56b7d892563
IEDL.DBID UNPAY
ISSN 2227-7390
IngestDate Tue Oct 14 19:03:36 EDT 2025
Sun Sep 07 11:11:45 EDT 2025
Fri Jul 25 11:58:32 EDT 2025
Mon Oct 20 16:53:27 EDT 2025
Thu Oct 16 04:24:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-2f0ddffbf0bc499184544081fdbb045f72ca0e20676e495ec6d8cb56b7d892563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2185-7006
0000-0002-8721-9755
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/math13060932
PQID 3181587847
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_9a9dc4806fbc41ff950b999281bffe98
unpaywall_primary_10_3390_math13060932
proquest_journals_3181587847
gale_infotracacademiconefile_A837596362
crossref_primary_10_3390_math13060932
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_4) 2023; 79
Gao (ref_11) 2020; 8
Yuan (ref_43) 2015; 12
Zhang (ref_10) 2022; 203
Turkyilmaz (ref_21) 2020; 31
Liu (ref_31) 2022; 56
Taghian (ref_42) 2021; 166
Gui (ref_33) 2023; 180
Huang (ref_35) 2018; 24
Zhang (ref_34) 2024; 62
Zain (ref_41) 2018; 70
Palacio (ref_32) 2022; 106
Guo (ref_2) 2024; 23
Luan (ref_12) 2024; 46
Yue (ref_9) 2024; 90
ref_17
Zhang (ref_36) 2023; 40
ref_15
Luo (ref_44) 2020; 91
Lu (ref_37) 2024; 133
Tang (ref_40) 2024; 237
Su (ref_27) 2024; 88
Meng (ref_38) 2024; 30
ref_25
Yuan (ref_14) 2025; 171
Mokhtari (ref_19) 2021; 8
Jiang (ref_20) 2023; 21
ref_23
ref_45
ref_22
Liu (ref_28) 2020; 8
Peng (ref_26) 2025; 28
Zhang (ref_16) 2023; 35
Meng (ref_39) 2020; 142
Xu (ref_13) 2022; 58
Li (ref_46) 2016; 174
Liang (ref_24) 2023; 25
Tariq (ref_3) 2024; 12
Ding (ref_8) 2024; 314
Niu (ref_1) 2023; 57
Luo (ref_30) 2021; 159
Sun (ref_18) 2022; 33
Cheng (ref_5) 2024; 30
Jiang (ref_6) 2024; 36
ref_7
Wang (ref_29) 2021; 190
References_xml – volume: 33
  start-page: 2590
  year: 2022
  ident: ref_18
  article-title: Dual Resource-constrained Flexible Job Shop Scheduling Algorithm Considering Machining Quality of Key Jobs
  publication-title: China Mech. Eng.
– volume: 31
  start-page: 1949
  year: 2020
  ident: ref_21
  article-title: A research survey: Heuristic approaches for solving multi objective flexible job shop problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01547-4
– volume: 28
  start-page: 185
  year: 2025
  ident: ref_26
  article-title: Multi-objective dynamic distributed flexible job shop scheduling problem considering uncertain processing time
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04803-x
– volume: 106
  start-page: 227
  year: 2022
  ident: ref_32
  article-title: A Q-Learning algorithm for flexible job shop scheduling in a real-world manufacturing scenario
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2022.02.183
– ident: ref_23
  doi: 10.3390/app14104082
– volume: 159
  start-page: 107489
  year: 2021
  ident: ref_30
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107489
– volume: 56
  start-page: 1262
  year: 2022
  ident: ref_31
  article-title: Dual-System Reinforcement Learning Approach for Dynamic Scheduling in Flexible Job Shops
  publication-title: J. Shanghai Jiao Tong Univ.
– ident: ref_17
  doi: 10.23919/CCC63176.2024.10662528
– volume: 8
  start-page: 295
  year: 2021
  ident: ref_19
  article-title: Dual Resource Constrained Flexible Job-Shop Scheduling with Lexicograph Objectives
  publication-title: J. Ind. Eng. Res. Prod. Syst.
– volume: 180
  start-page: 109255
  year: 2023
  ident: ref_33
  article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109255
– volume: 36
  start-page: 1609
  year: 2024
  ident: ref_6
  article-title: Real-time Scheduling Method for Dynamic Flexible Job Shop Scheduling
  publication-title: J. Syst. Simul.
– ident: ref_22
  doi: 10.3390/pr10030571
– volume: 133
  start-page: 22
  year: 2024
  ident: ref_37
  article-title: A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108487
– volume: 58
  start-page: 242
  year: 2022
  ident: ref_13
  article-title: Comprehensive Energy Saving Optimization of Processing Parameters and Job Shop Dynamic Scheduling Considering Disturbance Events
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2022.19.242
– volume: 24
  start-page: 558
  year: 2018
  ident: ref_35
  article-title: ACO integrated approach for solving flexible job-shop scheduling with multiple process plans
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 70
  start-page: 680
  year: 2018
  ident: ref_41
  article-title: A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.022
– volume: 35
  start-page: 734
  year: 2023
  ident: ref_16
  article-title: Dual Resource Constrained Flexible Job Shop Energy-saving Scheduling Considering Delivery Time
  publication-title: J. Syst. Simul.
– volume: 142
  start-page: 13
  year: 2020
  ident: ref_39
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106347
– volume: 237
  start-page: 121723
  year: 2024
  ident: ref_40
  article-title: A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121723
– volume: 79
  start-page: 102435
  year: 2023
  ident: ref_4
  article-title: Edge computing-based real-time scheduling for digital twin flexible job shop with variable time window
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102435
– volume: 190
  start-page: 107969
  year: 2021
  ident: ref_29
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107969
– volume: 166
  start-page: 25
  year: 2021
  ident: ref_42
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 3127
  year: 2023
  ident: ref_20
  article-title: A Review on Intelligent Scheduling and Optimization for Flexible Job Shop
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-023-0578-1
– volume: 57
  start-page: 1267
  year: 2023
  ident: ref_1
  article-title: Adaptive salp swarm algorithm for solving flexible job shop scheduling problem with transportation time
  publication-title: J. Zhejiang Univ.
– ident: ref_15
  doi: 10.3390/math12203176
– volume: 30
  start-page: 1
  year: 2024
  ident: ref_38
  article-title: Solving Flexible Job Shop Joint Scheduling Problem Based on Multi-Agent Reinforcement Learning
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 30
  start-page: 4179
  year: 2024
  ident: ref_5
  article-title: Industrial Exoskeletons for Human-Centric Manufacturing: Challenges, Progress, and Prospects
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 203
  start-page: 12
  year: 2022
  ident: ref_10
  article-title: An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117460
– volume: 171
  start-page: 13
  year: 2025
  ident: ref_14
  article-title: Dynamic scheduling for multi-objective flexible job shop via deep reinforcement learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2025.112787
– ident: ref_45
  doi: 10.3390/su14095177
– volume: 314
  start-page: 409
  year: 2024
  ident: ref_8
  article-title: The flexible job shop scheduling problem: A review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2023.05.017
– volume: 8
  start-page: 86915
  year: 2020
  ident: ref_11
  article-title: Improved jaya algorithm for flexible job shop rescheduling problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992478
– volume: 88
  start-page: 101605
  year: 2024
  ident: ref_27
  article-title: Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101605
– volume: 23
  start-page: 347
  year: 2024
  ident: ref_2
  article-title: Multi-UAV Cooperative Task Offloading and Resource Allocation in 5G Advanced and Beyond
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2023.3277801
– volume: 12
  start-page: 118941
  year: 2024
  ident: ref_3
  article-title: An IoT-Enabled Real-Time Dynamic Scheduler for Flexible Job Shop Scheduling (FJSS) in an Industry 4.0-Based Manufacturing Execution System (MES 4.0) (vol 12, pg 49653, 2024)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3448768
– ident: ref_25
  doi: 10.3390/s24072251
– volume: 62
  start-page: 102872
  year: 2024
  ident: ref_34
  article-title: Dynamic flexible job-shop scheduling by multi-agent reinforcement learning with reward-shaping
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102872
– volume: 91
  start-page: 17
  year: 2020
  ident: ref_44
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106208
– volume: 12
  start-page: 336
  year: 2015
  ident: ref_43
  article-title: Multi objective Flexible Job Shop Scheduling Using Memetic Algorithms
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2013.2274517
– volume: 40
  start-page: 3690
  year: 2023
  ident: ref_36
  article-title: Improved Hybrid Multi-Objective Ant Colony Algorithm for Flexible Job Shop Scheduling Problem with Transportation and Setup Times
  publication-title: Appl. Res. Comput.
– volume: 90
  start-page: 13
  year: 2024
  ident: ref_9
  article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101660
– volume: 46
  start-page: 7697
  year: 2024
  ident: ref_12
  article-title: Solving multi-objective green flexible job shop scheduling problem by an improved chimp optimization algorithm
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-236157
– volume: 25
  start-page: 13
  year: 2023
  ident: ref_24
  article-title: A genetic algorithm-based approach for flexible job shop rescheduling problem with machine failure interference
  publication-title: Eksploat. I Niezawodn.
  doi: 10.17531/ein/171784
– volume: 8
  start-page: 71752
  year: 2020
  ident: ref_28
  article-title: Actor-critic deep reinforcement learning for solving job shop scheduling problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987820
– volume: 174
  start-page: 93
  year: 2016
  ident: ref_46
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2016.01.016
– ident: ref_7
  doi: 10.5220/0010429605620573
SSID ssj0000913849
Score 2.2867284
Snippet In order to address the impact of equipment fault diagnosis and repair delays on production schedule execution in the dynamic scheduling of flexible job shops,...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 932
SubjectTerms ACODDQN algorithm
Algorithms
Ant colony optimization
Automation
Completion time
Deep learning
Delay time
Emergency equipment
Energy consumption
equipment fault diagnosis and maintenance
Failure
Fault diagnosis
Genetic algorithms
global search capabilities
Heuristic
Job shops
Machine learning
Maintenance
Manufacturing
multi-resource and multi-objective model
Multiple objective analysis
Objectives
Optimization
Optimization models
Personnel
Production management
Production scheduling
Resource scheduling
Scheduling
Solution space
Workpieces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzSHkrQp3TYtOvRxMvFDkq3jZrdLCGzSkgZyE6NXNuDYy8ZLyC_I3-7IdhaHQHrpzRjLGjSjmW_Q6BtCvjJjmHMsQeRmfMTywkfAHYu4ACMzZjS0zSbmp-L4gp1c8stBq69QE9bRA3cLdyhBWsOKWHhtWOK95LFGUJMi3PLeyfaab1zIQTLV-mCZZAWTXaV7hnn9IeK_BfprgRl8-iQGtVT9zx3yDtleV0u4v4OyHESc2S5500NFOu5E3COvXPWW7Mw3PKu378jDLPBZ6tLRk1rT80W9pNOuxTw9R23YUGZ-RaGydAbrsqFzCPQQgWPD0V8t1q5cSSd1vXQdA_hw2Bl6k5v-miY9wmhnKT7g7HQ8OZtOf5_ScXlVr66bxc0-uZj9_DM5jvrWCpHJBG-i1MfWeq99jKuKELFgPLSeTrzVGkGez1MDsQvU7sJhCuWMsIXRXOjcFhJRUvaebFV15T4QasLJq8kB0tSzBLjOvMWx-FNg4CAdkW-Pi62WHYOGwswjKEUNlTIiR0ETm28C73X7Aq1B9dag_mUNI_Ij6FGF3dmswEB_yQBFDTxXaoz5OEefI3C6g0dVq37b3ip0cAkvcozYI_J9o_4Xxf74P8T-RF6noa9wW9t2QLaa1dp9RrDT6C-tXf8F2bL_Gw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JbtswECVS59DmUHRF3aYFD11OQmSJ1HIoCi8xggB20qYBchOGm31QJNWRUfQL-tud0eK6KJCbIIgUwSGHb8jhe4y9F1oLa8UIkZt2nogT54G0wpMR6DQUWkEjNrFYRmfX4vxG3hywZX8XhtIqe5_YOGpTatojP8GxN5JJjM70S_XDI9UoOl3tJTSgk1YwnxuKsQfsMCBmrAE7nJwuL7_tdl2IBTMRaZsBH2K8f4K4cI1-PMLIPvhnbWoo_P931Efs4bao4NdPyPO9lWj-hD3uICQftzZ_yg5s8YwdLXb8q3fP2e858Vyq3PLzUvGrdVnxWSs9z6_QSobSz1ccCsPnsM1rvgCijSDuDcsvGwxe2JxPy7KyLTP4frEL9DK33fVNPsFV0HB8wL_z8fRiNvu65ON8hV1Xr29fsOv56ffpmddJLng6jGTtBc43xjnlfKUxFsLwT5Ik9cgZpRD8uTjQ4FuifI8shlZWRybRSkYqNkmK6Cl8yQZFWdhXjGs6kdUxQBA4MQKpQmewLFYKAiwEQ_ah7-ysapk1MoxIyCjZvlGGbEKW2H1DfNjNi3KzyrrplaWQGi0SP3LY7pFzqfQVQt8AQblzNk2G7BPZMaNZW29AQ3f5AJtK_FfZGON0ib4owt8d96bOuul8l_0dfEP2cWf-e5v9-v563rBHASkJN9lsx2xQb7b2LcKbWr3rxuwfQPv8eA
  priority: 102
  providerName: ProQuest
Title Flexible Job Shop Dynamic Scheduling and Fault Maintenance Personnel Cooperative Scheduling Optimization Based on the ACODDQN Algorithm
URI https://www.proquest.com/docview/3181587847
https://doi.org/10.3390/math13060932
https://doaj.org/article/9a9dc4806fbc41ff950b999281bffe98
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V5AA98EYYSrSHAicXP9avo_MwVaWkgRKpnKx9NgjXjlJHCP4Af5tZ24kClYCbZe3ao53ZmW_s2W8AjqkQVCnqInIT2qZRrG0WKGoHIROJTwVnTbOJ6Sw8XdCzy-DyAI63Z2H2_t_7mI6_Q9i2RDcbYuKNjrYfBoi4e9BfzObpZ9M3zvMiO8KBbU37rSm_RZuGlP-26z2Eu5tyxb5_Y0WxF1uyBzDZStWWlHw92dT8RPz4g7DxX2I_hPsduCRpaw2P4ECVj-FwumNmvXkCPzPDgMkLRc4qTi6W1YqM26b05AL1J01h-hVhpSQZ2xQ1mTJDKGFYORSZN-i8VAUZVdVKtZzh-9PO0f9cdwc7yRDjoyR4gW8n6eh8PP4wI2lxVa2_1Mvrp7DIJp9Gp3bXjMEWfhjUtqcdKbXm2uECsyRMDAPTrNrVknOEhTryBHOUIYMPFSZdSoQyFjwIeSTjBHGV_wx6ZVWq50CE-VcrIsY8T1OXBdzXEufiQxllinkWvN4qLV-1nBs55ipmYfP9hbVgaDS6G2OYspsbqIm823h5whIpaOyEGuV2tU4ChyMo9hCua62S2IK3xh5ys5_rNROsO5aAohpmrDzFDB6NDuO8BUdbk8m7jX6To0t0gzjCGG_Bm50Z_VXsF_878CXc80y34abi7Qh69XqjXiEEqvkA7sTZ-wH0h5PZ_OOg-ZAw6HbFL3PNB8s
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXS5JDmUHRF3aYtD017EqKFlMRDUHiJ4Sx20iYBclO42gdFUm0ZQb6gf9Vv61CL66JAbrkJgkQRnNHMGy7vIfSZSEm0Jh4gN2kcEsXG4VQTh4ZcsoBIwSuxifEkHF2R42t6vYF-t2dh7LbKNiZWgVrl0s6R74PveTSOIJh-K346VjXKrq62Ehq8kVZQBxXFWHOw40Tf30EJtzg4GoC993x_eHjZHzmNyoAjg5CWjm9cpYwRxhUS4D9UPNSqMHtGCQF4x0S-5K62LOehhmpCy1DFUtBQRCpmABgCaPcJ2iIBYVD8bfUOJ-c_VrM8lnUzJqzecR8EzN0HHDqDvBG6LPD_yYWVZMD_iWEHbS-zgt_f8TRdy3zD5-hZA1lxt_axF2hDZy_RznjF97p4hX4NLa-mSDU-zgW-mOUFHtRS9_gCvELZ7e5TzDOFh3yZlnjMLU2F5frQ-LzC_JlOcT_PC10zka-_dgZR7bY5Lop7kHUVhgv4Ou72zwaD7xPcTadgqnJ2-xpdPcrgv0GbWZ7ptwhLuwIsI8593xCPUxEYBe9Co5xwzf0O2msHOylqJo8EKiBrlGTdKB3Us5ZYPWP5t6sb-XyaNL9zwjhTksRuaKDfnjGMugKgtg9FgDGaxR301doxsVGinHPJm8MO0FXLt5V04yCiEPtC-Nxua-qkCR-L5K-zd9CXlfkf7Pa7h9v5hLZHl-PT5PRocvIePfWtinG1k24XbZbzpf4A0KoUHxv_xejmsX-ZP7ydOcM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4iUGAPFE5W_Fi_DgilMaYPkhaVSr2ZfSYH1zaJo6q_gP_Er2PGjxCE1FtvluVdr3ZmZ77dnfmGkHdMSqY1cwC5SWOxMDIW9zWz_IDL2GNS8KbYxGQaHJyzowv_Yov87nNhMKyyt4mNoValxDPyIeie40chGNOh6cIiTpP0U_XTwgpSeNPal9NoVeRYX1_B9m358TABWe-5bvr5-_jA6ioMWNIL_Npyja2UMcLYQgL0h92OjxWYHaOEAKxjQldyWyPDeaBhJ6FloCIp_ECEKooBLHjQ7x1yN0QWd8xST7-sz3eQbzNicRtr73mxPQQEOgePEdix5_7jBZtiAf-7hB1yf1VU_PqK5_mGz0sfkYcdWKWjVrseky1dPCE7kzXT6_Ip-ZUio6bINT0qBT2blxVN2iL39Az0QWGg-4zyQtGUr_KaTjgSVCDLh6anDdovdE7HZVnploN8s9kJ2LPLLlGU7oO_VRQe4O90ND5Jkm9TOspnIJh6fvmMnN_K1D8n20VZ6BeESrz7lSHnrmuYw33hGQVtoVPOuObugOz1k51VLYdHBnsfFEq2KZQB2UdJrL9B5u3mRbmYZd1CzmIeK8kiOzAwbseY2LcFgGwX4L8xOo4G5APKMUP7UC-45F2aAwwVmbayUeSFPli9AH6324s66wzHMvur5gPyfi3-G4f98uZ-3pJ7sFCyr4fT41fkgYvli5sQul2yXS9W-jVgqlq8aZSXkh-3vVr-ADP4N10
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V6QF64I1wKWgPBU4u9nrXj6ObNKoqJS0qkcrJ2meDcO0odVTBH-BvM2s7UaAScLOsXXu0O49vtLPfABwypZgxLETkpqzPktT6ghvm81ioLGJKirbZxGQan87Y2RW_2oHD9V2YrfP7CNPxjwjb5uhmY0y80dHuxhwR9wB2Z9OL_IvrG0dp4ic4sKtpvzflt2jTkvLfd7178GBVLcT3O1GWW7Fl_BhO1lJ1JSXfjlaNPFI__iBs_JfYT-BRDy5J3mnDU9gx1TPYm2yYWW-fw8-xY8CUpSFntSSX83pBRl1TenKJ-6ddYfo1EZUmY7EqGzIRjlDCsXIYctGi88qUZFjXC9Nxhm9PO0f_c9Nf7CTHGB81wQf8O8mH56PRpynJy-t6-bWZ37yA2fjk8_DU75sx-CqKeeNTG2htrbSBVJglYWLIXbPq0GopERbahCoRGEcGHxtMuoyKdaokj2Wi0wxxVfQSBlVdmVdAlDurVYkQlFoWCi4jq3EuflQwYQT14N1604pFx7lRYK7iFrbYXlgPjt2ObsY4puz2Be5E0RtekYlMK5YGsUW5Q2szHkgExRThurUmSz344PShcPbcLIUS_bUEFNUxYxU5ZvCodBjnPThYq0zRG_ptgS4x5GmCMd6D9xs1-qvY-_878DU8pK7bcFvxdgCDZrkybxACNfJtbwG_AAMPBFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Job+Shop+Dynamic+Scheduling+and+Fault+Maintenance+Personnel+Cooperative+Scheduling+Optimization+Based+on+the+ACODDQN+Algorithm&rft.jtitle=Mathematics+%28Basel%29&rft.au=Lu%2C+Jiansha&rft.au=Zhang%2C+Jiarui&rft.au=Cao%2C+Jun&rft.au=Xu%2C+Xuesong&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=6&rft.spage=932&rft_id=info:doi/10.3390%2Fmath13060932&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon